Renewable Energy Sources and Their Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Small-Scale Renewable Energy Technological Solutions in the Arab
Regional Initiative for Promoting Small-Scale Renewable Energy Applications in Rural Areas of the Arab Region Small-Scale Renewable Energy Technological Solutions in the Arab Region: Operational Toolkit - December 2020 VISION ESCWA, an innovative catalyst for a stable, just and flourishing Arab region MISSION Committed to the 2030 Agenda, ESCWA’s passionate team produces innovative knowledge, fosters regional consensus and delivers transformational policy advice. Together, we work for a sustainable future for all. E/ESCWA/CL1.CCS/2020/TP.8 Economic and Social Commission for Western Asia Regional Initiative for Promoting Small-Scale Renewable Energy Applications in Rural Areas of the Arab Region Small-Scale Renewable Energy Technological Solutions in the Arab Region: Operational Toolkit December 2020 UNITED NATIONS Beirut © 2020 United Nations All rights reserved worldwide Photocopies and reproductions of excerpts are allowed with proper credits. All queries on rights and licenses, including subsidiary rights, should be addressed to the United Nations Economic and Social Commission for Western Asia (ESCWA), e-mail: [email protected]. The findings, interpretations and conclusions expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations or its officials or Member States. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Links contained in this publication are provided for the convenience of the reader and are correct at the time of issue. -
ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana. -
2008 Renewable Energy Data Book, July 2009
Energy Efficiency & Renewable Energy JULY 2009 2008 Renewable Energy Data Book Acknowledgments This report was produced by Rachel Gelman and Steve Hockett, edited by Michelle Kubik, and designed by Stacy Buchanan of the National Renewable Energy Laboratory (NREL). We greatly appreciate the input and reviews received from Jacques Beaudry-Losique, Sunita Satyapal, and Jesse Johnson of the U.S. Department of Energy; and Robert Remick, Fort Felker, Doug Arent, Nate Blair, and Selya Price of NREL. Photo on front page courtesy of NASA © 2009 U.S. Department of Energy Key Findings • Although renewable energy (excluding hydropower) is a relatively small portion of total energy supply both globally and in the United States, renewable energy installations in both the world and in the United States have nearly tripled between 2000 and 2008. • Including hydropower, renewable energy represents nearly 11% of total installed capacity and more than 9% of total generation in the United States in 2008. Installed renewable energy capacity (including hydropower) is 119 gigawatts (GW). Not including hydropower, 2008 renewable electricity installed capacity has reached about 42 GW in the United States. • In the United States, growth in sectors such as wind and solar photovoltaics (PV) signify an ongoing shift in the composition of our electricity supply. In 2008, cumulative wind capacity increased by 51% and cumulative solar PV capacity grew 44% from the previous year. Key Findings, continued • Worldwide, wind energy is the fastest growing renewable energy technology—between 2000 and 2008, wind energy generation worldwide increased by a factor of almost 7. The United States experienced even more dramatic growth, as installed wind energy capacity increased almost 10 times between 2000 and 2008. -
Developing the Marine Energy Sector in Scotland: a View from the Islands Thomas Neal Mcmillin University of Mississippi
University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2014 Developing the Marine Energy Sector in Scotland: A View from the Islands Thomas Neal McMillin University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the American Studies Commons Recommended Citation McMillin, Thomas Neal, "Developing the Marine Energy Sector in Scotland: A View from the Islands" (2014). Honors Theses. 912. https://egrove.olemiss.edu/hon_thesis/912 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. DEVELOPING THE MARINE ENERGY SECTOR IN SCOTLAND: A VIEW FROM THE ISLANDS _____________________ NEAL MCMILLIN DEVELOPING THE MARINE ENERGY SECTOR IN SCOTLAND: A VIEW FROM THE ISLANDS by Thomas Neal McMillin, Jr. A thesis submitted to the faculty of the University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford 2014 Approved by _________________________________ Advisor: Dr. Andy Harper _________________________________ Reader: Dr. Jay Watson _________________________________ Reader: Dr. John Winkle 2 ACKNOWLEDGEMENTS If you need an idea, you may be wise to take a hot shower. I conceived the genesis of this project during one of these. I realized that to apply for the Barksdale Award, I needed to focus on something which I had both experienced and cared about. From that thought, I realized that Scotland and water were my two topics to research. -
Liquid Fuel Resources and Prospects for Ligno-Cellulosic Ethanol: an Egyptian Case Study
Egyptian Journal of Petroleum (2013) xxx, xxx–xxx Egyptian Petroleum Research Institute Egyptian Journal of Petroleum www.elsevier.com/locate/egyjp www.sciencedirect.com FULL LENGTH ARTICLE Liquid fuel resources and prospects for ligno-cellulosic ethanol: An Egyptian case study Shadia R. Tewfik *, Nihal M. El Defrawy, Mohamed H. Sorour Chemical Engineering and Pilot Plant Department, National Research Center, Dokki, Giza, Egypt Received 12 June 2012; accepted 8 October 2012 KEYWORDS Abstract Fossil fuels (oil, natural gas and coal) presently represent about 90% of the world’s total Transport fuels; commercial primary energy demand. Yet, they are depletable sources of energy. Growth in the pro- Biomass; duction of easily accessible oil, the main source of high energy liquid transportation fuels, will not Renewables; match the projected rate of demand growth, especially in developing countries. In the transport sec- Bioethanol; tor, today, the only alternative to non-sustainable fossil fuels is biofuels that are produced from bio- Egypt; mass, a stored environmentally neutral solar energy. These fuels are compatible with current Economic indicators vehicles and blendable with conventional fuels. Moreover, they share the long-established distribu- tion infrastructure with little, if any, modification of equipment. The main biofuels presently in commercial production are bioethanol and biodiesel. Industrial countries started production of the 1st generation bioethanol and biodiesel from food products (grains and edible oil) since a few decades and these fuels are currently available at petrol stations. Second generation bioethanol from ligno-cellulosic materials is on the research, pilot and/or demonstration stage. This paper dis- cusses the current situation regarding liquid fuels in Egypt which are experiencing imbalance between total production and demand for gasoline and diesel fuels. -
Universidade Federal Do Ceará Centro De Ciências Departamento De Bioquímica E Biologia Molecular Programa De Pós-Graduação Em Bioquímica
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE BIOQUÍMICA E BIOLOGIA MOLECULAR PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA PROSPECÇÃO MOLECULAR E ANÁLISE FUNCIONAL DE SHORT- PEPTIDES VEGETAIS THIAGO LUSTOSA JUCÁ FORTALEZA-CE Abril de 2014 iii THIAGO LUSTOSA JUCÁ PROSPECÇÃO MOLECULAR E ANÁLISE FUNCIONAL DE SHORT- PEPTIDES VEGETAIS Tese apresentada ao Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, como parte dos requisitos para obtenção do título de Doutor em Bioquímica. Área de concentração: Bioquímica Vegetal. Orientador: Prof. Dr. Márcio Viana Ramos Co-Orientadora: Profa. Dra. Ana Cristina de Oliveira Monteiro Moreira FORTALEZA-CE Abril de 2014 ii iii PROSPECÇÃO MOLECULAR E ANÁLISE FUNCIONAL DE SHORT- PEPTIDES VEGETAIS Tese apresentada ao Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, como parte dos requisitos para obtenção do título de Doutor em Bioquímica. Área de concentração: Bioquímica Vegetal. Tese aprovada em: 03 / 04 / 2014. BANCA EXAMINADORA Prof. Dr. Márcio Viana Ramos (Orientador) Universidade Federal do Ceará (UFC) Profa. Dra. Ana Cristina de Oliveira Monteiro Moreira (Co-Orientadora) Universidade de Fortaleza (UNIFOR) Prof. Dr. Edilberto Rocha Silveira (Examinador) Universidade Federal do Ceará (UFC) Prof. Dr. Cleverson Diniz Teixeira de Freitas (Examinador) Universidade Federal do Ceará (UFC) Profa. Dra. Patrícia Maria Guedes Paiva (Examinadora) Universidade Federal de Pernanbuco (UFPE) iii DEDICATÓRIA Dedico esta tese à minha família (“Jucá e Cunha”), pelo apoio incondicional! Em especial, gostaria de dedicar à minha esposa Muciana, pelo amor incondicional, pela leitura e correção minuciosa da escrita da tese, e a meus dois tesouros: Ana Beatriz e Ana Alice, amos vocês! iv AGRADECIMENTOS INSTITUCIONAIS Este trabalho foi realizado com o suporte das seguintes instituições: . -
Quality and Greenhouse Gas Intensities of Transport Fuels in the EU in 2017 Monitoring Under the Fuel Quality Directive in 2017 (2018 Reporting)
EEA Report No 05/2019 Quality and greenhouse gas intensities of transport fuels in the EU in 2017 Monitoring under the Fuel Quality Directive in 2017 (2018 reporting) ISSN 1977-8449 1994-2019 EEA Report No 05/2019 Quality and greenhouse gas intensities of transport fuels in the EU in 2017 Monitoring under the Fuel Quality Directive in 2017 (2018 reporting) 1994-2019 Cover photo: © Stephanie Schilling Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Union. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. Copyright notice © European Environment Agency, 2019 Reproduction is authorised provided the source is acknowledged. More information on the European Union is available on the Internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2019 ISBN 978-92-9480-075-6 ISSN 1977-8449 doi:10.2800/773807 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Acknowledgements .................................................................................................................... 5 Executive summary .................................................................................................................... 6 1 Introduction .......................................................................................................................... -
Gray Mold); a Major Disease in Castor Bean (Ricinus Communis L.) – a Review
Yeboah et al. Ind. J. Pure App. Biosci. (2019) 7(4), 8-22 ISSN: 2582 – 2845 Available online at www.ijpab.com DOI: http://dx.doi.org/10.18782/2320-7051.7639 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2019) 7(4), 8-22 Review Article Botryotinia ricini (Gray Mold); A Major Disease in Castor Bean (Ricinus communis L.) – A Review Akwasi Yeboah1, Jiannong Lu1, Kwadwo Gyapong Agyenim-Boateng1, Yuzhen Shi1, Hanna Amoanimaa-Dede1, Kwame Obeng Dankwa2 and Xuegui Yin 1,* 1Department of Crop Breeding and Genetics, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China 2Council for Scientific and Industrial Research - Crops Research Institute, Kumasi, Ghana *Corresponding Author E-mail: [email protected] Received: 12.07.2019 | Revised: 18.08.2019 | Accepted: 24.08.2019 ABSTRACT Castor is an economically important oilseed crop with 3-5% increase in demand per annum. The castor oil has over 700 industrial uses, and its oil is sometimes considered as an alternative for biodiesel production in several countries. However, its worldwide demand is hardly met due to hampered production caused by biotic stress. One of the most critical biotic factors affecting castor production is the fungal disease, Botryotinia ricini. The study of the B. ricini disease is very essential as it affects the economic part of plant, the seed, from which castor oil is extracted. Despite the devastating harm caused by B. ricini in castor production, there is limited research and literature. Meanwhile, the disease continues to spread and destroy castor crops. The disease severity is enhanced by an increase in relative humidity, temperature (around 25ºC), and high rainfall. -
Lepidoptera: Gracillariidae): an Adventive Herbivore of Chinese Tallowtree (Malpighiales: Euphorbiaceae) J
Host range of Caloptilia triadicae (Lepidoptera: Gracillariidae): an adventive herbivore of Chinese tallowtree (Malpighiales: Euphorbiaceae) J. G. Duncan1, M. S. Steininger1, S. A. Wright1, G. S. Wheeler2,* Chinese tallowtree, Triadica sebifera (L.) Small (Malpighiales: Eu- and the defoliating mothGadirtha fusca Pogue (Lepidoptera: Nolidae), phorbiaceae), native to China, is one of the most aggressive and wide- both being tested in quarantine to determine suitability for biological spread invasive weeds in temperate forests and marshlands of the control (Huang et al. 2011; Wang et al. 2012b; Pogue 2014). The com- southeastern USA (Bruce et al. 1997). Chinese tallowtree (hereafter patibility of these potential agents with one another and other herbi- “tallow”) was estimated to cover nearly 185,000 ha of southern for- vores like C. triadicae is being examined. The goal of this study was to ests (Invasive.org 2015). Since its introduction, the weed has been re- determine if C. triadicae posed a threat to other native or ornamental ported primarily in 10 states including North Carolina, South Carolina, plants of the southeastern USA. Georgia, Florida, Alabama, Mississippi, Louisiana, Arkansas, Texas, and Plants. Tallow plant material was field collected as seeds, seed- California (EddMapS 2015). Tallow is now a prohibited noxious weed lings, or small plants in Alachua County, Florida, and cultured as pot- in Florida, Louisiana, Mississippi, and Texas (USDA/NRCS 2015). As the ted plants and maintained in a secure area at the Florida Department existing range of tallow is expected to increase, the projected timber of Agriculture and Consumer Services, Division of Plant Industry. Ad- loss, survey, and control costs will also increase. -
Innovation Outlook: Advanced Liquid Biofuels
INNOVATION OUTLOOK ADVANCED LIQUID BIOFUELS Copyright © IRENA 2016 Unless otherwise stated, this publication and material featured herein are the property of the International Renewable Energy Agency (IRENA) and are subject to copyright by IRENA. Material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that all such material is clearly attributed to IRENA and bears a notation that it is subject to copyright (© IRENA). Material contained in this publication attributed to third parties may be subject to third-party copyright and separate terms of use and restrictions, including restrictions in relation to any commercial use. ISBN 978-92-95111-51-6 (print) ISBN 978-92-95111-52-3 (PDF) About IRENA IRENA is an intergovernmental organisation that supports countries in their transition to a sustainable energy future, and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and fi nancial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low carbon economic growth and prosperity. www.irena.org Acknowledgements This report benefi ted greatly from reviews and comments by experts and institutions including: Jim Lane (Biofuels Digest), Jim McMillan (US National Renewable Energy Laboratory – NREL and International Energy Agency – IEA Bioenergy), Jim Spaeth (US Department of Energy – US DOE) and Arthur Wellinger (IEA Bioenergy). IRENA would also like to thank the following experts for inputs: David Bauner (Renetech), Ami Ben-Amotz (formerly at Seambiotic and The National Institute of Oceanography of Israel), John Benemann (MicroBio Engineering), Robert C. -
Planting a Dry Rock Garden in Miam1
Succulents in Miam i-D ade: Planting a D ry Rock Garden John McLaughlin1 Introduction The aim of this publication is twofold: to promote the use of succulent and semi-succulent plants in Miami-Dade landscapes, and the construction of a modified rock garden (dry rock garden) as a means of achieving this goal. Plants that have evolved tactics for surviving in areas of low rainfall are collectively known as xerophytes. Succulents are probably the best known of such plants, all of them having in common tissues adapted to storing/conserving water (swollen stems, thickened roots, or fleshy and waxy/hairy leaves). Many succulent plants have evolved metabolic pathways that serve to reduce water loss. Whereas most plants release carbon dioxide (CO2) at night (produced as an end product of respiration), many succulents chemically ‘fix’ CO2 in the form of malic acid. During daylight this fixed CO2 is used to form carbohydrates through photosynthesis. This reduces the need for external (free) CO2, enabling the plant to close specialized pores (stomata) that control gas exchange. With the stomata closed water loss due to transpiration is greatly reduced. Crassulacean acid metabolism (CAM), as this metabolic sequence is known, is not as productive as normal plant metabolism and is one reason many succulents are slow growing. Apart from cacti there are thirty to forty other plant families that contain succulents, with those of most horticultural interest being found in the Agavaceae, Asphodelaceae (= Aloacaeae), Apocynaceae (now including asclepids), Aizoaceae, Crassulaceae, Euphorbiaceae and scattered in other families such as the Passifloraceae, Pedaliaceae, Bromeliaceae and Liliaceae. -
Bioeconomy in the Americas – 2030
Bioeconomy in the Americas – 2030 Short report 1 Bioeconomy in the Americas – 2030 Short report Brazil March, 2019 2 © Center for Strategic Studies and Management (CGEE) Social organization Supervised by the Ministry of Science, Technology, Innovation and Communication President Marcio de Miranda Santos Directors Regina Maria Silverio Joaquim Aparecido Machado Bioeconomy in the Americas – 2030 Short report. Brazil – Brasília, DF: CGEE, 2019. 61p.:Il: 24 cm. 1.Bioeconomy . 2. Biofuels. 3. Bioproduct .I Title II. CGEE. Centro de Gestão e Estudos Estratégicos (CGEE), SCS Quadra 9, Torre C, 4º andar, Ed. Parque Cidade Corporate, CEP 70308-200, Brasília, DF, Tel.: (61) 3424 9600, http://www.cgee.org.br @cgee.oficial This study is part of the activities carried out under the 2nd Management Agreement with CGEE – 16th Addendum / Activity - Inserção do CGEE em Agendas Internacionais/Project: Agenda Positiva: Mudança do Clima e Desenvolvimento Sustentável- 8.10.52.01.50.01. All rights reserved for the Centro de Gestão e Estudos Estratégicos (CGEE). The text contained herein may be reproduced, stored or transmitted, as long as the source is cited. 3 CENTRO DE GESTÃO E ESTUDOS ESTRATÉGICOS – CGEE. Bioeconomy in the Americas – 2030 Short report.. Brazil. Brasília, DF: 2019. Bioeconomy in the Americas - 2030 Short report Supervision Regina Maria Silvério CGEE Technical Team Marcelo Khaled Poppe (Coordenador) Barbara Bressan Rocha Emilly Caroline Costa Silva Roberto Lazarte Kaqui Thiago Rodrigues Costa Silva 4 Introduction The Center for Strategic Studies and Management (CGEE) has recognized biofuels and bioenergy as absolutely strategic for the progress of the modern bioeconomy, because they provide production and consumption scales capable of accelerating the learning curve that leads to the availability of abundant and competitive raw materials to enable multiple industrial processes generated in biorefineries, with a view to the emergence of the post-oil era (post-fossil fuels in general).