Vigesimal System of Numeration As Prevailed in the Bārelā Tribe Dipak

Total Page:16

File Type:pdf, Size:1020Kb

Vigesimal System of Numeration As Prevailed in the Bārelā Tribe Dipak Vigesimal System of Numeration as Prevailed in the Bārelā Tribe Dipak Jadhav Lecturer in Mathematics Govt. Boys Higher Secondary School, Anjad Distt. Barwani 451556 (M. P.) India [email protected] Abstract Bārelā is a tribe. It resides in the western part of India. In Bārelā system of numeration other numbers stand in relation to twenty. This paper finds that no other vigesimal system whether it was in India or from abroad has been influential in shaping Bārelā system of numeration if their corresponding terms are taken into consideration. Gunnīsa, uganīsa, and oganīsa are the alternative terms used by Bārelās for 19. This paper also offers an insight into the formation of each of them. Key Words: Bārelā, Vigesimal system of numeration, Vīsa, Vīsu. Introduction Bārelā is an Indian tribe. Most of its population lives in Barwani District of State of Madhya Pradesh in India. The surrounding region, where as well Bārelās dwell, to this District encompasses the neighboring Khargone District of Madhya Pradesh and the three neighboring Districts, namely, Jalgoan, Dhule, and Nandurbar, of State of Maharashtra. The term used to identify Bārelā in Maharashtra is Pāvarā.1 The entire region of their dwelling, which is in the western part of India, falls in the forest of Satpura range. The dialect which Bārelās speak is called Bārelī. Their system of numeration is based on twenty. It is observed to be mostly practised in Pati and Barwani Blocks of Barwani District. Bārelās dealing with retailers in its terms can be seen in weekly haat bazars2 conducted in this region (Parihar et el 2000; Thakur 2005, p. 7). Since it is practised among Bārelā community, 1Bārelā colleagues of the present author including Mr. Subhash Solanki and Mr. Balram Pawar from Pansemal Block of Barwani District has apprised him so. 2 A haat bazaar, simply called haat or hat or hāṭa (if transliterated), is an open-air market. It serves as a trading venue, conducted on a regular basis, for local people in rural or forest areas. Journal of Mathematics and Culture 61 December 2019 13(1) ISSN-1558-5336 an identifiable cultural group, it is an ethnomathematics. See definition of ethnomathematics suggested by D‟Ambrosio (D‟Ambrosio, 1985). Very older Bārelās still remember an accurate vigesimal system. Group leader Vikas Parihar and his four co-workers of Grade XI from J. N. Govt. Model Higher Secondary (Residential) School, Barwani (now known as Ekalavya Model Residential School, Barwani) undertook a project on “Number- Language System of Bārelās: A Mathematical Study” under the guidance of the present author in the academic year 2000-2001. Vikas Parihar, after their project had been selected first at District level and then at State level, presented its report in Hindi at National level under focal theme „Indigenous scientific knowledge: For a better tomorrow‟ in National Children Science Congress, held during December 27-31, 2000 at Kolkata (Parihar et el, 2000). The project represented State of Madhya Pradesh in Indian Science Congress, held during January 3-7, 2001 at New Delhi (Anonymous, 2001, p. 27). It was selected for participation in the “Exchange of Young Researchers” program taken up by National Council for Science and Technology Communication, Department of Science and Technology, Government of India. Under this program a fellowship to visit various science and research institutions in Germany was awarded to Vikas and his co-worker Nilesh. They visited Germany in April, 2001.3 The project-report was submitted to Honorable Governor of Madhya Pradesh in Bhopal on May 04, 2001 when Vikas and Nilesh paid a courtesy visit to Governor House.4 The project was selected for featuring in the Television Show Ignited Minds. Vikas Parihar accompanied by his guide teacher participated in its shooting conducted 3See letter D.O.No. CO/FP/O11/2000 dated January 12, 2001 issued by Ministry of Science and Technology, Government of India. 4 See Hindi Daily Newspaper Naiduniya dated May 05, 2001. Journal of Mathematics and Culture 62 December 2019 13(1) ISSN-1558-5336 during November 3-6, 2004 at Noida.5 The related episode of Ignited Minds was televised on DD-National on December 17, 2005. The study in the above project was confined to the numbers from 1 to 100. It was aimed at understanding number-language system of Bārelās in mathematical terms, documenting it, and approximately defining a Bārelā number. In the next section of this paper, we shall see how the young researchers studied this peculiar system of numeration and looked at its underlying characteristics and laws. We will also see what the interesting features they found are. This paper is the outcome of a variety of side trips. It is mainly aimed at making the essence of the above project-report available in English to the wider class of scholars in the field of Ethnomathematics. This will be done in the next section. It is also aimed at discovering the differences and similarities between Bārelā system and various other vigesimal systems of numeration prevailed in the other parts of India and abroad. It will also discuss various aspects of Bārelā system related to History of Mathematics. Bārelā Number System The young researchers collected the terms spoken by Bārelās for numbers from 1 to 100 from their Bārelā fellows of the residential school and divided them into two categories. The first is category of „generally spoken‟ and the second is that of „sometimes spoken‟. See Table 1. Table 1 is slightly enriched in information if compared with theirs. 5See letters, written by Pulse Media Pvt. Ltd. separately to the principal of the school and to the present author, received on October 18, 2004. Journal of Mathematics and Culture 63 December 2019 13(1) ISSN-1558-5336 From Table 1 they notice that ne stands for “plus”, koma or kama means “minus” or “less”, and no term is used for “multiplied by”. They also observe that Bārelā numbers are formed using five laws. Each law contains one or two of the three operations, namely, addition, subtraction, and multiplication. If two operations are contained in the law, one of them must be the operation of multiplication. Below are shown those five laws using arrow. The Bārelā number can be read along the direction of and above the arrow. What is below the arrow shows the working of the law. Let us denote 20 by v , which is the first letter not only of vīsa (twenty) or vīsu (twenty) but also of vigesimal. Figure 1 shows how law of addition works. vīsu ne duī 22 v + 2 Figure 1 Figure 2 displays how law of subtraction works. vīsu koma tīna 17 v - 3 Figure 2 Figure 3 shows how law of multiplication works. Journal of Mathematics and Culture 64 December 2019 13(1) ISSN-1558-5336 cyāra vīsu 80 4 × v Figure 3 Each of Figure 4 and Figure 5 shows how law of compound operation works. In Figure 4 it contains the operations of addition and multiplication while in Figure 5 it contains the operations of subtraction and multiplication. tīna vīsu ne duī 62 3 × v + 2 Figure 4 vīsu duī koma āṭha 32 v × 2 - 8 Figure 5 Each of Figure 6 and Figure 7 shows how law of flexibility works. duī vīsu ne suḷe 56 2 × v + 16 Figure 6 Journal of Mathematics and Culture 65 December 2019 13(1) ISSN-1558-5336 vīsu tīna koma cyāra 56 v × 3 - 4 Figure 7 56 is formed in Figure 6 using the operations of addition and multiplication while it is formed in Figure 7 using the operations of subtraction and multiplication. This law provides facility to the Bārelās in numeration. Observing Table 1, the young researchers find that there are cycles in Bārelā number system. They call those cycles vigesimal cycles (vīsu cakras). Each of them ends in multiples of twenty. There are five cycles in their study; first from 1 to 20, second from 21 to 40, third from 41 to 60, fourth from 61 to 80, and fifth from 81 to 100. See the third cycle in Figure 8. The operation of multiplication with that of subtraction is generally employed in the second half of each vigesimal cycle while the operation of multiplication with that of addition in its first half except for the first cycle. 2v + 5 First half 3v 2v + 10 Second half 3v - 5 Figure 8 Further, they find that Bārelā number has two parts. One is vigesimal part (vīsu bhāga) and the other is non-vigesimal part (avīsu bhāga). See Figure 9. Journal of Mathematics and Culture 66 December 2019 13(1) ISSN-1558-5336 43 = 2v + 3 vigesimal part non-vigesimal part Figure 9 If z is a Bārelā number, z x y x, y where x v , 2v , 3v , 4v , 5v and y 10, -9, ..., 9, 10 . Assuming X-axis to be vigesimal axis (vīsu akṣa) and Y-axis to be non-vigesimal axis (avīsu akṣa), they demonstrate the entire column of „generally spoken‟ from Table 1 as shown in Figure 10. Non-vigesimal axis 10 cycle 5 First half of second First half of third cycle First half of fourth cycle First half of fifth cycle First half of first cycle Vigesimal axis v 2v 3v 4v 5v 0 h f2e hal cycle cycle a con f of d cycle thir fifth lf d fourth fou -5 o cyc rth f le cyc Second halfof Second halfof Second halfof cycle first Second halfof fi Second halfof second cycle le -10 ft Figure 10 h From Figure 10 they infer that in Bārelā number system is found an upward move in the first half of each vigesimalc cycle and the move is maintained in its second half as well with a downward yjump just after the first half.
Recommended publications
  • Vigesimal Numerals on Ifẹ̀ (Togo) and Ifẹ̀ (Nigeria) Dialects of Yorùbá
    Vigesimal Numerals on Ifẹ̀ (Togo) and Ifẹ̀ (Nigeria) Dialects of Yorùbá Felix Abídèmí Fábùnmi (Ilé-Ifẹ̀) Abstract This study intends to bring Ifẹ̀ (Togo) into a linguistic limelight using the numeral systems. Numerals are a very important aspect of the day to day socio-economic and linguistic life of Ifẹ̀ (Togo) people. The traditional Ifẹ̀ (Togo) number system is vigesimal. In this study, forty- two different number words are listed for Yorùbá Ifẹ̀ (Nigeria) and Yorùbá Ifẹ̀ (Togo) and compared with Standard Yorùbá. We compared the Ifẹ̀ (Togo) number words and counting patterns with that of the Standard Yorùbá and Ifẹ̀ (Nigeria) and discovered that, by the nature of the components of these numbers, majority of the basic number words are either bisyllabic or trisyllabic, each syllable having the form VCV for the cardinals, and CVCV for the ordinals. There are irregularities in tonality; there are also alternations in the sequences of the vowel (oral and nasalized) and consonant sounds. This work finds out that Ifẹ̀ (Togo) has two counting patterns. In the first pattern, it uses addition solely to derive the number words but with a counting pattern where 'ten', 'twenty' and the added number units are taken as a whole. In the second counting pattern, subtraction is used to derive number words but this is applicable only to three numbers i. e. seventeen – /mɛ́ɛtadínóɡú/, eighteen – /méèʤìdínóɡu/ and nineteen – /mɔ̀kɔ̃dínoɡ́ u/. The Ifẹ̀ (Togo) dialect of Yorùbá mostly uses additive number positions. The dialect favours additive number positions more than the subtractive and the multiplicative positions. In other words, higher numbers are frequently used as bases for addition not as bases for multiplication in Ifẹ̀ (Togo).
    [Show full text]
  • Unicode Request for Kaktovik Numerals Design
    Unicode request for Kaktovik numerals L2/21-058R Eduardo Marín Silva, [email protected] Kirk Miller, [email protected] Catherine Strand, [email protected] 2021 April 29 This document supersedes L2/20-070 by Eduardo Marín Silva. The Kaktovik numerals are a set of base-20 digits with a sub-base of 5—that is, a penta-vigesimal system. Graphically, the sub-base forms the upper part of the digit and the remaining units the lower part, an iconic design that lends itself to graphical manipulation for arithmetic. Kaktovik numerals are part of the curriculum in the North Slope Borough School District of Alaska. Though designed by speakers of Iñupiaq Eskimo (ISO code [esi]), they are equally suited to the penta-vigesimal systems of other Inuit and Yupik languages of Alaska, Canada and Russia, and they have the support of the Inuit Circumpolar Council. Thanks to Deborah Anderson of the Universal Scripts Project for her assistance. Design Kaktovik numerals were made intentionally distinct from decimal Hindu-Arabic digits so that there could be no confusion between them. In speech as well, Kaktovik digits have been named in Iñupiaq and Hindu-Arabic digits in English in order to keep them distinct. There are 19 counting digits, composed of straight strokes joined at sharp angles, and a graphically distinct zero . The counting digits occupy the space of an upright golden rectangle, with a unit square at bottom and a smaller golden rectangle at top. The top rectangle is occupied by up to three horizontal strokes that tally the quinary sub-base (null, 틅, 틊, 틏).
    [Show full text]
  • Chapter 6 MISCELLANEOUS NUMBER BASES. the QUINARY
    The Number Concept: Its Origin and Development By Levi Leonard Conant Ph. D. Chapter 6 MISCELLANEOUS NUMBER BASES. THE QUINARY SYSTEM. The origin of the quinary mode of counting has been discussed with some fulness in a preceding chapter, and upon that question but little more need be said. It is the first of the natural systems. When the savage has finished his count of the fingers of a single hand, he has reached this natural number base. At this point he ceases to use simple numbers, and begins the process of compounding. By some one of the numerous methods illustrated in earlier chapters, he passes from 5 to 10, using here the fingers of his second hand. He now has two fives; and, just as we say “twenty,” i.e. two tens, he says “two hands,” “the second hand finished,” “all the fingers,” “the fingers of both hands,” “all the fingers come to an end,” or, much more rarely, “one man.” That is, he is, in one of the many ways at his command, saying “two fives.” At 15 he has “three hands” or “one foot”; and at 20 he pauses with “four hands,” “hands and feet,” “both feet,” “all the fingers of hands and feet,” “hands and feet finished,” or, more probably, “one man.” All these modes of expression are strictly natural, and all have been found in the number scales which were, and in many cases still are, in daily use among the uncivilized races of mankind. In its structure the quinary is the simplest, the most primitive, of the natural systems.
    [Show full text]
  • Berber Numerals
    57 BERBER NUMERALS §1. Classification In recent years the most detailed classifications of Berber languages have been presented by Ajxenval'd (1987), using a structural-typological approach, and by Militarev (see Ajxenval'd & Militarev 1991: 157-59) working with lexicostatistics. Their results are as follows: 1. East Berber branch Siwa (oasis Siwa in West Egypt), Zurg (oasis Kufra in East Libya), Fezzan (oases Tmessa and El Fodjaha in South Libya), Augila (oasis Djalo in North- East Libya), Sokna (North Libya), Ghadames (oasis Ghadames in West Libya). 2. South Berber (= Tuareg) branch North group: Tuareg of the oasis Kufra, Tuareg of the oasis Ghadames, Imanghassaten, Uraghen, Ghat, Ahnet (Plateau Muydir); "Tamahaq": Em- midir, Taitoq, Aizer (Plateau Tassili), Ahaggar; Ayr (Plateau Ayr, Kel Ui, Kel Fenian, Kel Tafidet, Ibabidayan etc.), Tuareg of Borku (Chad), Tuareg of Zinder (Niger), East Tawllemmet (= Iulimidden or Awlemidden; Niger-Mali- Burkina bordeland). South group: Kel Arokas; "Tamaseq": Heyawa, West Tawllemmet, Takarangat, Tagdhaq (= Ifoghas; Plateau Adrar), Taneslemt; "Tamazeq": Ida u Sak (= Dausak), Ighauilen, Imaioghen (= Iguhadaren). 3. West Berber group Zenaga (= Taddungiyah; Mauretania — Senegal). 4. North Berber group 4.1 Atlas group: a) TaSelhait (= Silha): Tinduft, Ait Umbribed (basin of Dra and Djebel Bani); Izemdaln, Imeizad, Ida u Zikri, Ait Isaffen, Amanus, Ait Mzal, Igliwa, Ait Wazgit etc. (Antiatlas); Tazerwalt, Ait Baamrani, Hawwara, Ida u Semlal, AStuken, Masst, Tiguga, Seksawa, Ait Wadjes, Ida u Izimmer, Demsira, Ida u Geriun, Demsira (basin of the river Sus); Tuggana, Igedmiun, Ait Immur, Iha- han, Imeghran, Ida u Tanan, Ida u Zikki, Ida u Zal, Ntifa (High Atlas); b) Tamazight (= Beraber): Ait Messad (region of Demnat); Ait Izdeg, Ait Yahya, Ait Sliman, Ait KhebbaS, etc.
    [Show full text]
  • About Numbers How These Basic Tools Appeared and Evolved in Diverse Cultures by Allen Klinger, Ph.D., New York Iota ’57
    About Numbers How these Basic Tools Appeared and Evolved in Diverse Cultures By Allen Klinger, Ph.D., New York Iota ’57 ANY BIRDS AND Representation of quantity by the AUTHOR’S NOTE insects possess a The original version of this article principle of one-to-one correspondence 1 “number sense.” “If is on the web at http://web.cs.ucla. was undoubtedly accompanied, and per- … a bird’s nest con- edu/~klinger/number.pdf haps preceded, by creation of number- mtains four eggs, one may be safely taken; words. These can be divided into two It was written when I was a fresh- but if two are removed, the bird becomes man. The humanities course had an main categories: those that arose before aware of the fact and generally deserts.”2 assignment to write a paper on an- the concept of number unrelated to The fact that many forms of life “sense” thropology. The instructor approved concrete objects, and those that arose number or symmetry may connect to the topic “number in early man.” after it. historic evolution of quantity in differ- At a reunion in 1997, I met a An extreme instance of the devel- classmate from 1954, who remem- ent human societies. We begin with the bered my paper from the same year. opment of number-words before the distinction between cardinal (counting) As a pack rat, somehow I found the abstract concept of number is that of the numbers and ordinal ones (that show original. Tsimshian language of a tribe in British position as in 1st or 2nd).
    [Show full text]
  • Curiosities Regarding the Babylonian Number System
    Curiosities Regarding the Babylonian Number System Sherwin Doroudi April 12, 2007 By 2000 bce the Babylonians were already making significant progress in the areas of mathematics and astronomy and had produced many elaborate mathematical tables on clay tablets. Their sexagecimal (base-60) number system was originally inherited from the Sumerian number system dating back to 3500 bce. 1 However, what made the Babylonian number system superior to its predecessors, such as the Egyptian number system, was the fact that it was a positional system not unlike the decimal system we use today. This innovation allowed for the representation of numbers of virtually any size by reusing the same set of symbols, while also making it easier to carry out arithmetic operations on larger numbers. Its superiority was even clear to later Greek astronomers, who would use the sexagecimal number system as opposed to their own native Attic system (the direct predecessor to Roman numerals) when making calculations with large numbers. 2 Most other number systems throughout history have made use of a much smaller base, such as five (quinary systems), ten (decimal systems), or in the case of the Mayans, twenty (vigesimal systems), and such choices for these bases are all clearly related to the fingers on the hands. The choice (though strictly speaking, it's highly unlikely that any number system was directly \chosen") of sixty is not immediately apparent, and at first, it may even seem that sixty is a somewhat large and unwieldy number. Another curious fact regarding the ancient number system of the Babylonians is that early records do not show examples of a \zero" or null place holder, which is an integral part of our own positional number system.
    [Show full text]
  • Altaic Numerals
    102 ALTAIC NUMERALS For Karl H. Menges to his 90th birthday (April 22,1998) The Altaic hypothesis supposes a genetic relationship of Turkic, Mongo­ lian, Tungus, Korean and Japanese. One of the most frequent arguments of its opponents (Clauson, Scerbak) is based on an imaginary absence of common numerals. The presence of common (= inherited) numerals represents certainly an important argument for a genetic relationship. But its absence has no de­ claring value — there are more safely related languages without any related numerals. The recent progress in a comparative historical phonology of Altaic languages allows to identify more inherited numerals and to differentiate them from the numerals of substratal or adstratal origin. The most promising set of regular correspondences among Altaic branches and the reconstruction of the Proto-Altaic consonantism was made by Sta- rostin (1986: 104 and 1991: 21) and Vovin (1994: 100): Rule Proto- Proto-Tuikic Common Proto- Middle Proto-Japanese - Altaic Mongolian Tungus Korean 1. V *0-,*-p- V > h-, -b- *P p-.p(h) *P 2. *p *b h-, -r-/-w- *p-. *-b- p-, -w- */>-, -m- 3. *b *b b-,-y- *b-, *-w- P *p/*b(-m-/-r-) 4. *-w- *-b-/*-0- -b-l-y- *-w/*-y-•0- / *-0- 5. *m *b-, *m m *m m *m/*-0 6. +t *t t. m *t. V;'- t-. t(h) *t 7. *t *d-, *-t- d.Sd) *d; *Sl-.- t-, -r- *t/*d t- 8. *d *d- d,S(0 *d. *Si- t-, -r- *t/*d, -y-l-0 9. *n *-n- n *n n *n/*-0 10. *-rr *-r- -r- *-r- -r- *-t-/*-r-/*-0 11.
    [Show full text]
  • Mathematics As a Liberal Art Class 13: Wednesday February 25
    Mathematics As ALiberal Art Math 105 Spring 2015 Fowler 202 T 3:00- 3:55pm c 2015 Ron Buckmire http://faculty.oxy.edu/ron/math/105/15/ Class 13: Wednesday February 25 Hexadecimal: Millions Of Colors! Hexadecimal Number System Another number system which is often seen in computer systems is the hexadecimal number system, which uses 16 as a base or radix. In this case the digits are 0 through 9 supple- mented with A, B, C, D, E, and F. One issue with hexadecimal numbers is that since they use the same digits as the decimal system plus more, they can be confused for each other unless one uses a subscript to distin- guish them, like 42hex. Some places use a header to indicate a a non-decimal number, like \0x" for hex, e.g. 0x4E (which is the same thing as 7810). One can also use the header \0b", e.g. 0b1001110 (which is also the same thing as 7810). Hexadecimal numbers are usually seen in the description of colors, in describing pixel RGB values on screens in terms of how much red, green or blue are in a particular color. These pixel values range from 0 to 255 for each of these three, colors which puts the number of possible colors as 256x256x256 = 16 million colors! For example, the color pure red is represented by 0xFF0000, pure green is represented by 0x00FF00 and pure blue is represented by 0x0000FF. EXAMPLE What number in base 10 is equal to 05A3hex? How do we convert 637 into its hexadecimal equivalent? An Algorithm For Converting From A Decimal Number To Hexadecimal Use Repeated Division 1.
    [Show full text]
  • The Sumerian Ternary System and the Concept of Number António José Gonçalves De Freitas Centro De Estudos Humanísticos Universidade Do Minho Portugal
    Paper delivered at 1st CLE Colloquium for Philosophy and Formal Sciences Campinas, 21-23 March 2013 Accepted for publication in the Proceedings of the Conference DRAFT &1 The Sumerian ternary system and the concept of number António José Gonçalves de Freitas Centro de Estudos Humanísticos Universidade do Minho Portugal Abstract It is well known that Sumerians and Babylonians used a numeration system of base 12 and 60. We still have influence of that system in our nowadays counting of the hours of a day, twelve plus twelve, each hour has 60 minute and each minute 60 seconds. Also the circle has 360 degrees. What is not so well known is that the Sumerians in an earlier period used a ternary system of numeration; the first notice about that system is in Thureau- Dangin (1928). Later Diakonoff (1983) described it in good details and recently, Balke (2010) studied the system and described it with more precision. Still the use of this system and the concept of number involved are open questions. I will answer to those problems making a formalization of the system and showing how it could be related to a cosmogonic design. DRAFT &2 1. Numeral systems. DRAFT &3 ��� 1 11 21 31 41 51 � �� ��� �� �� � ��� 2 12 22 32 41 52 � �� ��� �� �� � � �� ��� � 3 13 23 33 42 53 � �� � � � � � �� ��� � 4 14 24 34 43 54 � �� � � � � � �� ��� � 5 15 25 35 44 55 � �� � � � � � �� ��� � 6 16 26 36 45 56 � �� �DRAFT� � � � �� ��� � 7 17 27 37 46 57 � �� � � � � &4 � �� � 8 18 28 38 47 58 � �� �� � � � � �� � � 9 19 29 39 48 59 � �� � � � � 10 20 30 ��� 40 50 � �� � � The main Babylonian and Sumerian counting system was a sexagesimal system.
    [Show full text]
  • Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero
    Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero Berenice Rojo-Garibaldia, Costanza Rangonib, Diego L. Gonz´alezb;c, and Julyan H. E. Cartwrightd;e a Posgrado en Ciencias del Mar y Limnolog´ıa, Universidad Nacional Aut´onomade M´exico, Av. Universidad 3000, Col. Copilco, Del. Coyoac´an,Cd.Mx. 04510, M´exico b Istituto per la Microelettronica e i Microsistemi, Area della Ricerca CNR di Bologna, 40129 Bologna, Italy c Dipartimento di Scienze Statistiche \Paolo Fortunati", Universit`adi Bologna, 40126 Bologna, Italy d Instituto Andaluz de Ciencias de la Tierra, CSIC{Universidad de Granada, 18100 Armilla, Granada, Spain e Instituto Carlos I de F´ısicaTe´oricay Computacional, Universidad de Granada, 18071 Granada, Spain Keywords: Zero | Maya | Pre-Columbian Mesoamerica | Number rep- resentation systems | Bijective numeration Abstract Pre-Columbian Mesoamerica was a fertile crescent for the development of number systems. A form of vigesimal system seems to have been present from the first Olmec civilization onwards, to which succeeding peoples made contributions. We discuss the Maya use of the representational redundancy present in their Long Count calendar, a non-power positional number representation system with multipliers 1, 20, 18× 20, :::, 18× arXiv:2005.10207v2 [math.HO] 23 Mar 2021 20n. We demonstrate that the Mesoamericans did not need to invent positional notation and discover zero at the same time because they were not afraid of using a number system in which the same number can be written in different ways. A Long Count number system with digits from 0 to 20 is seen later to pass to one using digits 0 to 19, which leads us to propose that even earlier there may have been an initial zeroless bijective numeration system whose digits ran from 1 to 20.
    [Show full text]
  • Binary Number System
    BINARY NUMBER SYSTEM Just as the standard decimal system is based upon the powers of ten to express any number, the binary system is based on the powers of two to express a number. The binary system was first studied in detail by G. Leibnitz in 1678 and forms the basis for all computer and digital manipulations. As an example of a binary representation, consider the decimal base number 13. It is equivalent to 2^3+2^2+2^0 and so has the binary designation 1101 with the 1 designating an existing power of two and 0 if it does not exist. Likewise twelve is expressed as 1100 since the number equals 2^3+2^2 and no other powers of two. To double a binary number one needs to only add a zero at the right. Thus decimal 26=2x13 is 11010 in binary and decimal 416=2x2x2x2x2x13 will be 110100000. One can also reverse things and ask what decimal number corresponds to 101011. Here we have six digits so the number can be read off as 2^5+2^3+2^1+2^0=32+8+2+1=43. To help in these conversions it is a good idea to be familiar with the first twelve powers of two as shown in the following table- Number, n 0 1 2 3 4 5 6 7 8 9 10 11 12 2n 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 Also, when adding binary numbers, use the addition table- 0 + 0 = 0 1 + 0 = 1 0 + 1 = 1 1 + 1 = 10 and when multiplying, use the multiplication table- 1 x 1 = 1 1 x 0 = 0 0 x 1 = 0 0 x 0 = 0 Following these rules, one can construct a table for addition and subtraction of the numbers 27 and 14 as follows- 2^6 2^5 2^4 2^3 2^2 2^1 2^0 N1=27 0 0 1 1 0 1 1 N2=14 0 0 0 1 1 1 0 N1+N2 0 1 0 1 0 0 1 N1-N2 0 0 0 1 1 0 1 The Japanese Soroban and Chinese Abacus are mechanical calculating devices whose origin lies in a table of this sort when adjusted to a decimal base and using bead positions to indicate 1 or 0.
    [Show full text]
  • Digital Computers Masterclass: Extra Background Information
    Digital Computers Masterclass: Extra Background Information Finger counting and number systems Historically, fingers have always been used for counting, and it is the basis of our decimal number system that a standard pair of human hands has 10 fingers. Other systems historically, including the vigesimal system used by the Ancient Mayans, have used base 20 which is a multiple of 10. Counting on your fingers can be achieved in many ways - as well as the standard systems shown on the first slide (the ‘thumb first’ system is claimed to be widespread in continental Europe, while starting with the index finger is supposedly more popular in the UK and North America, although there is variation everywhere), there exist many other finger counting systems. In Japan, zero is represented by an open palm, and fingers are counted inwards for 1-5 and then out again for 6-10 on the same hand. Chinese systems also allow counting up to 10 on one hand, while counting in binary (as described in the workshop) allows you to count to over 1000 on your fingers. The Ancient Mesopotamians developed a system of finger counting using the left thumb to point to different parts of the right hand - 1 at the tip of the little finger, then 2 and 3 for the other sections of that finger, and 4 starting at the top of the ring finger and so on. The other hand is used to store groups of 12, up to a maximum of 60 on two hands. This is suspected to be the origin of our current 60-minute/12-hour clock system.
    [Show full text]