ABSTRACTS of the III International Weed Science Congress

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACTS of the III International Weed Science Congress ABSTRACTS of the III International Weed Science Congress Foz do Iguassu, Brazil 6 ±11 June 2000 Published by the International Weed Science Society 107 Crop Science Building, Oregon State University Corvallis, Oregon, 97331-3002, U.S.A. ISBN 1-891276-16-6 The production of this program has been sponsored by Novartis. International Weed Science Society Ricardo Labrada President Jonathan Gressel Past President Stephen Duke Vice-President Carol Mallory-Smith Secretary-Treasurer Brazilian Weed Science Society Robinson A. Pitelli President Joao Baptista da Silva Vice-President Dionisio Gazziero Secretary Benedito N. Rodrigues Treasurer III International Weed Science Congress Organizing Committee JoaÄo Baptista da Silva Chairman Ricardo Labrada IWSS President Robinson A. Pitelli SBCPD President Jonathan Gressel International Scienti®c Committee Chairman James D. Riggleman International Finance Committee Chairman Geraldo N. Vilela Host Finance Committee Chairman Maria H. T. Mascarenhas Secretary Steve Duke USA Liaison D. L. P. Gazziero Social Programs Carol Mallory-Smith IWSS Secretary-Treasurer Anne LeÂgeÁre Abstract Editor Daniel Cloutier CD-ROM Producer E. Velini, L.L. Foloni, Jens Streibig Members III International Weed Science Congress SPONSORS* ACP American Cyanamid Aventis BASF Corporation Burch CNPq Dow AgroSciences DuPont Agricultural Products European Weed Research Society FAO FINEP FMC Grif®n Ihara Hokko Kumiai Milenia Monsanto Novartis SEPRO United Agri Products USDA-APHIS USDA-ARS Zeneca * List current as of 28 April 2000 III International Weed Science Congress FOREWORD The abstracts herein are those that were reviewed and accepted by April 5, 2000. It is likely that a few poster contributions were submitted after this date, and thus are not included in this book. Nearly all abstracts were submitted electronically. In spite of certain dif®culties, often related to Web access, more than 70% of the abstracts were submitted through the abstract submission site developed by Allen Press. All others were submitted via e-mail. Abstracts appear in this book according to the program order. Author and subject indexes are found at the end of the book. Both indexes use abstract numbers for referral. Given the number of abstracts submitted and the tight time frame to produce this book, it was impossible to conduct an in-depth review of the abstracts. The abstracts were edited for format and grammar only. However, in this process, I may have inadvertently introduced errors or am- biguities in some abstracts. If this is the case, please accept my most sincere apologies. Ideally, ®nal versions of abstracts should have been veri®ed by authors. Unfortunately, this was impossible, again because of the deadlines with which I had to operate. This collection of abstracts is the work of authors. It is also the work of session organizers and that of the Program Chair, Dr. Jonathan Gressel, who created a coherent and interesting program out of these hundreds of abstracts. But it is also results from the unique contribution of Jeremy Keeler, our site manager at Allen Press, and that of Patrick LeÂvesque in my lab. They both made this book possible and helped me keep that little panic feeling at bay, especially in the last stretches. To all, we owe our most sincere gratitude. This book speaks for itself. The interest in the Third International Weed Science Congress has been outstanding. More than 500 papers were submitted, from all reaches of the planet. Topics covered include nearly all aspects of Weed Science, as it is researched and practised daily, in the high-tech laboratories as well as in the ®elds of smallholder farmers. As I write this, I can foresee that this conference will bring unique opportunities for debate, exchange, and growth for all participants. My wish to each and everyone of you: Carpe diem! Anne LeÂgeÁre ABSTRACT EDITOR Agriculture and Agri-Food Canada Sainte-Foy, QC 5 April 2000 III International Weed Science Congress Main Topics, Sessions and Organizers PROGRAM CHAIR: Jonathan Gressel ALL CONGRESS LECTURES (2±6) Jonathan Gressel 1. WEED BIOLOGY, DYNAMICS AND ECOLOGY Frank Forcella 1.1. Invasion and colonization (7±13) John M. Randall 1.2. Management of seed banks (14±38) Frank Forcella 1.3. Ecophysiology of growth and competition (39±59) Susan Weaver 1.4. Weed dynamics: case studies (60±69) Martin Mortimer 1.5. Community interactions (70±83) Robert Gallagher 1.6. Ecosystem and community dynamics (84±98) Claudio Ghersa 1.7. Molecular/conventional systematics (89±108) Patrick Tranel 2. INTEGRATED WEED MANAGEMENT* Clarence Swanton 2.1. Crop rotation, tillage and intercropping (109±125) Micheal Owen 2.2. Alternative strategies for weed management (126±146) Clarence Swanton 2.W. Decision support systems for IWM (147±152) Deirdre Lemerle *Main Topic Sponsor: NOVARTIS 3. MODELLING PROBLEMS AND SOLUTIONS Martin Kropff 3.1. Modeling crop weed interactions (153±164) Martin Kropff 3.2. Modeling long-term dynamics of weeds (165±171) Cesar Fernandez-Quintanilla 3.3. Modeling herbicide resistance (172±175) Bruce Maxwell 3.4. Modeling spatial distribution/ management implications (176±180) Mark Paice 3.5. Modeling biocontrol effects (181±185) Margaret C. Smith 3.6. Fate of herbicides in the environment (186±194) Allan Walker 3.7. Modeling decision support (195±200) Antonio Berti 4. PHYSICAL CONTROL David Bowran 4.2. Physical impacts on weeds and crops (201±207) David Bowran 5. HERBICIDES* Ken Pallett and Steven Duke 5.1. New global developments (208±217) Les Glasgow 5.2. Natural products as herbicides (218±221) Stephen Duke 5.3. Selectivity (222±236) Hiroshi Matsumoto 5.4. Formulation and adjuvants (237±243) Chester L. Foy 5.5. Interactions (244±250) Jens Streibig 5.6. Mode of action/target sites (251±259) Ken Pallett 5.7. Systemic movement (260±265) Daniel Kleier 5.8. Herbicide dissipation (266±274) Peter BoÈger 5.W.1. After methyl bromide, What? (275±279) James Gilreath 5.W.2. Novel uses of herbicides (280±288) Robert Hoagland *Main Topic Sponsor: DUPONT III International Weed Science Congress 6. HERBICIDE RESISTANCE Dale Shaner and Steve Powles 6.1. New problems and new resistance mechanisms (289±303) Dale Shaner 6.2. Genetics and implications (304±313) Christopher Preston 6.3. Proactive and retroactive management (314±325) Steve Powles 6.4. Resistance risk analysis (326±330) Phil Westra 6.W./7.W. Resistant crops to manage resistant weeds (331) Malcolm Devine 7. HERBICIDE-RESISTANT CROPS Sam Howard and Michael Oelck 7.1. Development of HRC (332±337) Robert Morrison 7.2. Needs for HRC (338±341) Michael Oelck 7.3. New possibilities for cropping with HRC (342±348) Hans Ulrich Ammon 7.4. Introgressions of HRC with weeds (349±352) Carol Mallory-Smith 8. BIOCONTROL Louise Morin 8.1. Classical biocontrol (353±362) Louise Morin 8.2. Impact of classical biocontrol (363±369) John Hoffmann 8.3. Inundative biocontrol using pathogens (370±377) Bruce Auld 8.4. Promising developments in bioherbicide research (378±387) David Sands 8.W. Synergy/Interaction of biocontrol agents with other methods Paul C. Quimby (388±391) 9. LOW INPUT AGRICULTURE Charles R. Riches 9.1. IWM for smallholders (392±398) Charles R. Riches and Joel K. Ransom 9.2. IWM for minimizing dose (399±404) Jose Martin 9.W. Implications of universal adoption (405) Ken Davies 10. NOVEL TOOLS Helmut Walter and Karl Hurle 10.2. Novel tools for the laboratory (406±409) J. Christopher Hall 10.3. Novel tools for the ®eld (410±415) Helmut Walter 10.4. Novel tools for economic analyses (416±418) P. M. Schmitz 11. SITE SPECIFIC WEED MANAGEMENT David A. Mortensen 11.1. Spatial perspectives for integrated management (419±423) Lisa Rew 11.3. Enhancing in-®eld decision-making (424±427) Lori Wiles 12. GLOBAL MOVEMENT AND MANAGEMENT Randy Westbrooks and OF INVASIVE PLANTS* Robert Eplee 12.1. Modes of movement of invasive plants (428±435) Richard Mack 12.2. Quarantine and phytosanitation (436±440) Craig Walton 12.3. New approaches for management (441±446) Randy Westbrook 12.W. Geopolitics of limiting world movement of invasives (447±448) Peter Jenkins *Main Topic Sponsor: USDA-APHIS 13. GLOBAL AQUATIC WEED PROBLEMS R. Charudattan 13.1./.2. Weeds in waterways (449±461) R. Charudattan and R.A. Pitelli 13.3. Eco/Environmental issues with aquatics (462±469) Osvaldo A. Fernandez III International Weed Science Congress 14. COMMUNICATING WEED SCIENCE Steven A. Dewey 14.2. Educating farmers/managers/professionals (470±478) Steven Dewey 14.3. Communicating weed awareness in politicians/public (479±484) K. George Beck 15. SCIENCE OF ENVIRONMENTAL ISSUES Robert L. Zimdahl 15.1. Residue problems (485±497) Anis Rahman 15.2. Risks/bene®ts of herbicides/transgenics (498±504) Gerald R. Stephenson and John L. Hup- patz 15.W. Ethical dimensions (505±506) Robert L. Zimdahl 16. SPOTLIGHTS ON WEED PROBLEMS Ricardo Labrada IN GLOBAL CROPS 16.W.1. Spotlight: Rice (507±517) Albert Fischer 16.W.2. Spotlight: Soybean (518±526) Ribas Vidal 16.W.3. Spotlight: Agroforestry (527±528) Marcos Silveira Bernardes 17. SPOTLIGHTS ON GLOBAL WEEDS* Ricardo Labrada and L.G. Holm 17.W.1. Spotlight: Cyperus spp. (523±532) Jerry Doll 17.W.2. Spotlight: Amaranthus spp. (533±534) Stanislaw Gawronski 17.W.3. Spotlight: Sorghum spp. (535±537) Eduardo Leguizamon 17.W.4. Spotlight: Striga and Orobanche (538±547) Ricardo Labrada 17.W.5. Spotlight: Cynodon dactylon (548±552) Diego Gomez de Barreda * Main Topic Sponsor: FAO Third International Weed Science Congress Foz do IguassuÐ2000 From scarcity to security: a global perspective on weed science and the future food situation (2) TIMOTHY G. REEVES, KENNETH D. SAYRE, PETER R. HOBBS, JOEL K. RANSOM, DENNIS FREISEN, KELLY CASSADAY International Maize and Wheat Improvement Center (CIMMYT), Mexico; [email protected] Whether developing countries encounter food scarcity or food security over the next two decades will depend on many factors.
Recommended publications
  • Managing Potassium for Organic Crop Production by Robert Mikkelsen an Adequate K Supply Is Essential for Both Organic and Conventional Crop Production
    NORTH AMERICA Managing Potassium for Organic Crop Production By Robert Mikkelsen An adequate K supply is essential for both organic and conventional crop production. Potas- sium is involved in many plant physiological reactions, including osmoregulation, protein synthesis, enzyme activation, and photosynthate translocation. The K balance on many farms is negative, where more K is removed in harvested crops than is returned again to the soil. An overview of commonly used K fertilizers for organic production is provided. otassium is an essential nutrient for plant growth, but it often receives less attention than N and P in many crop Pproduction systems. Many regions of the U.S.A. and all of the Canadian provinces remove more K during harvest than is returned to the soil in fertilizer and manure (Figure 1). In the U.S.A., an average of only 3 units of K is replaced as fertilizer and manure for every 4 units of K removed in crops, resulting in a depletion of nutrients from the soil and increasing occur- rences of deficiency in many places. Potassium is the soil cation required in the largest amount by plants, regardless of nutrient management philosophy. 1,400 Removal 1,200 Hay and forage crops can remove hundreds of pounds of K from the soil Manure each year, placing a heavy demand on soil resources. 1,000 Fertilizer Large amounts of K are required to maintain plant health 800 and vigor. Some specific roles of K in the plant include os- moregulation, internal cation/anion balance, enzyme activa- 600 tion, proper water relations, photosynthate translocation, and 400 protein synthesis.
    [Show full text]
  • Manuka Oil As a Potential Natural Herbicide
    Manuka Oil as a Potential Natural Herbicide Franck E. Dayan and Daniel K. Owens USDA-ARS Natural Products Utilization Research Unit P.O. Box 8048, University, MS 38677 [email protected] In 1977, Gray observed that bottlebrush plant (Callistemon citrinus) repressed the growth of plants in its surroundings. Crude extracts from this plant caused the bleaching of grass weeds. He identified the active component as leptospermone, a natural triketone structure with no known biological activity that had been reported in a number of Australasian shrubs. Leptospermone was moderately active in greenhouse tests, controlling mostly small-seeded grass weeds. This natural product and a small number of synthetic structural analogs were patented as herbicides in 1980. A few years later, a separate group at the Western Research Center was generating analogs of the cyclohexanedione herbicide sethoxydim, an inhibitor or acetyl- coenzyme-A carboxylase. Some of the second generation herbicidal derivatives with a dimedone backbone caused bleaching symptoms similar to leptospermone. Combination of the syncarpic acid of leptospermone to this chemistry ultimately served as the basis for the development of the triketone synthetic herbicides (Fig. 1). Fig. 1. Struct ure s of the n a tural trik et o n e leptosperm one a nd t w o s y nthetic analogues that are sold as commer ci a l he r bic ides. Natural β-triketones are common in many Australasian woody plants (e.g., Leptospermum, Eucalyptus, Melaceuca, etc...). Steam distilled manuka oil account for 0.3% of the dried weight of L. scoparium. However, the amount of β-triketone present in these oils varies wildly across New Zealand.
    [Show full text]
  • Nutrient Management for Blueberries in Oregon J
    Archival copy. For current information, see the OSU Extension Catalog: https://catalog.extension.oregonstate.edu/em8918 NUTRIENT MANAGEMENT EM 8918 November 2006 $5.00 Nutrient Management for Blueberries in Oregon J. Hart, B. Strik, L. White, and W. Yang Archival copy. For current information, see the OSU Extension Catalog: https://catalog.extension.oregonstate.edu/em8918 Contents Growing condition assumptions .........................................................................................1 Tissue testing .......................................................................................................................2 Interpreting tissue test results ..............................................................................................3 Soil sampling ......................................................................................................................4 Site preparation ...................................................................................................................4 Nitrogen ..............................................................................................................................6 Phosphorus ..........................................................................................................................9 Potassium ............................................................................................................................9 pH and manganese ..............................................................................................................9
    [Show full text]
  • Jamesdanieljonesiiithesis.Doc-After Defense
    The Evaluation of HPPD-Inhibitors for Full-Season Control of Morningglory (Ipomoea) Species in Corn (Zea mays L.) by James Daniel Jones III A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 15, 2018 Keywords: Ipomoea, corn, HPPD, postemergence Approved by Dr. Dennis Delaney, Chair, Extension Specialist, Crop, Soil, and Environmental Sciences Dr. Andrew Price, Affiliate Associate Professor, Crop, Soil, and Environmental Sciences Dr. Audrey Gamble, Assistant Professor and Extension Specialist, Crop, Soil, and Environmental Sciences i Abstract Due to late-season morningglory harvest interference concerns in corn, field studies were conducted in 2017 and 2018 at the Prattville Agricultural Research Unit in Prattville, Alabama and at the Sand Mountain Research and Extension Center in Crossville, Alabama to evaluate late season control of morningglory species using HPPD- inhibitors postemergence (POST) applied alone, following atrazine preemergence (PRE), or in combination with atrazine. Additionally, Amaranthus spp. and Senna spp. were evaluated for control. An incomplete randomized design with a split-plot treatment arrangement with four replications was utilized. The trial was divided into two sections: one with a PRE application of atrazine and a second without a preemergence application of atrazine. Eleven herbicides were applied POST without atrazine including: tembotrione; mesotrione; topramezone+dimethenamid; mesotrione+S- metolachlor+glyphosate; tembotrione+thiencarbazone; topramezone; mesotrione+S- metolachlor+atrazine; mesotrione+S-metolachlor+atrazine+bicyclopyrone; mesotrione+nicosulfuron; isoxaflutole; isoxaflutole+thiencarbazone-methyl; non-treated with atrazine applied PRE, and a true non-treated check. The same herbicides, excluding the two treatments that contain atrazine in the premixture, were also applied with atrazine.
    [Show full text]
  • Use of Mesotrione for Annual Bluegrass (Poa Annua L.) at Cool
    USE OF MESOTRIONE FOR ANNUAL BLUEGRASS (POA ANNUA L.) AT COOL- SEASON TURFGRASS ESTABLISHMENT by KATELYN A. VENNER A Thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Plant Biology written under the direction of Stephen E. Hart Ph.D. and approved by ________________________ ________________________ ________________________ New Brunswick, New Jersey October, 2011 ABSTRACT OF THE THESIS USE OF MESOTRIONE AT COOL-SEASON TURFGRASS ESTABLISMENT By Katelyn Anne Venner Thesis director: Stephen E. Hart Annual bluegrass is a problematic weed in highly maintained turfgrass environments, and is difficult to control due to its adaptability to highly maintained turfgrass environments and lack of highly effective chemical control options. Mesotrione is a relatively new herbicide which has been found to show some level of control of annual bluegrass, and is safe to use at cool season turfgrass establishment. Thus, mesotrione has potential to be utilized for weed control in cultivated sod production. The objectives of this research were to evaluate mesotrione to determine: 1) tolerance of selected tall fescue cultivars, an important turfgrass species cultivated for sod, to applications of mesotrione; 2) the length of residual of mesotrione versus prodiamine, bensulide and dithiopyr for control of annual bluegrass; and 3) potential of mesotrione to control winter annual broadleaf weeds at Kentucky bluegrass establishment. Tall fescue cultivars were found to be tolerant to mesotrione applications made preemergence and preemergence plus 4 weeks after emergence at higher rates than required for weed control.
    [Show full text]
  • Production of Liquid Biofertizer and Biochemical Characterisation of Component Nitrogen-Fixing and Phosphate-Solubilising Bacteria Species
    PRODUCTION OF LIQUID BIOFERTIZER AND BIOCHEMICAL CHARACTERISATION OF COMPONENT NITROGEN-FIXING AND PHOSPHATE-SOLUBILISING BACTERIA SPECIES BY UZOR, EKENEDILICHUKWU FREDRICK U14/NAS/BTG/023 SUPERVISOR: DR. C.O. ONYIA A PROJECT REPORT SUBMITTED TO THE DEPARTMENT OF BIOTECHNOLOGY AND APPLIED BIOLOGY, FACULTY OF NATURAL AND APPLIED SCIENCES, GODFREY OKOYE UNIVERSITY, UGWUOMU-NIKE, ENUGU IN PARTIAL FULFILMENT FOR THE AWARD OF A BACHELOR OF SCIENCE (B.Sc.) DEGREE IN BIOTECHNOLOGY JULY 2018 i APPROVAL This project has been presented to and approved by Godfrey Okoye University, Enugu in partial fulfilment of the requirement for the award of Bachelor of Science (B.Sc.), and degree in Biotechnology from the Department of Biotechnology and Applied Biology. …………………….. ……………….. Uzor, Ekenedilichukwu Fredrick Date Student …………………… ……………… Dr. C.O. Onyia Date Project Supervisor ……………………… ………………. Dr. C.O. Onyia Date Head of Department ii DEDICATION …for my family. iii ACKNOWLEDGEMENTS All glory be to God Almighty; Whose grace has been ever sufficient, always. My deepest gratitude goes to my family; my parents - Mr. & Mrs. P. K. O. Uzor, my siblings – Sister Ada, Sister Chi, Oluomachukwu,; thank you for your abundant love, sincere care and unflinching support. To Chidera Ejike, for your deepest care, support and love. Thank you. I wish to appreciate my quintessential supervisor, who is also the Head of my department, Dr. C. O. Onyia; for her pain-staking and diligent efforts in ensuring the success of this work, and for her excellent work in the department. My profound gratitude also goes to the Vice-Chancellor, Prof. Christian Anieke, for ensuring a conducive environment for academic activities; the Dean, Faculty of Natural and Applied Sciences, Prof.
    [Show full text]
  • Discovery & Development of Natural Products for Controlling Weeds
    Governor’s Environmental and 2008 Cleantech Innovator Award Economic Leadership Award 2008 Investors’ Circle Top 20 Discovery & Development of Natural Products for Controlling Weeds Pam Marrone, CEO & Founder Fewer New Chemicals – # of Chemicals Higher Cost ,150 Screened to Find # of New Chemical One Product 140 Leads vs. Product ,100 (‘000) 120 Launches 100 ,50 80 60 ,0 40 1990 1995 2000 2009 20 Cost to Discover 0 & Develop a 256 1995 1997 1999 2001 2003 2005 2007 Synthetic 185 Launches New Leads Chemical ($Mil) 105 Source: Ag Chem New Compound Review (Vol 25) 2007 45 85 20 Increasing resistance to 1.2 4.1 glyphosate; few new herbicidal 1956 1964 1969 1977 1984 1998 2000 2003 2007 2010 modes of action since RR crops (Source: CropLife) Herbicides from Microorganisms Basta ‐ Glufosinate ammonium • Phosphinothricin (a breakdown product of bialaphos) discovered from Streptomyces viridochromogenes and S. hygroscopicus • Inhibits the activity of the glutamine synthetase enzyme, which causes ammonia build‐up in the cell. 0 0 H3C -P -CH2-CH2 -C -C - NH4 0 OH NH2 H Herbicides from Microorganisms Methoxyhygromycin • Produced by Streptomyces sp. 8E‐12 (Korea) • Bleaches and kills plants • Has some selectivity to cucumber, rice, wheat and soybean Herbicides from Plants Leptospermone • From the bottlebrush tree Callistemon citrinus • Developed into Callisto® herbicide (mesotrione) by Syngenta • Mesotrione inhibits an essential plant enzyme, HPPD (p‐hydroxyphenyl pyruvate dioxygenase) that is found primarily in the cytoplasm of the chloroplasts What We Do We discover, develop, and market effective and environmentally responsible natural products (biopesticides) that fill unmet needs for weed, pest & plant disease management.
    [Show full text]
  • Copyrighted Material
    413 Index NOTE: Weeds are listed under their latin names, crops under their common names. Individual herbicides are listed under ‘herbicide’ and biocontrol agents under ‘weed biocontrol agents’. For a full list of weed control methods mentioned see under ‘weed control methods’. a Alliaria petiolata 284 herbicide resistance 183, Abutilon theophrasti 77 Allium spp. 390 184, 209 in horticultural crops 362 Alopecurus spp. 7 in horticultual crops 362 in Italy & Spain 71, 362 Alopecurus aequalis 76 in maize 71 seed germination 89 Alopecurus japonicus 76 Amaranthus albus 358 in Switzerland 297 Alopecurus myosuroides 5, Amaranthus blitoides 358 Acacia dealbata 220, 295 75, 121 Amaranthus deflexus 358 Acacia longifolia 228 ACCase resistance 63, 65 Amaranthus hybridus 77 Adonis annua 19 biology 16 in horticultural crops 362 Aethusa cynapium 360 in cereals 11, 67, 68 seed germination 89 agri‐chemical industry 17 climate change 52–5 in tomato 358 Agricultural Development competitive interactions 15, Amaranthus lividus 358 Advisory Service 52–5 Amaranthus palmeri 65, (ADAS) 15, 16, 17 eradication 20 77, 191 agri‐environmental herbicide effects 7, 156, Amaranthus retroflexus 77, 364 schemes 23, 135, 137 157, 166 biocontrol 223–4 Agrostemma githago 1, 3, 123 herbicide resistance 8, 52, in European cereals 69 Agrostis gigantea 15 184, 185, 191, 193, 196–7, in horticultural crops 367 Agrostis stolonifera 19, 393 198, 205–9 in maize 71 Ailanthus altissima 220, 295 in herbicide‐tolerant in tomato crops 358 Aizoaceae 296 crops 10 Amaranthus rudis 65 Albania
    [Show full text]
  • Postemergence Control of Annual Bluegrass with Mesotrione in Kentucky Bluegrass
    POSTEMERGENCE CONTROL OF ANNUAL BLUEGRASS WITH MESOTRIONE IN KENTUCKY BLUEGRASS BY JOSHUA JAMES SKELTON THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Crop Sciences in the Graduate College of the University of Illinois Urbana-Champaign, 2012 Urbana, Illinois Advisor: Professor Bruce E. Branham ii ABSTRACT Annual bluegrass (Poa annua L. var Hausskn Timm) is a common grass weed species in turf. A lack of environmental stress tolerance, combined with prolific seed production and a highly competitive growth habit makes annual bluegrass difficult to maintain, but also difficult to get rid of from an established area by a turf manager. Cultural control options rely on increasing the competiveness and health of the desired turf species, such as Kentucky bluegrass, but the management demands for turf areas such as golf course fairways, tees, and greens, favor annual bluegrass. Under these conditions chemical control of the weed is currently the only viable option. The postemergence control of annual bluegrass with an herbicide is difficult. The number of herbicides available for use in cool-season turf is limited, and the ones that are available, selectively control annual bluegrass in a few turfgrass species and lack adequate selectivity. Mesotrione is an herbicide with postemergence control of many broadleaf and grass weed species. An HPPD-inhibiting herbicide, mesotrione causes the destruction of plant tissues by increasing free radicals and reactive oxygen species through the inhibition of carotenoids and other radical scavenging compounds. Herbicide sensitivity is based upon rates of metabolism. Annual bluegrass shows sensitivity to mesotrione and may be able to be controlled by postemergence applications.
    [Show full text]
  • Development of a Novel Universal Proxy to Assess the Environmental Fate and Impact of Complex (Bio)Pesticides by Mass Spectrometry-Based Metabolomics Hikmat Ghosson
    Development of a novel universal proxy to assess the environmental fate and impact of complex (bio)pesticides by Mass Spectrometry-based Metabolomics Hikmat Ghosson To cite this version: Hikmat Ghosson. Development of a novel universal proxy to assess the environmental fate and im- pact of complex (bio)pesticides by Mass Spectrometry-based Metabolomics. Analytical chemistry. Université de Perpignan, 2020. English. NNT : 2020PERP0029. tel-03155733 HAL Id: tel-03155733 https://tel.archives-ouvertes.fr/tel-03155733 Submitted on 2 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l’école doctorale ED 305 Energie et Environnement Et de l’unité de recherche USR 3278 – CRIOBE – EPHE-CNRS-UPVD Spécialité : Chimie Analytique Présentée par Hikmat GHOSSON TITRE DE LA THESE Développement d’un nouveau proxy universel pour évaluer le devenir et l’impact environnemental de (bio)pesticides complexes par Métabolomique basée sur la Spectrométrie de Masse Soutenue le 04/12/2020 devant le jury composé de Mme. Carole CALAS-BLANCHARD, Professeur des Universités Président Université de Perpignan Via Domitia Mme. Emmanuelle VULLIET, Directeur de recherche, H.D.R.
    [Show full text]
  • Impact of Leptospermone, a Natural -Triketone Herbicide, on the Fungal
    Impact of Leptospermone, a Natural β-Triketone Herbicide, on the Fungal Composition and Diversity of Two Arable Soils Clarisse Mallet, Sana Romdhane, Camille Loiseau, Jérémie Béguet, Fabrice Martin-Laurent, Christophe Calvayrac, Lise Barthelmebs To cite this version: Clarisse Mallet, Sana Romdhane, Camille Loiseau, Jérémie Béguet, Fabrice Martin-Laurent, et al.. Impact of Leptospermone, a Natural β-Triketone Herbicide, on the Fungal Composition and Diversity of Two Arable Soils. Frontiers in Microbiology, Frontiers Media, 2019, 10, 10.3389/fmicb.2019.01024. hal-02143873 HAL Id: hal-02143873 https://hal.sorbonne-universite.fr/hal-02143873 Submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-10-01024 May 9, 2019 Time: 14:44 # 1 ORIGINAL RESEARCH published: 10 May 2019 doi: 10.3389/fmicb.2019.01024 Impact of Leptospermone, a Natural b-Triketone Herbicide, on the Fungal Composition and Diversity of Two Arable Soils Clarisse Mallet1*, Sana Romdhane2,3,
    [Show full text]
  • Postemergence Control of Annual Bluegrass with Mesotrione In
    HORTSCIENCE 47(4):522–526. 2012. mesotrione (Anonymous, 2009). Mesotrione has been shown to provide postemergence control of ABG under agricultural settings, so Postemergence Control of Annual there is potential to use mesotrione in turf to control ABG (Armel et al., 2009). Previous Bluegrass with Mesotrione in research in turf has shown that mesotrione can control ABG with pre-emergence appli- Kentucky Bluegrass cations, but control with postemergence ap- plications occurs only in the fall (Hoiberg and Joshua J. Skelton1, William Sharp2, and Bruce E. Branham3,4 Minner, 2010; Reicher et al., 2011). Further- University of Illinois Urbana–Champaign, Department of Crop Sciences, more, Reicher et al. (2011) described post- Landscape Horticulture Research Center, 2308 South Lincoln Avenue, emergence control of ABG as inconsistent. The objective of this study was to determine Urbana, IL 61801 the rate and application interval of meso- Additional index words. Poa annua, Poa pratensis, HPPD-inhibitior, herbicide rate, trione that will yield the greatest postemer- application interval gence control of ABG. Finding a rate and application interval that can be used through- Abstract. Six field trials were conducted in 2009 and 2010 to study postemergence control out the year could allow mesotrione to be an of annual bluegrass (Poa annua L. var. Hausskn Timm) in kentucky bluegrass (Poa effective option for postemergence ABG con- pratensis L.) with mesotrione. Mesotrione was applied at 11 different rate and application trol in cool-season turf. intervals to an area of kentucky bluegrass that was naturally infested with annual –1 bluegrass. Mesotrione rates of 56 gÁha applied two or three times per week for a total Materials and Methods of 10 applications or 84 gÁha–1 applied two times per week for a total of seven applications provided consistent control of annual bluegrass but required significant application labor Plant culture.
    [Show full text]