Individual Year Summary of Reported Cases for 2013

Total Page:16

File Type:pdf, Size:1020Kb

Individual Year Summary of Reported Cases for 2013 SUMMARY OF REPORTED CASES OF NOTIFIABLE DISEASES, HAWAI`I by County, 2013 No. of Cases No. of Cases Per 100,000 Population Reportable Diseases Hawaii Honolulu Kauai Maui Hawaii Honolulu Kauai Maui State Total State Total County County County County County County County County AIDS* 9 46 1 9 66 4.70 4.67 1.44 5.59 4.69 AMEBIASIS * 2 1 0 1 4 1.04 0.10 0.00 0.62 0.28 ANGIOSTRONGYLIASIS, CANTONENSIS*^ 3 0 0 0 3 1.57 0.00 0.00 0.00 0.21 ANTHRAX 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 ARBOVIRUSES, GROUP A & GROUP B 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 ARENAVIRUSES, LASSA 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 BOTULISM, FOODBORNE 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 BOTULISM, INFANT 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 BOTULISM, WOUND 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 BRUCELLOSIS 1 0 0 0 1 0.52 0.00 0.00 0.00 0.07 CAMPYLOBACTERIOSIS 142 521 70 88 825 74.12 52.85 100.54 54.63 58.59 CHIKUNGUNYA VIRUS N/R N/R N/R N/R N/R N/A N/R N/R N/R N/R CHLAMYDIA 768 5185 161 523 6640 400.87 526.00 231.24 324.65 471.58 CHOLERA 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 CRYPTOSPORIDIOSIS 0 1 0 0 1 0.00 0.10 0.00 0.00 0.07 CYCLOSPORIASIS 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 DENGUE FEVER 1 6 0 3 10 0.52 0.61 0.00 1.86 0.71 DIPHTHERIA 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 E. COLI 0157:H7 6 21 0 1 28 3.13 2.13 0.00 0.62 1.99 FILARIASIS * 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 FILOVIRUSES (EBOLA, MARBURG) 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 FISH POISONING, CIGUATERA * 0 0 2 1 3 0.00 0.00 2.87 0.62 0.21 FISH POISONING, SCOMBROID * 0 11 2 0 13 0.00 1.12 2.87 0.00 0.92 GIARDIASIS 14 32 5 8 60 7.31 3.25 7.18 4.97 4.26 GLANDERS* 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 GONORRHEA 46 635 7 30 718 24.01 64.42 10.05 18.62 50.99 HAEMOPHILUS INFLUENZA (INVASIVE 2 21 1 4 28 1.04 2.13 1.44 2.48 1.99 DISEASE) HALLUCINOGENIC FISH POISONING * 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 HANSEN'S DISEASE 7 7 0 0 14 3.65 0.71 0.00 0.00 0.99 HANTAVIRUS 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 HEMOLYTIC UREMIC SYNDROME 1 3 0 0 4 0.52 0.30 0.00 0.00 0.28 HEPATITIS A 2 5 2 7 16 1.04 0.51 2.87 4.35 1.14 HEPATITIS B (ACUTE) 1 2 0 1 4 0.52 0.20 0.00 0.62 0.28 HEPATITIS B, VIRUS INFECTION 11 229 3 12 259 5.74 23.23 4.31 7.45 18.39 (CHRONIC) HEPATITIS B, VIRUS INFECTION 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 PERINATAL HEPATITIS C (ACUTE) 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 HEPATITIS C (CHRONIC)*** N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A SUMMARY OF REPORTED CASES OF NOTIFIABLE DISEASES, HAWAI`I by County, 2013 No. of Cases No. of Cases Per 100,000 Population Reportable Diseases Hawaii Honolulu Kauai Maui Hawaii Honolulu Kauai Maui State Total State Total County County County County County County County County HEPATITIS E * 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 INFLUENZA (LAB CONFIRMED) * 96 1796 67 59 5086 50.11 182.20 96.23 36.62 361.21 LEGIONELLOSIS 2 3 4 0 9 1.04 0.30 5.74 0.00 0.64 LEPTOSPIROSIS 6 8 2 0 19 3.13 0.81 2.87 0.00 1.35 LISTERIOSIS 0 2 2 0 4 0.00 0.20 2.87 0.00 0.28 MALARIA 0 1 0 0 1 0.00 0.10 0.00 0.00 0.07 MEASLES 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 MELIOIDOSIS (BURKHOLDERIA 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 PSEUDOMALLEI) * MENINGITIS, MENINGOCOCCAL 0 1 0 0 1 0.00 0.10 0.00 0.00 0.07 MIDDLE EAST RESPIRATORY SYNDROME N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R (MERS)* MUMPS 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 NOROVIRUS * 10 296 1 2 313 5.22 30.03 1.44 1.24 22.23 PELVIC INFLAMMATORY DISEASE [PID]* 1 7 0 0 8 0.52 0.71 0.00 0.00 0.57 PERTUSSIS 0 22 1 27 50 0.00 2.23 1.44 16.76 3.55 PLAGUE 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 PNEUMOCOCCAL DISEASE 17 51 7 5 82 8.87 5.17 10.05 3.10 5.82 POLIOMYELITIS 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 PSITTACOSIS 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 Q FEVER, ACUTE 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 Q FEVER, CHRONIC 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 RABIES, HUMAN 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 RUBELLA (GERMAN MEASLES) 0 2 0 0 2 0.00 0.20 0.00 0.00 0.14 RUBELLA, CONGENITAL 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 SALMONELLOSIS 52 260 14 20 349 27.14 26.38 20.11 12.42 24.79 SEVERE ACUTE RESPIRATORY 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 SYNDROME (SARS) SHIGELLOSIS 2 23 2 15 42 1.04 2.33 2.87 9.31 2.98 SMALLPOX 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 STREPTOCOCCAL INFECTIONS ** 0 17 12 1 30 0.00 1.72 17.23 0.62 2.13 STREPTOCOCCUS PNEUMONIAE, N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R INVASIVE,DRUG RESISTANT* STREPTOCOCCAL TOXIC SHOCK 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 SYNDROME SYPHILIS, PRIMARY & SECONDARY 7 34 0 5 46 3.65 3.45 0.00 3.10 3.27 SYPHILIS, EARLY LATENT 2 18 1 1 22 1.04 1.83 1.44 0.62 1.56 SYPHILIS, LATENT & LATE LATENT 0 19 0 1 19 0.00 1.93 0.00 0.62 1.35 TETANUS 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 TOXOPLASMOSIS * 0 3 0 0 3 0.00 0.30 0.00 0.00 0.21 SUMMARY OF REPORTED CASES OF NOTIFIABLE DISEASES, HAWAI`I by County, 2013 No. of Cases No. of Cases Per 100,000 Population Reportable Diseases Hawaii Honolulu Kauai Maui Hawaii Honolulu Kauai Maui State Total State Total County County County County County County County County TRICHINOSIS 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 TUBERCULOSIS 11 82 5 17 115 5.74 8.32 7.18 10.55 8.17 TULAREMIA 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 TYPHOID FEVER 1 3 0 0 4 0.52 0.30 0.00 0.00 0.28 TYPHUS, MURINE * 0 0 0 4 4 0.00 0.00 0.00 2.48 0.28 VARICELLA ZOSTER (CHICKENPOX) 2 24 1 3 30 1.04 2.43 1.44 1.86 2.13 VIBRIOSIS 4 19 3 5 33 2.09 1.93 4.31 3.10 2.34 VANCOMYCIN-INTERMEDIATE RESISTANT STAPHYLOCOCCUS AUREUS 0 1 0 0 1 0.00 0.10 0.00 0.00 0.07 (VISA) VANCOMYCIN-RESISTANT 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 STAPHYLOCOCCUS AUREUS (VRSA) WEST NILE VIRUS FEVER 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 YELLOW FEVER 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 YERSINIOSIS * 5 3 0 0 5 2.61 0.30 0.00 0.00 0.36 ZIKA VIRUS N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R Note: 1.
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Case Definition for Non-Pestis Yersiniosis Check This Box If This Po
    19-ID-03 Committee: Infectious Disease Title: Case Definition for Non-pestis Yersiniosis ☒Check this box if this position statement is an update to an existing standardized surveillance case definition: 18-ID-02 Synopsis: This position statement updates the case definition for non-pestis yersiniosis through the clarification of laboratory criteria. I. Statement of the Problem Non-pestis yersiniosis is an infection caused most commonly by the bacteria Yersinia enterocolitica or Yersinia pseudotuberculosis. These bacteria are normal intestinal and oropharyngeal colonizers of swine, and most commonly cause infections in children under 10 years of age, or adults over 70 years of age, through contaminated food. After Salmonella, Shigella, Campylobacter, and Shiga-toxin producing E. coli, th it is the 5 most commonly reported gastrointestinal bacterial illness reported through CDC Foodborne Diseases Active Surveillance Network (FoodNet), which monitors 10 sites in the United States for nine enteric pathogens transmitted through food. The increasing use of culture-independent diagnostic tests (CIDTs) in all parts of clinical medicine, and particularly for gastrointestinal illnesses, has also increased recognition of certain pathogens. Data from 2016 from FoodNet show a 29% increase in culture-confirmed and a 91% increase in CIDT-diagnosed Yersinia infections when compared to the 2013-2015 time frame. Yersinia enterocolitica and/or Yersinia pseudotuberculosis infections are reportable in 38 states, but no standard national definition exists for confirmed and probable cases. This position statement proposes a standardized case definition for non-pestis yersiniosis. II. Background and Justification Yersinia enterocolitica and Yersinia pseudotuberculosis are Gram negative rod-shaped or coccoid organisms that can be isolated from many animals and are most often transmitted to humans from undercooked or contaminated pork.
    [Show full text]
  • Recognizing and Treating New and Emerging Infections Encountered in Everyday Practice
    Recognizing and treating new and emerging infections encountered in everyday practice STEVEN M. GORDON, MD NFECTIOUS DISEASES, pre- MiikWirj:« Although infectious diseases were once considered a dicted earlier in this cen- diminishing threat, new pathogens are constantly challenging tury to be eliminated as a the health care system. This article reviews the clinical presen- public health problem, re- tation, diagnosis, and treatment of seven emerging infections I main the chief cause of death that primary care physicians are likely to encounter. worldwide and a significant cause of death and morbidity in i Parvovirus B19 attacks erythrocyte precursors; the United States.1 Challenging infection is usually benign and self-limiting but can cause the US public health system are aplastic crises in patients with chronic hemolytic disorders. several newly identified patho- Hemorrhagic colitis due to Escherichia coli 0157:H7 infection gens (eg, human immunodefi- can lead to the hemolytic-uremic syndrome, especially in chil- ciency virus [HIV], Escherichia dren; it also can cause thrombotic thrombocytopenia purpura. coli 0157:H7, hepatitis C) and a Chlamydia pneumoniae causes a mild pneumonia that resem- resurgence of old diseases pre- bles mycoplasmal pneumonia. Bacillary angiomatosis primar- sumed to be under control (eg, ily affects immunocompromised patients, especially those tuberculosis, syphilis). Further, infected with human immunodeficiency virus (HIV). At least multiple-drug resistance in two organisms can cause bacillary angiomatosis: Bartonella hense- strains of pneumococci, gono- lae and Bartonella quintana. Hantavirus pulmonary syndrome cocci, enterococci, staphylo- is spread by exposure to the droppings of infected rodents. cocci, salmonella, and mycobac- Contrary to previous thought, HIV continues to replicate teria undermines efforts to throughout the course of the illness and does not have a latency control the diseases they cause.2 phase.
    [Show full text]
  • 2012 Case Definitions Infectious Disease
    Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ...................................................................................................................................................
    [Show full text]
  • Know Your Abcs: a Quick Guide to Reportable Infectious Diseases in Ohio
    Know Your ABCs: A Quick Guide to Reportable Infectious Diseases in Ohio From the Ohio Administrative Code Chapter 3701-3; Effective August 1, 2019 Class A: Diseases of major public health concern because of the severity of disease or potential for epidemic spread – report immediately via telephone upon recognition that a case, a suspected case, or a positive laboratory result exists. • Anthrax • Measles • Rubella (not congenital) • Viral hemorrhagic fever • Botulism, foodborne • Meningococcal disease • Severe acute respiratory (VHF), including Ebola virus • Cholera • Middle East Respiratory syndrome (SARS) disease, Lassa fever, Marburg • Diphtheria Syndrome (MERS) • Smallpox hemorrhagic fever, and • Influenza A – novel virus • Plague • Tularemia Crimean-Congo hemorrhagic infection • Rabies, human fever Any unexpected pattern of cases, suspected cases, deaths or increased incidence of any other disease of major public health concern, because of the severity of disease or potential for epidemic spread, which may indicate a newly recognized infectious agent, outbreak, epidemic, related public health hazard or act of bioterrorism. Class B: Disease of public health concern needing timely response because of potential for epidemic spread – report by the end of the next business day after the existence of a case, a suspected case, or a positive laboratory result is known. • Amebiasis • Carbapenemase-producing • Hepatitis B (perinatal) • Salmonellosis • Arboviral neuroinvasive and carbapenem-resistant • Hepatitis C (non-perinatal) • Shigellosis
    [Show full text]
  • Preventing Foodborne Illness: Yersiniosis1 Aswathy Sreedharan, Correy Jones, and Keith Schneider2
    FSHN12-09 Preventing Foodborne Illness: Yersiniosis1 Aswathy Sreedharan, Correy Jones, and Keith Schneider2 What is yersiniosis? Yersiniosis is an infectious disease caused by the con- sumption of contaminated food contaminated with the bacterium Yersinia. Most foodborne infections in the US resulting from ingestion of Yersinia species are caused by Y. enterocolitica. Yersiniosis is characterized by common symptoms of gastroenteritis such as abdominal pain and mild fever (8). Most outbreaks are associated with improper food processing techniques, including poor sanitation and improper sterilization techniques by food handlers. The dis- ease is also spread by the fecal–oral route, i.e., an infected person contaminating surfaces and transmitting the disease to others by not washing his or her hands thoroughly after Figure 1. Yersinia enterocolitica bacteria growing on a Xylose Lysine going to the bathroom. The bacterium is prevalent in the Sodium Deoxycholate (XLD) agar plate. environment, enabling it to contaminate our water and Credits: CDC Public Health Image Library (ID# 6705). food systems. Outbreaks of yersiniosis have been associated with unpasteurized milk, oysters, and more commonly with What is Y. enterocolitica? consumption of undercooked dishes containing pork (8). Yersinia enterocolitica is a small, rod-shaped, Gram- Yersiniosis incidents have been documented more often negative, psychrotrophic (grows well at low temperatures) in Europe and Japan than in the United States where it is bacterium. There are approximately 60 serogroups of Y. considered relatively rare. According to the Centers for enterocolitica, of which only 11 are infectious to humans. Disease Control and Prevention (CDC), approximately Of the most common serogroups—O:3, O:8, O:9, and one confirmed Y.
    [Show full text]
  • Early History of Infectious Disease 
    © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION CHAPTER ONE EARLY HISTORY OF INFECTIOUS 1 DISEASE Kenrad E. Nelson, Carolyn F. Williams Epidemics of infectious diseases have been documented throughout history. In ancient Greece and Egypt accounts describe epidemics of smallpox, leprosy, tuberculosis, meningococcal infections, and diphtheria.1 The morbidity and mortality of infectious diseases profoundly shaped politics, commerce, and culture. In epidemics, none were spared. Smallpox likely disfigured and killed Ramses V in 1157 BCE, although his mummy has a significant head wound as well.2 At times political upheavals exasperated the spread of disease. The Spartan wars caused massive dislocation of Greeks into Athens triggering the Athens epidemic of 430–427 BCE that killed up to one half of the population of ancient Athens.3 Thucydides’ vivid descriptions of this epidemic make clear its political and cultural impact, as well as the clinical details of the epidemic.4 Several modern epidemiologists have hypothesized on the causative agent. Langmuir et al.,5 favor a combined influenza and toxin-producing staphylococcus epidemic, while Morrens and Chu suggest Rift Valley Fever.6 A third researcher, Holladay believes the agent no longer exists.7 From the earliest times, man has sought to understand the natural forces and risk factors affecting the patterns of illness and death in society. These theories have evolved as our understanding of the natural world has advanced, sometimes slowly, sometimes, when there are profound break- throughs, with incredible speed. Remarkably, advances in knowledge and changes in theory have not always proceeded in synchrony. Although wrong theories or knowledge have hindered advances in understanding, there are also examples of great creativity when scientists have successfully pursued their theories beyond the knowledge of the time.
    [Show full text]
  • Communicable Diseases Weekly Report
    Communicable Diseases Weekly Report Week 08, 21 February to 27 February 2021 In summary, we report: • Chancroid – one new case in a returned traveller • Rodent-borne disease risks • Novel coronavirus 2019 (COVID-19) • Summary of notifiable conditions activity in NSW For further information see NSW Health infectious diseases page. This includes links to other NSW Health infectious disease surveillance reports and a diseases data page for a range of notifiable infectious diseases. Chancroid One case of chancroid was notified this reporting week in a traveller returning from overseas. Chancroid is an acute sexually transmitted bacterial infection that causes painful genital ulcers. The condition is now rarely seen in Australia and only one other case has been notified in NSW during the past decade. Although the incidence of chancroid is decreasing globally, it is still reported in some regions within Africa, Asia, the Caribbean and South Pacific. Chancroid genital ulcer disease is a known risk factor for the transmission of HIV. The bacterium that causes chancroid, Haemophilus ducreyi, is usually transmitted through anal, oral, or vaginal sex with an infected person. After infection, one or more ulcers (sores) develop on the genitals or around the anus. Non-genital skin infections have also been reported globally, through non-sexual skin-to-skin contact with an infected person. The ulcers are usually painful, but rarely can be asymptomatic. Swelling in the groin (due to enlarged painful lymph nodes that can liquify and develop into buboes) can also occur. Other symptoms may include pain during sexual intercourse or while urinating. An infected person can spread the infection from their genital region to other parts of their body.
    [Show full text]
  • AMD Projects: Deadly Disease Databases
    CDC’s AMD Program AMD Projects Innovate • Transform • Protect CDC’s Advanced Molecular Detection (AMD) program fosters scientific innovation in genomic sequencing, epidemiology, and bioinformatics to transform public health and protect people from disease threats. AMD Project: Deadly Disease Databases Whole genome analysis and database development for anthrax (Bacillus anthracis), melioidosis (Burkholderia pseudomallei), and Brucellosis (Brucella spp.) Epidemiologists and forensic professionals can use whole genome sequencing – a way of determining an organism’s complete, detailed genome – and large databases to determine the source of dangerous germs. Having a large, accessible collection of disease pathogens could help scientists quickly find out if a certain illness is naturally occurring or the result of bioterrorism. CDC is establishing a public database where scientists from around the world can share information about these potentially deadly CDC is establishing public databases so that diseases. CDC scientists have begun sequencing the organisms that scientists from around the world can share information about deadly diseases like cause anthrax (Bacillus anthracis), brucellosis (Brucella spp.), and anthrax, brucellosis, and melioidosis. melioidosis (Burkholderia pseudomallei), three pathogens that could occur naturally or as the result of bioterrorism. Current methods of determining the genetic structure of these organisms are not standardized and sometimes not effective. Using whole genome sequencing for these pathogens will allow scientists www.cdc.gov/amd Updated: May 2017 to accurately and quickly find the geographic origin of the isolates and will improve overall knowledge and understanding of them. Having a detailed database of these genomes will also ensure quicker and more effective responses to outbreaks. For more information on anthrax, please visit www.cdc.gov/anthrax/index.html.
    [Show full text]
  • Zoonotic Diseases Fact Sheet
    ZOONOTIC DISEASES FACT SHEET s e ion ecie s n t n p is ms n e e s tio s g s m to a a o u t Rang s p t tme to e th n s n m c a s a ra y a re ho Di P Ge Ho T S Incub F T P Brucella (B. Infected animals Skin or mucous membrane High and protracted (extended) fever. 1-15 weeks Most commonly Antibiotic melitensis, B. (swine, cattle, goats, contact with infected Infection affects bone, heart, reported U.S. combination: abortus, B. suis, B. sheep, dogs) animals, their blood, tissue, gallbladder, kidney, spleen, and laboratory-associated streptomycina, Brucellosis* Bacteria canis ) and other body fluids causes highly disseminated lesions bacterial infection in tetracycline, and and abscess man sulfonamides Salmonella (S. Domestic (dogs, cats, Direct contact as well as Mild gastroenteritiis (diarrhea) to high 6 hours to 3 Fatality rate of 5-10% Antibiotic cholera-suis, S. monkeys, rodents, indirect consumption fever, severe headache, and spleen days combination: enteriditis, S. labor-atory rodents, (eggs, food vehicles using enlargement. May lead to focal chloramphenicol, typhymurium, S. rep-tiles [especially eggs, etc.). Human to infection in any organ or tissue of the neomycin, ampicillin Salmonellosis Bacteria typhi) turtles], chickens and human transmission also body) fish) and herd animals possible (cattle, chickens, pigs) All Shigella species Captive non-human Oral-fecal route Ranges from asymptomatic carrier to Varies by Highly infective. Low Intravenous fluids primates severe bacillary dysentery with high species. 16 number of organisms and electrolytes, fevers, weakness, severe abdominal hours to 7 capable of causing Antibiotics: ampicillin, cramps, prostration, edema of the days.
    [Show full text]
  • Insights Into the Pathogenicity of Burkholderia Pseudomallei
    REVIEWS Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei W. Joost Wiersinga*, Tom van der Poll*, Nicholas J. White‡§, Nicholas P. Day‡§ and Sharon J. Peacock‡§ Abstract | Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host–pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation. Melioidosis is a serious disease caused by the aerobic, rifamycins, colistin and aminoglycosides), but is usually Gram-negative soil-dwelling bacillus Burkholderia pseu- susceptible to amoxicillin-clavulanate, chloramphenicol, domallei and is most common in Southeast Asia and doxycycline, trimethoprim-sulphamethoxazole, ureido- Northern Australia. Melioidosis is responsible for 20% of penicillins, ceftazidime and carbapenems2,4. Treatment all community-acquired septicaemias and 40% of sepsis- is required for 20 weeks and is divided into intravenous related mortality in northeast Thailand. Reported cases are and oral phases2,4. Initial intravenous therapy is given likely to represent ‘the tip of the iceberg’1,2, as confirmation for 10–14 days; ceftazidime or a carbapenem are the of disease depends on bacterial isolation, a technique that drugs of choice.
    [Show full text]
  • Antigen Detection Assay for the Diagnosis of Melioidosis
    PI: Title: Antigen Detection assay for the Diagnosis of Melioidosis Received: 12/05/2013 FOA: PA10-124 Council: 05/2014 Competition ID: ADOBE-FORMS-B1 FOA Title: NIAID ADVANCED TECHNOLOGY STTR (NIAID-AT-STTR [R41/R42]) 2 R42 AI102482-03 Dual: Accession Number: 3650491 IPF: 3966401 Organization: INBIOS INTERNATIONAL, INC. Former Number: Department: IRG/SRG: ZRG1 IDM-V (12)B AIDS: N Expedited: N Subtotal Direct Costs Animals: N New Investigator: N (excludes consortium F&A) Humans: Y Early Stage Investigator: N Year 3: Clinical Trial: N Year 4: Current HS Code: E4 Year 5: HESC: N Senior/Key Personnel: Organization: Role Category: Always follow your funding opportunity's instructions for application format. Although this application demonstrates good grantsmanship, time has passed since the grantee applied. The sample may not reflect the latest format or rules. NIAID posts new samples periodically: https://www.niaid.nih.gov/grants-contracts/sample-applications The text of the application is copyrighted. You may use it only for nonprofit educational purposes provided the document remains unchanged and the PI, the grantee organization, and NIAID are credited. Note on Section 508 conformance and accessibility: We have reformatted these samples to improve accessibility for people with disabilities and users of assistive technology. If you have trouble accessing the content, please contact the NIAID Office of Knowledge and Educational Resources at [email protected]. Additions for Review Accepted Publication Accepted manuscript news Post-submission supplemental material. Information about manuscript accepted for publication. OMB Number: 4040-0001 Expiration Date: 06/30/2011 APPLICATION FOR FEDERAL ASSISTANCE 3. DATE RECEIVED BY STATE State Application Identifier SF 424 (R&R) 1.
    [Show full text]