Function of Sox2 As a Transcriptional Repressor

Total Page:16

File Type:pdf, Size:1020Kb

Function of Sox2 As a Transcriptional Repressor Function of Sox2 as a transcriptional repressor By Yu-Ru Liu, M. Sc Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy September 2011 1 Abstract Sox2 is one of the earliest known transcription factors to be expressed during development of the nervous system (Rex et al., 1997; Silvia Brunelli, 2003; Wang et al., 2006b; Dee et al., 2008). Ectodermal cells expressing Sox2 have the potential to differentiate into nerve cells. Cells expressing Sox2 are specified to a neural fate during neural induction. Sox2 belongs to the SoxB1 family, comprising Sox1, Sox2 and Sox3, which are generally considered to activate specific target genes, whereas, the SoxB2 group, Sox14 and Sox21, act as transcriptional repressors (Uchikawa, Kamachi, & Kondoh, 1999). However, Sox2 has also been demonstrated to act as a repressor (Kopp et al., 2008) which implies that Sox2 could have a dual-function in vivo . Previous studies indicated that the HMG box-containing protein, Tcf/Lef, interacts with the transcriptional co-repressor, Groucho (Helen Brantjes, 2001). We therefore set out to determine if interaction with the Groucho co-repressor could also explain the repressor ability of Sox2. In this study, we have examined the interaction between Sox2 and Groucho using nuclear translocation, yeast-two-hybrid and co-immunoprecipitation assays. The data suggest that Sox2 interacts with Groucho through a C-terminal, engrailed-like motif. The effect of Groucho on Sox2 function was measured using a luciferase reporter assay. The transcriptional activation activity of Sox2 was repressed after co-expressing with Groucho. To address the biological function of Sox2-Groucho interaction, a loss-of-repressor-function mutant of Sox2 was created by point mutating the essential engrailed-like motif. Analysis in Zebrafish embryos indicated that the of loss-of-repressor-function mutant of Sox2 (Sox2 LQY/AAA ) lost the ability to repress the expression of chordin . In 1 human neural stem cells, Affymetrix arrays revealed that 676 genes were activated and 786 genes were repressed by Sox2 overexpression. Within the genes that were repressed by Sox2, approximatly 7% were less repressed by Sox2 LQY/AAA . Together, these data suggest that Sox2 functions not only as a transcriptional activator but also as a repressor through interacting with the co- repressor Groucho. However, because only 7% of the repressed genes were affected by the Sox2 LQY/AAA mutant, this suggests that there are other mechanisms involved in Sox2 transcriptional repressor function. 2 Publications Yu-Huan Shih, Cheng-Liang Kuo, Caroline S. Hirst, Chris T. Dee, Yu-Ru Liu , Zulfiqar Ali Laghari and Paul J. Scotting (2010). SoxB1 transcription factors restrict organizer gene expression by repressing multiple events downstream of Wnt signalling. Development . 137, 2671-2681. 3 Acknowledgments First of all, I would like to thank my supervisor Dr. Paul J. Scotting for giving me the opportunity to work in his lab and for his valuable guidance and optimistic attitude throughout my studies. Thanks also go to Professor Jane Hewitt for her useful suggestions and encouragement. Big thank-you goes to Zulfiquar for his endless support and friendship. To Dr. Jennie N. Jeyapalan, thanks for her time in patiently listening and encouraging me to pursue a career in science. I would also like to thank Ivan, Peggy, Sarah and Thomas for soothing me from homesickness. Thanks to Elaine and Magda for their technical support. To Chris Tan, Chris Dee and Dylan for the interesting scientific chats. Caz, Dzul, Michelle and all the lab members, thanks for sharing enthusiasm and team spirit. Caro, Tom, Paul Goodwin and all the master students worked with me, thanks for your help and friendship. A special thank goes to Remy and my families for balancing my life outside work. Belinda, Yi-Fang, Zora and all my friends, thanks for the accompaniment and support. I would like to dedicate this thesis to my mother in heaven. I could not fulfil my dream without her. 4 List of Contents Chapter 1 Introduction .................................................................................... 1 1.1 SoxB1 in early neural development ...................................................... 1 1.1.1 Neural induction ....................................................................................... 1 1.1.2 Transcription factors ................................................................................. 5 1.1.3 Sox family .................................................................................................. 6 1.1.4 SoxB1 subgroup ........................................................................................ 8 1.1.5 Sox B1 genes in neural development ..................................................... 10 1.2 Sox2 in stem cells ............................................................................... 14 1.2.1 Stem cells ................................................................................................ 14 1.2.2 Sox factors in neural stem cells .............................................................. 15 1.2.3 Sox2 in the core transcriptional network of the ES cell .......................... 18 1.2.4 Sox2 in induced pluripotent stem (ips) cells ........................................... 20 1.3 Sox2 as a transcription factor ............................................................. 22 1.3.1 The transcriptional activation activity domain of the SoxB1 subgroup .. 22 1.3.2 Partners of SoxB1 transcriptional activation activity .............................. 25 1.3.3 Sox B1 genes as transcriptional repressors ............................................ 27 1.4 Co-repressors of transcription ............................................................ 29 1.4.1 Groucho .................................................................................................. 30 1.4.2 Groucho interaction motifs in transcription factors ............................... 33 1.4.3 Long form and short form of Groucho ................................................... 36 1.4.5 Functions of Groucho in development ................................................... 37 1.4.6 Groucho and HMG transcription factors ................................................ 38 1.4 Research objectives ............................................................................ 38 Chapter 2 Materials and methods ................................................................. 40 2.1 Construction of Sox2 mutants expression plasmid ............................. 40 2.1.2 Measuring DNA concentrations .............................................................. 40 2.1.3 Nucleic acid restriction digests ............................................................... 40 2.1.4 Agarose gel electrophoresis ................................................................... 41 2.1.5 DNA purification from agarose gel ......................................................... 41 2.1.6 DNA ligation and bacterial transformation............................................. 41 2.1.7 Glycerol stock of bacteria ....................................................................... 42 2.1.8 Polymerase chain reaction (PCR) ............................................................ 42 2.1.9 TA cloning ............................................................................................... 44 5 2.1.10 Site directed mutagenesis .................................................................... 44 2.1.11 DNA sequencing .................................................................................... 45 2.2 Cell culture ......................................................................................... 46 2.2.1 COS-7 and P19 cell maintenance ............................................................ 46 2.2.2 hNSC cell maintenance ........................................................................... 46 2.2.3 Storage and revival of cells in frozen stocks ........................................... 46 2.2.4 Cell transfection by electroporation ....................................................... 47 2.2.5 Cell transfection by liposome reagent .................................................... 48 2.3 Protein analysis ................................................................................... 49 2.3.1 Cell preparation and Co-immunoprecipitation ....................................... 49 2.3.2 Crosslinker treated cell lysate preparation ............................................. 49 2.3.3 SDS-PAGE electrophoresis ...................................................................... 50 2.3.4 Western blot ........................................................................................... 51 2.3.5 Cell preparation and immunostaining .................................................... 52 2.3.6 Cell preparation and Luciferase assay .................................................... 52 2.4 Yeast manipulations ........................................................................... 54 2.4.1 Yeast maintenance ................................................................................. 54 2.4.2 Preparation of yeast competent cells ..................................................... 54 2.4.3 Lithium acetate mediated yeast transformation .................................... 54 2.4.4 Protein detection in transformed yeast ................................................. 55 2.4.5 Detection of protein interaction by yeast-two-hybridization ................ 55 2.5 hNSC mRNA manipulation
Recommended publications
  • Uncovering the Signaling Landscape Controlling Breast Cancer Cell Migration Identifies Novel Metastasis Driver Genes
    ARTICLE https://doi.org/10.1038/s41467-019-11020-3 OPEN Uncovering the signaling landscape controlling breast cancer cell migration identifies novel metastasis driver genes Esmee Koedoot1,4, Michiel Fokkelman 1,4, Vasiliki-Maria Rogkoti1,4, Marcel Smid2, Iris van de Sandt1, Hans de Bont1, Chantal Pont1, Janna E. Klip1, Steven Wink 1, Mieke A. Timmermans2, Erik A.C. Wiemer2, Peter Stoilov3, John A. Foekens2, Sylvia E. Le Dévédec 1, John W.M. Martens 2 & Bob van de Water1 1234567890():,; Ttriple-negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype. Enhanced TNBC cell motility is a prerequisite of TNBC cell dissemination. Here, we apply an imaging-based RNAi phenotypic cell migration screen using two highly motile TNBC cell lines (Hs578T and MDA-MB-231) to provide a repository of signaling determinants that functionally drive TNBC cell motility. We have screened ~4,200 target genes individually and discovered 133 and 113 migratory modulators of Hs578T and MDA-MB-231, respectively, which are linked to signaling networks predictive for breast cancer progression. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF are essential for cancer cell migration, amplified in human primary breast tumors and associated with metastasis-free survival. Depletion of PRPF4B, BUD31 and BPTF causes primarily down regulation of genes involved in focal adhesion and ECM-interaction pathways. PRPF4B is essential for TNBC metastasis formation in vivo, making PRPF4B a candidate for further drug development. 1 Division of Drug Discovery and Safety, LACDR, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands. 2 Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3008 AE, Netherlands.
    [Show full text]
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • AIRE Is a Critical Spindle-Associated Protein in Embryonic Stem Cells Bin Gu1, Jean-Philippe Lambert2, Katie Cockburn1, Anne-Claude Gingras2,3, Janet Rossant1,3*
    RESEARCH ARTICLE AIRE is a critical spindle-associated protein in embryonic stem cells Bin Gu1, Jean-Philippe Lambert2, Katie Cockburn1, Anne-Claude Gingras2,3, Janet Rossant1,3* 1Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada; 2Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Canada; 3Department of Molecular Genetics, University of Toronto, Toronto, Canada Abstract Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE’s mitotic function. Combined maternal and zygotic knockout further revealed Aire’s critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations. DOI: 10.7554/eLife.28131.001 *For correspondence: janet. [email protected] Introduction Competing interests: The Self-renewal capability, defined as the ability of cells to proliferate while sustaining differentiation authors declare that no potential, is one of the defining features of stem cells (Martello and Smith, 2014).
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Drosophila Valosin-Containing Protein Is Required for Dendrite Pruning Through a Regulatory Role in Mrna Metabolism
    Drosophila Valosin-Containing Protein is required for dendrite pruning through a regulatory role in mRNA metabolism Sebastian Rumpfa,b,c,1,2, Joshua A. Bagleya,b,c, Katherine L. Thompson-Peera,b,c, Sijun Zhua,b,c,3, David Gorczycaa,b,c, Robert B. Becksteadd, Lily Yeh Jana,b,c, and Yuh Nung Jana,b,c,2 aHoward Hughes Medical Institute and Departments of bPhysiology and cBiochemistry, University of California, San Francisco, CA 94158; and dPoultry Science Department, University of Georgia, Athens, GA 30602 Contributed by Yuh Nung Jan, April 16, 2014 (sent for review December 20, 2013) The dendritic arbors of the larval Drosophila peripheral class IV for pruning (2, 7, 8), as well as the ATPase associated with di- dendritic arborization neurons degenerate during metamorphosis verse cellular activities (AAA) ATPase Valosin-Containing in an ecdysone-dependent manner. This process—also known as Protein (VCP) (CDC48 in yeast, p97 in vertebrates, also known dendrite pruning—depends on the ubiquitin–proteasome system as TER94 in Drosophila) (11), which acts as a chaperone for (UPS), but the specific processes regulated by the UPS during prun- ubiquitylated proteins (12). Interestingly, autosomal dominant ing have been largely elusive. Here, we show that mutation or mutations in the human VCP gene cause hereditary forms of inhibition of Valosin-Containing Protein (VCP), a ubiquitin-depen- ubiquitin-positive frontotemporal dementia (FTLD-U) (13) and dent ATPase whose human homolog is linked to neurodegenera- amyotrophic lateral sclerosis (ALS) (14). A hallmark of these tive disease, leads to specific defects in mRNA metabolism and that diseases is the occurrence of both cytosolic and nuclear ubiq- this role of VCP is linked to dendrite pruning.
    [Show full text]
  • The GATA2 Transcription Factor Negatively Regulates the Proliferation of Neuronal Progenitors
    RESEARCH ARTICLE 2155 Development 133, 2155-2165 (2006) doi:10.1242/dev.02377 The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors Abeer El Wakil*, Cédric Francius*,†, Annie Wolff, Jocelyne Pleau-Varet† and Jeannette Nardelli†,§ Postmitotic neurons are produced from a pool of cycling progenitors in an orderly fashion that requires proper spatial and temporal coordination of proliferation, fate determination, differentiation and morphogenesis. This probably relies on complex interplay between mechanisms that control cell cycle, specification and differentiation. In this respect, we have studied the possible implication of GATA2, a transcription factor that is involved in several neuronal specification pathways, in the control of the proliferation of neural progenitors in the embryonic spinal cord. Using gain- and loss-of-function manipulations, we have shown that Gata2 can drive neural progenitors out of the cycle and, to some extent, into differentiation. This correlates with the control of cyclin D1 transcription and of the expression of the p27/Kip1 protein. Interestingly, this functional aspect is not only associated with silencing of the Notch pathway but also appears to be independent of proneural function. Consistently, GATA2 also controls the proliferation capacity of mouse embryonic neuroepithelial cells in culture. Indeed, Gata2 inactivation enhances the proliferation rate in these cells. By contrast, GATA2 overexpression is sufficient to force such cells and neuroblastoma cells to stop dividing but not to drive either type of cell into differentiation. Furthermore, a non-cell autonomous effect of Gata2 expression was observed in vivo as well as in vitro. Hence, our data have provided evidence for the ability of Gata2 to inhibit the proliferation of neural progenitors, and they further suggest that, in this regard, Gata2 can operate independently of neuronal differentiation.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Stoichiometric and Temporal Requirements of Oct4, Sox2, Klf4, and C-Myc Expression for Efficient Human Ipsc Induction and Differentiation
    Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation Eirini P. Papapetroua,b, Mark J. Tomishimac,d, Stuart M. Chambersc, Yvonne Micae, Evan Reeda,b, Jayanthi Menona,f, Viviane Tabara,f, Qianxing Mog, Lorenz Studera,c, and Michel Sadelaina,b,1 aCenter for Cell Engineering, bMolecular Pharmacology and Chemistry and cDevelopmental Biology Programs, dSKI Stem Cell Research Facility, eGerstner Sloan-Kettering Graduate School, and Departments of fNeurosurgery and gEpidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065 Communicated by Mark Ptashne, Memorial Sloan–Kettering Cancer Center, New York, NY, May 1, 2009 (received for review April 8, 2009) Human-induced pluripotent stem cells (hiPSCs) are generated from purposes remains controversial (20). Furthermore, the significance somatic cells by ectopic expression of the 4 reprogramming factors of vector silencing for reprogramming and its impact on differen- (RFs) Oct-4, Sox2, Klf4, and c-Myc. To better define the stoichiometric tiation is unclear. Although it has been proposed that silencing of requirements and dynamic expression patterns required for success- factor expression is required for successful reprogramming and ful hiPSC induction, we generated 4 bicistronic lentiviral vectors multilineage differentiation (3, 21, 22), it remains unclear whether encoding the 4 RFs co-expressed with discernable fluorescent pro- vector silencing constitutes a requirement or an epiphenomenon of teins. Using this system, we define the optimal stoichiometry of RF the reprogramming process. expression to be highly sensitive to Oct4 dosage, and we demonstrate Here we present a vector system for iPSC induction that allows the impact that variations in the relative ratios of RF expression exert for simultaneous real-time tracking of expression of the 4 individual on the efficiency of hiPSC induction.
    [Show full text]
  • Long Noncoding RNA Lncpgcr Mediated by TCF7L2 Regulates Primordial Germ Cell Formation in Chickens
    animals Article Long Noncoding RNA LncPGCR Mediated by TCF7L2 Regulates Primordial Germ Cell Formation in Chickens Jingyi Jiang 1, Chen Chen 1, Shaoze Cheng 1, Xia Yuan 1, Jing Jin 1, Chen Zhang 1, Xiaolin Sun 1 , Jiuzhou Song 2 , Qisheng Zuo 1, Yani Zhang 1, Guohong Chen 1 and Bichun Li 1,* 1 Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; [email protected] (J.J.); [email protected] (C.C.); [email protected] (S.C.); [email protected] (X.Y.); [email protected] (J.J.); [email protected] (C.Z.); [email protected] (X.S.); [email protected] (Q.Z.); [email protected] (Y.Z.); [email protected] (G.C.) 2 Animal & Avian Sciences, University of Maryland, College Park, MD 20741, USA; [email protected] * Correspondence: [email protected] Simple Summary: The potential of primordial germ cells (PGCs) for multidirectional differentiation, together with their unique regeneration ability, makes them one of the most promising seed cells in clinical medicine and tissue engineering research. However, not enough PGCs can be obtained to meet the demand, which limits their application. We defined a novel long noncoding RNA (lncRNA) mediated by epigenetics, which could activate the miR-6577-5p/Btrc pathway to promote the formation of PGCs. The technical system we have established is a useful tool to obtain sufficient PGCs for scientific research. Our study offers great theoretical and practical value in the production of transgenic animals or genomic imprinting in poultry.
    [Show full text]
  • NIH Public Access Author Manuscript Curr Opin Immunol
    NIH Public Access Author Manuscript Curr Opin Immunol. Author manuscript; available in PMC 2012 April 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Curr Opin Immunol. 2011 April ; 23(2): 198±206. doi:10.1016/j.coi.2010.11.007. Aire and T cell Development Mark S. Andersona,* and Maureen A. Sub,* a Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA b Inflammatory Diseases Institute and Department of Pediatrics, University of North Carolina, Chapel Hill, Chapel Hill, NC Abstract In the thymus, developing T cells that react against self-antigens with high affinity are deleted in the process of negative selection. An essential component of this process is the display of self- antigens, including those whose expression are usually restricted to specific tissues, to developing T cells within the thymus. The Autoimmune Regulator (Aire) gene plays a critical role in the expression of tissue specific self-antigens within the thymus, and disruption of Aire function results in spontaneous autoimmunity in both humans and mice. Recent advances have been made in our understanding of how Aire influences the expression of thousands of tissue-specific antigens in the thymus. Additional roles of Aire, including roles in chemokine and cytokine expression, have also been revealed. Factors important in the differentiation of Aire-expressing medullary thymic epithelial cells have been defined. Finally, the identity of antigen presenting cells in negative selection, including the role of medullary thymic epithelial cells in displaying tissue specific antigens to T cells, has also been clarified.
    [Show full text]
  • Crosstalk Between SOX2 and TGF-Β Signaling Regulates EGFR-TKI Tolerance and Lung Cancer Dissemination
    Author Manuscript Published OnlineFirst on August 19, 2020; DOI: 10.1158/0008-5472.CAN-19-3228 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Crosstalk between SOX2 and TGF-β signaling regulates EGFR-TKI tolerance and lung cancer dissemination Ming-Han Kuo1,10, An-Chun Lee1,10, Shih-Hsin Hsiao2,10, Sey-En Lin3,4, Yu-Fan Chiu1, Li-Hao Yang1, Chia-Cherng Yu5, Shih-Hwa Chiou6,7, Hsien-Neng Huang8, Jen-Chung Ko9*, Yu-Ting Chou1* 1Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; 2Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; 3Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan; 4Department of Pathology, Taipei Municipal Wan Fang Hospital, Taipei, Taiwan; 5Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; 6Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; 7Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; 8Department of pathology, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; 9Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan;10Co-first authors *Corresponding authors Jen-Chung Ko, National Taiwan University Hospital, Hsin-Chu Branch, No. 25, Lane 442, Sec. 1, Jingguo Rd., Hsinchu 30013, Taiwan. E-mail: [email protected] Yu-Ting Chou, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan. E-mail: [email protected] Running title: Interplay of SOX2 and TGF- on EGFR–TKI tolerance Conflicts of interest The authors disclose no potential conflicts of interest. This work was supported by National Tsing Hua University and Ministry of Science and Technology, Executive Yuan, Taiwan.
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]