Crosstalk Between SOX2 and TGF-Β Signaling Regulates EGFR-TKI Tolerance and Lung Cancer Dissemination

Total Page:16

File Type:pdf, Size:1020Kb

Crosstalk Between SOX2 and TGF-Β Signaling Regulates EGFR-TKI Tolerance and Lung Cancer Dissemination Author Manuscript Published OnlineFirst on August 19, 2020; DOI: 10.1158/0008-5472.CAN-19-3228 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Crosstalk between SOX2 and TGF-β signaling regulates EGFR-TKI tolerance and lung cancer dissemination Ming-Han Kuo1,10, An-Chun Lee1,10, Shih-Hsin Hsiao2,10, Sey-En Lin3,4, Yu-Fan Chiu1, Li-Hao Yang1, Chia-Cherng Yu5, Shih-Hwa Chiou6,7, Hsien-Neng Huang8, Jen-Chung Ko9*, Yu-Ting Chou1* 1Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; 2Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; 3Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan; 4Department of Pathology, Taipei Municipal Wan Fang Hospital, Taipei, Taiwan; 5Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; 6Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; 7Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; 8Department of pathology, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; 9Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan;10Co-first authors *Corresponding authors Jen-Chung Ko, National Taiwan University Hospital, Hsin-Chu Branch, No. 25, Lane 442, Sec. 1, Jingguo Rd., Hsinchu 30013, Taiwan. E-mail: [email protected] Yu-Ting Chou, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan. E-mail: [email protected] Running title: Interplay of SOX2 and TGF- on EGFR–TKI tolerance Conflicts of interest The authors disclose no potential conflicts of interest. This work was supported by National Tsing Hua University and Ministry of Science and Technology, Executive Yuan, Taiwan. 1 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 19, 2020; DOI: 10.1158/0008-5472.CAN-19-3228 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Regulation of the stemness factor SOX2 by cytokine stimuli controls self-renewal and differentiation in cells. Activating mutations in epidermal growth factor receptor (EGFR) are proven therapeutic targets for tyrosine kinase inhibitors (TKI) in lung adenocarcinoma, but acquired resistance to TKI inevitably occurs. The mechanism by which stemness and differentiation signaling emerge in lung cancers to affect TKI tolerance and lung cancer dissemination has yet to be elucidated. Here we report that crosstalk between SOX2 and TGF-β signaling affects lung cancer cell plasticity and TKI tolerance. TKI treatment favored selection of lung cancer cells displaying mesenchymal morphology with deficient SOX2 expression, whereas SOX2 expression promoted TKI sensitivity and inhibited the mesenchymal phenotype. Preselection of EGFR-mutant lung cancer cells with the mesenchymal phenotype diminished SOX2 expression and TKI sensitivity, whereas SOX2 silencing induced vimentin but suppressed BCL2L11 expression and promoted TKI tolerance. TGF-β stimulation downregulated SOX2 and induced epithelial-to-mesenchymal transdifferentiation accompanied by increased TKI tolerance, which can interfere with ectopic SOX2 expression. SOX2-positive lung cancer cells exhibited a lower dissemination capacity than their SOX2-negative counterparts. Tumors expressing low SOX2 and high vimentin 2 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 19, 2020; DOI: 10.1158/0008-5472.CAN-19-3228 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. signature were associated with worse survival outcomes in patients with EGFR mutations. These findings provide insights into how cancer cell plasticity regulated by SOX2 and TGF-β signaling affects EGFR-TKI tolerance and lung cancer dissemination. Significance Findings suggest the potential of SOX2 as a prognostic marker in EGFR-mutant lung cancer, as SOX2-mediated cell plasticity regulated by TGF-β stimulation and epigenetic control affects EGFR-TKI tolerance and cancer dissemination. 3 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 19, 2020; DOI: 10.1158/0008-5472.CAN-19-3228 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Introduction SOX2 belongs to the SOX (Sry-related HMG Box) family of proteins and is an important transcription factor that regulates self-renewal in embryonic stem cells (ESCs). Its downregulation in response to cytokine stimulation determines the timing and degree of differentiation (1). Responding to respiratory tract injuries, SOX2 signaling initiates the proliferation and differentiation of lung progenitor cells to maintain tissue homeostasis (2,3). SOX2, in conjunction with OCT4, KLF4, and MYC, can reverse the mesenchymal morphology of fibroblasts and reprogram them into induced pluripotent stem cells (iPSCs) (4,5). Moreover, inhibition of TGF- signaling facilitates the SOX2-mediated reprogramming process of fibroblasts, whereas activation of TGF- blocks the reprogramming process (6,7). Cancer cell plasticity is characterized as a phenotypic switch between the mesenchymal and epithelial states. Said switch is accompanied by signaling pathway alterations and has been proposed to both generate heterogeneity and mediates tumor progression (8,9). SOX2 serves as a nodal epigenetic regulator in determining the mesenchymal-to-epithelial transdifferentiation (MET) of lung cancer cells (9). Additionally, SOX2 promotes epidermal growth factor receptor (EGFR) expression via a positive feedback 4 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 19, 2020; DOI: 10.1158/0008-5472.CAN-19-3228 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. manner in lung cancer (10). Activating mutations (exon 19 deletions and L858R mutation) in EGFR are predictive markers and therapeutic targets of TKI in the treatment of patients with lung cancer bearing mutations in EGFR (11-16). Despite initial positive responses to treatment, patients eventually develop resistance to EGFR–TKI. The mutations EGFR–T790M and EGFR–C797S confer acquired resistance to gefitinib and osimertinib, respectively (17-21). However, the mutation EGFR– T790M correlates negatively with distant metastasis and confers better patient survival (22-25), suggesting that an EGFR-mutation-independent TKI-resistance mechanism promotes a worse survival outcome. EMT, a reverse process of MET and pre-invasive status in cancer plasticity, has been linked to EGFR–TKI resistance (26-29). Neuroendocrine transformation of adenocarcinoma has also been detected in lung tumors after EGFR–TKI treatment (19). A drug-tolerant state is essential for the development of acquired resistance to EGFR–TKI (30), and deficient expression of BCL2L11 has been linked to EGFR–TKI tolerance in lung cancer (31). Since SOX2 signaling is highly expressed in both stem cells and lung cancer cells, this study aims to test whether the mechanism behind SOX2-regulated stem cell differentiation and reprogramming is shared by lung 5 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 19, 2020; DOI: 10.1158/0008-5472.CAN-19-3228 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. cancer cells to affect TKI tolerance and cancer dissemination. We further characterized how crosstalk between SOX2 stemness and TGF- cytokine signaling generates lung cancer cell plasticity with distinct TKI tolerance and dissemination patterns. Materials and Methods Cell culture HCC827 and H1975 cells were obtained from Dr. Jeff Wang (Development Center for Biotechnology, Taiwan) and Dr. Wayne Chang (National Health Research Institutes, Taiwan), respectively (9,10). Human fibroblasts and fibroblast-derived iPSCs were described previously (32). HCC827GR and H1975AZDR cells were established in our laboratory by exposure of HCC827 and H1975 to stepwise increased concentrations of gefitinib and osimertinib, respectively (29). All lung cancer cells were tested positive for human origin carrying specific EGFR mutations by EGFR sequencing analysis (Supplementary Fig. S1A-S1C). All lung cancer cells were cultured in RPMI-1640 medium containing L-glutamine (4 mM), sodium pyruvate (1 mM), HEPES (10 mM), and FBS (10%). 6 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 19, 2020; DOI: 10.1158/0008-5472.CAN-19-3228 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Quantitative real-time PCR (qPCR) and Chromatin immunoprecipitation-qPCR (ChIP-qPCR) The qPCR and ChIP-qPCR assays were performed as described previously (9). Primer sequences and probes used in qPCR are listed in Supplementary Table S1. Detailed materials for the ChIP-qPCR are described in Supplementary Table S2
Recommended publications
  • AIRE Is a Critical Spindle-Associated Protein in Embryonic Stem Cells Bin Gu1, Jean-Philippe Lambert2, Katie Cockburn1, Anne-Claude Gingras2,3, Janet Rossant1,3*
    RESEARCH ARTICLE AIRE is a critical spindle-associated protein in embryonic stem cells Bin Gu1, Jean-Philippe Lambert2, Katie Cockburn1, Anne-Claude Gingras2,3, Janet Rossant1,3* 1Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada; 2Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Canada; 3Department of Molecular Genetics, University of Toronto, Toronto, Canada Abstract Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE’s mitotic function. Combined maternal and zygotic knockout further revealed Aire’s critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations. DOI: 10.7554/eLife.28131.001 *For correspondence: janet. [email protected] Introduction Competing interests: The Self-renewal capability, defined as the ability of cells to proliferate while sustaining differentiation authors declare that no potential, is one of the defining features of stem cells (Martello and Smith, 2014).
    [Show full text]
  • Functional Skeletal Muscle Constructs from Transdifferentiated Human Fibroblasts
    www.nature.com/scientificreports OPEN Functional skeletal muscle constructs from transdiferentiated human fbroblasts Bin Xu1, Allison Siehr1 & Wei Shen1,2,3* Transdiferentiation of human non-muscle cells directly into myogenic cells by forced expression of MyoD represents one route to obtain highly desirable human myogenic cells. However, functional properties of the tissue constructs derived from these transdiferentiated cells have been rarely studied. Here, we report that three-dimensional (3D) tissue constructs engineered with iMyoD-hTERT- NHDFs, normal human dermal fbroblasts transduced with genes encoding human telomerase reverse transcriptase and doxycycline-inducible MyoD, generate detectable contractile forces in response to electrical stimuli upon MyoD expression. Withdrawal of doxycycline in the middle of 3D culture results in 3.05 and 2.28 times increases in twitch and tetanic forces, respectively, suggesting that temporally- controlled MyoD expression benefts functional myogenic diferentiation of transdiferentiated myoblast-like cells. Treatment with CHIR99021, a Wnt activator, and DAPT, a Notch inhibitor, leads to further enhanced contractile forces. The ability of these abundant and potentially patient-specifc and disease-specifc cells to develop into functional skeletal muscle constructs makes them highly valuable for many applications, such as disease modeling. Even though normal skeletal muscle has self-regenerative ability, it has remained a major challenge to treat genetic muscle diseases and volumetric muscle loss 1. Using human myogenic cells to develop cell-based thera- pies to repair or restore diseased or lost muscle tissue represents an important strategy to address this challenge. Human myogenic cells are also highly desirable for creating muscle tissue models or disease models, which can be used for fundamental studies of muscle physiology and pathology and for drug screening and validation.
    [Show full text]
  • The GATA2 Transcription Factor Negatively Regulates the Proliferation of Neuronal Progenitors
    RESEARCH ARTICLE 2155 Development 133, 2155-2165 (2006) doi:10.1242/dev.02377 The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors Abeer El Wakil*, Cédric Francius*,†, Annie Wolff, Jocelyne Pleau-Varet† and Jeannette Nardelli†,§ Postmitotic neurons are produced from a pool of cycling progenitors in an orderly fashion that requires proper spatial and temporal coordination of proliferation, fate determination, differentiation and morphogenesis. This probably relies on complex interplay between mechanisms that control cell cycle, specification and differentiation. In this respect, we have studied the possible implication of GATA2, a transcription factor that is involved in several neuronal specification pathways, in the control of the proliferation of neural progenitors in the embryonic spinal cord. Using gain- and loss-of-function manipulations, we have shown that Gata2 can drive neural progenitors out of the cycle and, to some extent, into differentiation. This correlates with the control of cyclin D1 transcription and of the expression of the p27/Kip1 protein. Interestingly, this functional aspect is not only associated with silencing of the Notch pathway but also appears to be independent of proneural function. Consistently, GATA2 also controls the proliferation capacity of mouse embryonic neuroepithelial cells in culture. Indeed, Gata2 inactivation enhances the proliferation rate in these cells. By contrast, GATA2 overexpression is sufficient to force such cells and neuroblastoma cells to stop dividing but not to drive either type of cell into differentiation. Furthermore, a non-cell autonomous effect of Gata2 expression was observed in vivo as well as in vitro. Hence, our data have provided evidence for the ability of Gata2 to inhibit the proliferation of neural progenitors, and they further suggest that, in this regard, Gata2 can operate independently of neuronal differentiation.
    [Show full text]
  • Stoichiometric and Temporal Requirements of Oct4, Sox2, Klf4, and C-Myc Expression for Efficient Human Ipsc Induction and Differentiation
    Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation Eirini P. Papapetroua,b, Mark J. Tomishimac,d, Stuart M. Chambersc, Yvonne Micae, Evan Reeda,b, Jayanthi Menona,f, Viviane Tabara,f, Qianxing Mog, Lorenz Studera,c, and Michel Sadelaina,b,1 aCenter for Cell Engineering, bMolecular Pharmacology and Chemistry and cDevelopmental Biology Programs, dSKI Stem Cell Research Facility, eGerstner Sloan-Kettering Graduate School, and Departments of fNeurosurgery and gEpidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065 Communicated by Mark Ptashne, Memorial Sloan–Kettering Cancer Center, New York, NY, May 1, 2009 (received for review April 8, 2009) Human-induced pluripotent stem cells (hiPSCs) are generated from purposes remains controversial (20). Furthermore, the significance somatic cells by ectopic expression of the 4 reprogramming factors of vector silencing for reprogramming and its impact on differen- (RFs) Oct-4, Sox2, Klf4, and c-Myc. To better define the stoichiometric tiation is unclear. Although it has been proposed that silencing of requirements and dynamic expression patterns required for success- factor expression is required for successful reprogramming and ful hiPSC induction, we generated 4 bicistronic lentiviral vectors multilineage differentiation (3, 21, 22), it remains unclear whether encoding the 4 RFs co-expressed with discernable fluorescent pro- vector silencing constitutes a requirement or an epiphenomenon of teins. Using this system, we define the optimal stoichiometry of RF the reprogramming process. expression to be highly sensitive to Oct4 dosage, and we demonstrate Here we present a vector system for iPSC induction that allows the impact that variations in the relative ratios of RF expression exert for simultaneous real-time tracking of expression of the 4 individual on the efficiency of hiPSC induction.
    [Show full text]
  • Long Noncoding RNA Lncpgcr Mediated by TCF7L2 Regulates Primordial Germ Cell Formation in Chickens
    animals Article Long Noncoding RNA LncPGCR Mediated by TCF7L2 Regulates Primordial Germ Cell Formation in Chickens Jingyi Jiang 1, Chen Chen 1, Shaoze Cheng 1, Xia Yuan 1, Jing Jin 1, Chen Zhang 1, Xiaolin Sun 1 , Jiuzhou Song 2 , Qisheng Zuo 1, Yani Zhang 1, Guohong Chen 1 and Bichun Li 1,* 1 Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; [email protected] (J.J.); [email protected] (C.C.); [email protected] (S.C.); [email protected] (X.Y.); [email protected] (J.J.); [email protected] (C.Z.); [email protected] (X.S.); [email protected] (Q.Z.); [email protected] (Y.Z.); [email protected] (G.C.) 2 Animal & Avian Sciences, University of Maryland, College Park, MD 20741, USA; [email protected] * Correspondence: [email protected] Simple Summary: The potential of primordial germ cells (PGCs) for multidirectional differentiation, together with their unique regeneration ability, makes them one of the most promising seed cells in clinical medicine and tissue engineering research. However, not enough PGCs can be obtained to meet the demand, which limits their application. We defined a novel long noncoding RNA (lncRNA) mediated by epigenetics, which could activate the miR-6577-5p/Btrc pathway to promote the formation of PGCs. The technical system we have established is a useful tool to obtain sufficient PGCs for scientific research. Our study offers great theoretical and practical value in the production of transgenic animals or genomic imprinting in poultry.
    [Show full text]
  • NIH Public Access Author Manuscript Curr Opin Immunol
    NIH Public Access Author Manuscript Curr Opin Immunol. Author manuscript; available in PMC 2012 April 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Curr Opin Immunol. 2011 April ; 23(2): 198±206. doi:10.1016/j.coi.2010.11.007. Aire and T cell Development Mark S. Andersona,* and Maureen A. Sub,* a Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA b Inflammatory Diseases Institute and Department of Pediatrics, University of North Carolina, Chapel Hill, Chapel Hill, NC Abstract In the thymus, developing T cells that react against self-antigens with high affinity are deleted in the process of negative selection. An essential component of this process is the display of self- antigens, including those whose expression are usually restricted to specific tissues, to developing T cells within the thymus. The Autoimmune Regulator (Aire) gene plays a critical role in the expression of tissue specific self-antigens within the thymus, and disruption of Aire function results in spontaneous autoimmunity in both humans and mice. Recent advances have been made in our understanding of how Aire influences the expression of thousands of tissue-specific antigens in the thymus. Additional roles of Aire, including roles in chemokine and cytokine expression, have also been revealed. Factors important in the differentiation of Aire-expressing medullary thymic epithelial cells have been defined. Finally, the identity of antigen presenting cells in negative selection, including the role of medullary thymic epithelial cells in displaying tissue specific antigens to T cells, has also been clarified.
    [Show full text]
  • Tumor and Stem Cell Biology Research
    Cancer Tumor and Stem Cell Biology Research Coexpression of Oct4 and Nanog Enhances Malignancy in Lung Adenocarcinoma by Inducing Cancer Stem Cell–Like Properties and Epithelial–Mesenchymal Transdifferentiation Shih-Hwa Chiou1,2,3, Mong-Lien Wang2, Yu-Ting Chou4, Chi-Jen Chen4, Chun-Fu Hong4, Wang-Ju Hsieh5, Hsin-Tzu Chang2, Ying-Shan Chen4, Tzu-Wei Lin2, Han-Sui Hsu6,7, and Cheng-Wen Wu2,4,5,6 Abstract Epithelial–mesenchymal transition (EMT), a critical process of cancer invasion and metastasis, is associated with stemness property of cancer cells. Though Oct4 and Nanog are homebox transcription factors essential to the self-renewal of stem cells and are expressed in several cancers, the role of Oct4/Nanog signaling in tumorigenesis is still elusive. Here microarray and quantitative real-time PCR analysis showed a parallel, elevated expression of Oct4 and Nanog in lung adenocarcinoma (LAC). Ectopic expressions of Oct4 and Nanog in LACs increased the percentage of CD133-expressing subpopulation and sphere formation, enhanced drug resistance, and promoted EMT. Ectopic expressions of Oct4 and Nanog activated Slug and enhanced the tumor- initiating capability of LAC. Furthermore, double knockdown of Oct4 and Nanog suppressed the expression of Slug, reversed the EMT process, blocked the tumorigenic and metastatic ability, and greatly improved the mean survival time of transplanted immunocompromised mice. The immunohistochemical analysis demonstrated that expressions of Oct4, Nanog, and Slug were present in high-grade LAC, and triple positivity of Oct4/Nanog/ Slug indicated a worse prognostic value of LAC patients. Our results support the notion that the Oct4/Nanog signaling controls epithelial–mesenchymal transdifferentiation, regulates tumor-initiating ability, and promotes metastasis of LAC.
    [Show full text]
  • A Sox2 Distal Enhancer Cluster Regulates Embryonic Stem Cell Differentiation Potential
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential Harry Y. Zhou,1,3 Yulia Katsman,1,3 Navroop K. Dhaliwal,1 Scott Davidson,1 Neil N. Macpherson,1 Moorthy Sakthidevi,1 Felicia Collura,1 and Jennifer A. Mitchell1,2 1Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada; 2Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3G5, Canada The Sox2 transcription factor must be robustly transcribed in embryonic stem (ES) cells to maintain pluripotency. Two gene-proximal enhancers, Sox2 regulatory region 1 (SRR1) and SRR2, display activity in reporter assays, but deleting SRR1 has no effect on pluripotency. We identified and functionally validated the sequences required for Sox2 transcription based on a computational model that predicted transcriptional enhancer elements within 130 kb of Sox2. Our reporter assays revealed three novel enhancers—SRR18, SRR107, and SRR111—that, through the formation of chromatin loops, form a chromatin complex with the Sox2 promoter in ES cells. Using the CRISPR/ Cas9 system and F1 ES cells (Mus musculus129 3 Mus castaneus), we generated heterozygous deletions of each enhancer region, revealing that only the distal cluster containing SRR107 and SRR111, located >100 kb downstream from Sox2, is required for cis-regulation of Sox2 in ES cells. Furthermore, homozygous deletion of this distal Sox2 control region (SCR) caused significant reduction in Sox2 mRNA and protein levels, loss of ES cell colony morphology, genome-wide changes in gene expression, and impaired neuroectodermal formation upon spontaneous differentiation to embryoid bodies.
    [Show full text]
  • O-Glcnac Modification of Oncogenic Transcription Factor Sox2 Promotes Protein Stability and Regulates Self-Renewal in Pancreatic Cancer
    bioRxiv preprint doi: https://doi.org/10.1101/345223; this version posted June 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. O-GlcNAc modification of oncogenic transcription factor Sox2 promotes protein stability and regulates self-renewal in pancreatic cancer Nikita S Sharma1, Vineet K Gupta1, Patricia Dauer2, Kousik Kesh1, Roey Hadad1, Bhuwan Giri1, Anjali Chandra5, Vikas Dudeja1,4, Chad Slawson3, Santanu Banerjee1,4, Selwyn M Vickers6, Ashok Saluja1, 4 and Sulagna Banerjee1, 4* 1Department of Surgery, University of Miami, Miami, FL. 2Department of Pharmacology, University of Minnesota, Minneapolis Minnesota. 3University of Kansas Medical Center, Kansas City, KS. 4Sylvester Comprehensive Cancer Center, Miami, FL. 5 Department of Psychology, Harvard University. 6 School of Medicine Dean’s Office, University of Alabama at Birmingham. * Corresponding Author Address of Correspondence: 1550 NW 10th Ave Papanicolau Building, Suite 109B Miami, FL 33136 [email protected] (305)-243-8242 Running Title: O-GlcNAc modified Sox2 mediates self-renewal in PDAC Keywords: OGT, O-GlcNAc, Sox2, Pancreatic cancer, metabolism, self-renewal Financial Support This study was funded by NIH grants R01-CA170946 and R01-CA124723 (to AKS); NIH grant R01-CA184274 (to SB); Katherine and Robert Goodale foundation support (to AKS), Minneamrita Therapeutics LLC (to AKS). The authors would also like to acknowledge Oncogenomics Core at the Sylvester Cancer Center, University of Miami for their help with the RNA seq transcriptomics study. bioRxiv preprint doi: https://doi.org/10.1101/345223; this version posted June 12, 2018.
    [Show full text]
  • Brief Demethylation Step Allows the Conversion of Adult Human Skin fibroblasts Into Insulin-Secreting Cells
    Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells Georgia Pennarossaa, Sara Maffeia, Marino Campagnola, Letizia Tarantinib,c, Fulvio Gandolfia, and Tiziana A. L. Brevinia,1 aLaboratory of Biomedical Embryology, UniStem, Center for Stem Cell Research, bDepartment of Clinical and Community Sciences, and cIstituto di Ricerca e Cura a Carattere Scientifico Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Università degli Studi di Milano, Italy Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved April 18, 2013 (received for review November 29, 2012) The differentiated state of mature cells of adult organisms is physiologically very stable. Differentiation is achieved and main- achieved and maintained through the epigenetic regulation of gene tained through the epigenetic regulation of gene expression, which expression, which consists of several mechanisms including DNA consists of different mechanisms including DNA methylation, methylation. The advent of induced pluripotent stem cell technol- histone modification, nucleosome packaging and rearrangements, ogy enabled the conversion of adult cells into any other cell type higher-order chromatin structures, and the interplay between passing through a stable pluripotency state. However, indefinite chromatin and nuclear lamina (8). For this reason, the complete reversal of this process requires extensive reprogramming that pluripotency is unphysiological, inherently labile, and makes cells fi prone to culture-induced alterations. The direct conversion of one makes it inef cient and prone to errors (9). cell type to another without an intermediate pluripotent stage is We reasoned that part of the problem may derive from consid- ering the achievement of a stable pluripotent state as an indispens- also possible but, at present, requires the viral transfection of able step, even if this does not occur during embryonic development, appropriate transcription factors, limiting its therapeutic potential.
    [Show full text]
  • In Thymic Epithelial Differentiation Aire
    The Journal of Immunology Aire-Dependent Alterations in Medullary Thymic Epithelium Indicate a Role for Aire in Thymic Epithelial Differentiation1 Geoffrey O. Gillard,2* James Dooley,† Matthew Erickson,† Leena Peltonen,§ and Andrew G. Farr3*†‡ The prevalent view of thymic epithelial differentiation and Aire activity holds that Aire functions in terminally differentiated medullary thymic epithelial cells (MTECs) to derepress the expression of structural tissue-restricted Ags, including pancreatic endocrine hormones. An alternative view of these processes has proposed that Aire functions to regulate the differentiation of immature thymic epithelial cells, thereby affecting tissue-restricted Ag expression and negative selection. In this study, we dem- onstrate that Aire impacts several aspects of murine MTECs and provide support for this second model. Expression of transcrip- tion factors associated with developmental plasticity of progenitor cells, Nanog, Oct4, and Sox2, by MTECs was Aire dependent. Similarly, the transcription factors that regulate pancreatic development and the expression of pancreatic hormones are also expressed by wild-type MTECs in an Aire-dependent manner. The altered transcriptional profiles in Aire-deficient MTECs were accompanied by changes in the organization and composition of the medullary epithelial compartment, including a reduction in the medullary compartment defined by keratin (K) 14 expression, altered patterns of K5 and K8 expression, and more prominent epithelial cysts. These findings implicate Aire in the
    [Show full text]
  • GATA2 Regulates Mast Cell Identity and Responsiveness to Antigenic Stimulation by Promoting Chromatin Remodeling at Super- Enhancers
    ARTICLE https://doi.org/10.1038/s41467-020-20766-0 OPEN GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super- enhancers Yapeng Li1, Junfeng Gao 1, Mohammad Kamran1, Laura Harmacek2, Thomas Danhorn 2, Sonia M. Leach1,2, ✉ Brian P. O’Connor2, James R. Hagman 1,3 & Hua Huang 1,3 1234567890():,; Mast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage- determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes. 1 Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA. 2 Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA. 3 Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, ✉ CO 80045, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:494 | https://doi.org/10.1038/s41467-020-20766-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20766-0 ast cells (MCs) are critical effectors in immunity that at key MC genes.
    [Show full text]