Impact of Environmental Factors on Pavement Performance in the Absence of Heavy Loads
Total Page:16
File Type:pdf, Size:1020Kb
Impact of Environmental Factors on Pavement Performance in the Absence of Heavy Loads PUBLICATION NO. FHWA-HRT-16-084 MARCH 2019 Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 FOREWORD This report documents the analysis of data collected through the Long-Term Pavement Performance program to characterize the impact of environmental factors on pavement performance. The objectives of this analysis were to identify and quantify the effects of environmental factors and pavement design on pavement performance in the absence of heavy loads; develop recommendations for mitigating these effects through effective design, materials selection, and construction; estimate the portion of pavement damage caused by environmental factors; and establish a database of pavement design features, materials properties, and performance to be used in the future for similar analyses. The study showed that, for flexible pavements that have been in service for 15 yr with normal traffic loading, 36 percent of total damage is related to environmental factors (e.g., subgrade and climate variables). For rigid pavements that have been in service for 15 yr with normal traffic loading, 24 percent of total damage is related to environmental factors. Results related to the impact of specific subgrade, climate, traffic, and design factors on pavement performance will be of interest to pavement, materials, and pavement-management engineers concerned with the design, materials properties, and performance of flexible and rigid pavements. Cheryl Allen Richter, Ph.D., P.E. Director, Office of Infrastructure Research and Development Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation (USDOT) in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HRT-16-084 4. Title and Subtitle 5. Report Date Impact of Environmental Factors on Pavement Performance March 2019 in the Absence of Heavy Loads 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Leslie Titus-Glover, Michael I. Darter, and Harold Von Quintus 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Applied Research Associates, Inc. 100 Trade Centre Drive, Suite 200 11. Contract or Grant No. Champaign, IL 61820 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Office of Infrastructure Research and Development Final Report; January 2011– Federal Highway Administration December 2015 6300 Georgetown Pike 14. Sponsoring Agency Code McLean, VA 22101-2296 HRDI-30 15. Supplementary Notes The Contracting Officer’s Technical Representative was Jack Springer (HRDI-30). 16. Abstract The objectives of this study were to identify and quantify the effects of environmental factors and pavement design on pavement performance in the absence of heavy loads; establish what the environmental effects are and develop recommendations for mitigating these effects through effective designs, materials selection, and construction; estimate the portion of total pavement damage caused by environmental factors; and establish a database of pavement design features, materials properties, and performance to be used in the future for similar analyses. Site-by-site analyses of the Long-Term Pavement Performance program’s Specific Pavement Study (SPS)-8 sections were conducted. Next, researchers determined the effect of environmental factors in SPS-8 and companion sections from other SPSs and General Pavement Studies (GPSs) on the performance of flexible and rigid pavements. Finally, an estimate of the portion of pavement damage caused by environmental factors was made through a comparison of the pavement damage of low-traffic SPS-8 sections with higher-traffic companion SPS and GPS sections. Results showed an average of 36 and 24 percent of total damage was related to environmental factors for flexible and rigid pavements, respectively, at an age of 15 yr. In addition, many results were obtained through an analysis of the performances of SPS-8 and companion SPS and GPS sections. One such finding was that the occurrence of transverse cracking of asphalt- concrete pavement was significantly higher for companion pavements subjected to higher traffic loadings (SPS-1 and GPS-1) than under low-traffic loadings (SPS-8). Transverse cracking also occurred in nonfreeze climates. Based on the results from this study, suggestions for improvements to pavement designs and materials to minimize distress and to maximize performance in various climatic regions are presented. 17. Key Words 18. Distribution Statement LTPP, Pavement performance, Damage, No restrictions. This document is available to the public Environmental factors, JPCP, ACP, through the National Technical Information Service, Subgrade, SPS-8, Truck loadings, Cost Springfield, VA 22161. allocation http://www.ntis.gov 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 260 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized. SI* (MODERN METRIC) CONVERSION FACTORS APPROXIMATE CONVERSIONS TO SI UNITS Symbol When You Know Multiply By To Find Symbol LENGTH in inches 25.4 millimeters mm ft feet 0.305 meters m yd yards 0.914 meters m mi miles 1.61 kilometers km AREA in2 square inches 645.2 square millimeters mm2 ft2 square feet 0.093 square meters m2 yd2 square yard 0.836 square meters m2 ac acres 0.405 hectares ha mi2 square miles 2.59 square kilometers km2 VOLUME fl oz fluid ounces 29.57 milliliters mL gal gallons 3.785 liters L ft3 cubic feet 0.028 cubic meters m3 yd3 cubic yards 0.765 cubic meters m3 NOTE: volumes greater than 1000 L shall be shown in m3 MASS oz ounces 28.35 grams g lb pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") TEMPERATURE (exact degrees) oF Fahrenheit 5 (F-32)/9 Celsius oC or (F-32)/1.8 ILLUMINATION fc foot-candles 10.76 lux lx fl foot-Lamberts 3.426 candela/m2 cd/m2 FORCE and PRESSURE or STRESS lbf poundforce 4.45 newtons N lbf/in2 poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol LENGTH mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.621 miles mi AREA mm2 square millimeters 0.0016 square inches in2 m2 square meters 10.764 square feet ft2 m2 square meters 1.195 square yards yd2 ha hectares 2.47 acres ac km2 square kilometers 0.386 square miles mi2 VOLUME mL milliliters 0.034 fluid ounces fl oz L liters 0.264 gallons gal m3 cubic meters 35.314 cubic feet ft3 m3 cubic meters 1.307 cubic yards yd3 MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T TEMPERATURE (exact degrees) oC Celsius 1.8C+32 Fahrenheit oF ILLUMINATION lx lux 0.0929 foot-candles fc cd/m2 candela/m2 0.2919 foot-Lamberts fl FORCE and PRESSURE or STRESS N newtons 0.225 poundforce lbf kPa kilopascals 0.145 poundforce per square inch lbf/in2 *SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003) ii TABLE OF CONTENTS CHAPTER 1. INTRODUCTION ................................................................................................ 1 BACKGROUND ..................................................................................................................... 1 PROJECT OBJECTIVES...................................................................................................... 4 PROJECT SCOPE.................................................................................................................. 4 ORGANIZATION OF THIS REPORT ............................................................................... 4 CHAPTER 2. FACTORS THAT INITIATE AND CAUSE THE PROGRESSION OF PAVEMENT DETERIORATION ........................................................................................ 7 ENVIRONMENTAL FACTORS AND THEIR EFFECTS ON PAVEMENT PERFORMANCE ................................................................................................................... 8 Effect of Climatic Factors on Pavement Performance ........................................................ 8 Effect of Foundation/Subgrade Type on Pavement Performance..................................... 14 MITIGATING THE EFFECTS OF THE ENVIRONMENT ON PAVEMENT DETERIORATION .............................................................................................................. 18 SUMMARY ..........................................................................................................................