Ekologiya Morya (5): 65-76, 1981

Total Page:16

File Type:pdf, Size:1020Kb

Ekologiya Morya (5): 65-76, 1981 ISSN 0704-3716 CANADIAN TRANSLATION OF FISHERIES AND AQUATIC SCIENCES lqo. 4818 Energy balance in prolific species of crustacea from the Indian Ocean by T.V. Pavlovskaya, and Gj. Abolmasova Original Title; Energeticheskiy balans u massovykh vidov rakoobragnykh indiyskogo okeana From: Ekologiya Morya (5): 65-76, 1981 Translated by the Translation Bureau (NDE) Multilingual Services Division Department of the Secretary of State of Canada Department of Fisheries and Oceans Bedford Institute of Oceanography Dartmouth, NS 1982 21 pages typescript ' crews- Li e • • DEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS MULTILINGUAL SERVICES DIVISION DES SERVICES CANADA DIVISION MULTILINGUES TRANSLATED FROM TRADUCTION DE INTO EN Russian English AUTHOR - AUTEUR T.V. Pavlovskaya , G.I. Abolmasova TITLE IN ENGLISH TITRE ANGLAIS Energy balance in prolific species of Crustacea from the Indian Ocean TITLE IN FOREIGN LANGUAGE (TRANSLITERATE FOREIGN CHARACTERS) TITRE EN LANGUE ÉTRANGÉRE (TRANSCRIRE EN CARACTÉRES ROMAINS) Energeticheskiy balans u massovykh vidov rakoobraznykh indiyskogo okeana REFERENCE IN FOREIGN LANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIGN CHARACTERS. RÉFÉRENCE EN LANGUE ÉTRANGÉRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET, TRANSCRIRE EN CARACTÈRES ROMAINS. Ekologiya morya REFERENCE IN ENGLISH - RÉFÉRENCE EN ANGLAIS Marine Ecology PUBLISHER - ÉDITEUR PAGE NUMBERS IN ORIGINAL DATE OF PUBLICATION NUMÉROS DES PAGES DANS DATE DE PUBLICATION L'ORI GI HAL "Naukova dumka" YEAR ISSUE NO. 65-76 VOLUME PLACE OF PUBLICATION ANNÉE NUMÉRO NUMBER OF TYPED PAGES LIEU DE PUBLICATION NOMBRE DE PAGES DACTYLOGRAPHIÉES Kiev, USSR 1981 5 21 REQUESTING DEPARTMENT D F 0 TRANSLATION BUREAU NO. MINISTÈRE-CLIENT NOTRE DOSSIER N° 861144 BRANCH OR DIVISION S .I.P.B. TRANSLATOR (INITIA LS) N. De. DIRECTION OU DIVISION TRADUCTEUR (INITIALES) PERSON REQUESTING DEMANDÉ PAR Robert J. Conover UNEDITED TRANSLATION YOUR NUMBER For information only VOTRE DOSSIER N° TRADUCTION NON REVISEE DATE OF REQUEST January 26, 1982 Information seulement DATE DE LA DEMANPE MAR 1 2 1982 505-2004 0.6 (REV. 2/68) 7530-214029.533 3 111 gto Secretary Secrétariat of State d'État MULTILINGUAL SERVICES DIVISION — DIVISION DES SERVICES MULTILINGUES TRANSLATION BUREAU BUREAU DES TRADUCTIONS Client's No.—No du client Department — Ministère Division/Branch — Division/Direction aw - Ville D F 0 S.I.P.B. Dartmouth, N. Bureau No.-1\10 du bureau Umguage — Langue Translator (Initials) — Traducteur (Initiales) 861144 Russian N. De. MAR 12 1982 Ekologiya morya (Marine Ecology), 1981, No. 5, pp. 65-76 (65)* UDC 591.531.31:595.3:577.475 Energy balance in prolific species of Crustacea ' from the Indian Ocean by T.V. Pavlovskaya & G.I. Abolmasova The determination of the feeding relations between organisms an the quantitative tendencies of the transformation of matter and energy by ecological groups within communities are the major points when studying the flow of energy through an ecosystem. These in- vestigations are based on the determination of the rate of consump- th tion of various types of food andYlndividual elements of the energy balance in the most prolific species of the zooplankton. Investi- gations of this type have been carried out on organisms from the L&J Z legvl boreal zone of the ocean [10, 11, 19-22, 26, etc.], but not very 0 ›- < g CC E many have been conducted in the tropical zone of the World Ocean 0 If) C 2 nr. Z o 0 g [9, 14, 16, 23, 25]. The energy balance in the organisms of the < z e (66) e E z ô Indian Ocean has not been studied at all During the fourth run E of the "Professor Vodyanitsky" research vessel, we studied the C) o D ch g following questions: the composition and size of the rations in prolific species of crustaceans during mixed feeding on live algae, phvtogenic detritus and small animals, the effectiveness of assi- milation and the ratio of the inàividual elements of their energy *The numbers in the right-hand margin are the pages of the Russian text - translator SEC 5-25T (Rev. 6/78) balance, and the diurnal rhythm in the feeding of crustaceans. Material and Method The object of our study were six of.the.-most prolific species of crustaceans in the study areas, Scolecithrix danae Lubbock, Pleuromamma abdominalis Lubbock, Euchaeta marina Prestandrea, Eu- chirella cu.rticauda Giesbr., Rhincalanus nasutus Gièsbr. and Cypri- dina serrata G.W. Mtlller. The material was collected with DZhOM* nets with an intake dia- meter of 80 cm, made with. silk gauze No. 23 (mesh size 0.333 mm). Nets made with gauze No. 49 (mesh size 0.112 mm) were used to catch the small animals which were used as food in the experiments. After being caught, the animals were sorted according to species and size, and then placed in large containers where they were kept until ready for use. Some of the selected animals were measured, cleansed of salt with an isotonic solution of ammonium carbonate, and then used to determine the energy equivalent of body mass. The energy balance of copepods was studied by the radiocarbon method [1. 8]. One-litre containers were used in the experiments. From 3 to 23 specimens were used in each experiment, depending on the size of the animals. The experiments were carried out only with females. A mixture ofsmall animals,unicellular algae and phytogenic detritus was used as food in all the experiments. The consumption of the various components from the mixture was deter- mined by the method of alternate labelling of the items. *acronym unknown, transliterated from the Russian - translator -3- As shown by a preliminary and detailed study of the qualitative composition of the phytoplankton [2], small species of the genus Gymnodinium comprised the bulk of its biomass. Therefore, a mono- culture of Gymnodinium lanskaya and detritus prepared from these algae were given to the animals as aphytogenic, foOd. -In , some s experi- ments, the crustaceans were fed Ditylum brightwellii which had been brought back from the Indian Ocean by L.M. Sergeyeva l . The small zooplankton in the study areas consisted mainly of Temora and Oncaea species which were used as food in the experiments. The unicellular algae Gymnodinium lanskaya and Ditylum bright- wellii were grown on liquid media with 500 pC.1 -1 in diffused light. The detritus was prepared from unicellular algae, G. lanskaya, by a method described earlier [7]. The detrituà decomposed for a period of 7 days at a temperature of 22-25°C. In order to obtain a radioactive animal food, small crustaceans were first kept on t the food components labelled unicellular algae for 2-3 days. The concentration- in the balance experiments corresponded approximately to their abun- dance in the 0-100 m layer. According to our calculations, this amounted to about 0.5 - ca1.1 -1 of phytoplankton, the same amount of detritus and 1.1-2.0 cal.1 -1 of small zooplankters. The experiments were conducted during the day and night in order to determine the diurnal rhythm of the feeding rate. , The temperature was 21-22 °C in the experiments with S. danae, P. abdomi- nalis, E. marina and E. curticauda, and 24 °C in the experiments with R. conutus and C. serrata. 1We wish to thank L.A. Lanskaya and L.M. Sergeyeva for the cultures of unicellular algae. (67) The daily food balance of the crustaceans was determined by the sum of the individual elements, i.e. C = C d +R e +ReR s , where c denotes the ration, cd - the amount of energy accumulated in the body, R 0 .-energy expended on respiration, cd+R c - the amount of as- similated food (A), R s - solid excreta, R d - liquid excretions in the form of a dissolved organic substance, and R d+Rs - the unassi- milated part of the ration (F). Food assimilability was determined by the equation a = Cd+Re In order to determine C d , the animals were removed from the experimental containers, washed with an isotonic solution of am- monium carbonate, ground in a mortar, transferred onto a sheet of foil and dried at 60 °C. The water, which_contained the excreta of the animals, was passed through a membrane filter ("Synpor-3"), and the value R s was calculated. In the filtrate, we determined the amount of CO 2 released by the animals during respiration (R e ) and the content of dissolved organic matter (Re). The radioactive pre- parations were counted on an automatic VAV-100 radiation counting scaler with a SBT-13 end-type counter. All the experimental re- sults obtained in carbon units were converted to energy coefficients The 24-hr values of all the elements of the food balance of the animals were obtained from the corresponding initial components of the balance, which were determined in brief experiments. The animals in these experiments were kept on labelled food for the length of time required for its digestion, and this vai.ied from 30 min to 1.5 hrs, depending on the type of food and the time of day, and they were kept on unlabelled food for 2.5-3 hrs. The method of wet combustion with a 15% correction for incom- plete oxidation of organic matter was used to determine the specific activity of the food items (Cr) and the energy equivalent of the body mass of the animals. [4]. The values of the energy equivalent of body mass and the size characteristics of the study animals are given in table 1. Table 1. Size characteristics and energy equivalents of body mass of the prolific species of crustaceans of the Indian Ocean alleprenviecKurt 2 c p 31. - 4Hcao thtcno Hui; *HBO/. , 3KonumenT D Naccu /e.la ce_ 1 mufflumelloro Hamepe- p„mep al liblX x Iniel I, MM 4npso6e x 7— Oncaea sp.
Recommended publications
  • Kinematic and Dynamic Scaling of Copepod Swimming
    fluids Review Kinematic and Dynamic Scaling of Copepod Swimming Leonid Svetlichny 1,* , Poul S. Larsen 2 and Thomas Kiørboe 3 1 I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Str. B. Khmelnytskogo, 15, 01030 Kyiv, Ukraine 2 DTU Mechanical Engineering, Fluid Mechanics, Technical University of Denmark, Building 403, DK-2800 Kgs. Lyngby, Denmark; [email protected] 3 Centre for Ocean Life, Danish Technical University, DTU Aqua, Building 202, DK-2800 Kgs. Lyngby, Denmark; [email protected] * Correspondence: [email protected] Received: 30 March 2020; Accepted: 6 May 2020; Published: 11 May 2020 Abstract: Calanoid copepods have two swimming gaits, namely cruise swimming that is propelled by the beating of the cephalic feeding appendages and short-lasting jumps that are propelled by the power strokes of the four or five pairs of thoracal swimming legs. The latter may be 100 times faster than the former, and the required forces and power production are consequently much larger. Here, we estimated the magnitude and size scaling of swimming speed, leg beat frequency, forces, power requirements, and energetics of these two propulsion modes. We used data from the literature together with new data to estimate forces by two different approaches in 37 species of calanoid copepods: the direct measurement of forces produced by copepods attached to a tensiometer and the indirect estimation of forces from swimming speed or acceleration in combination with experimentally estimated drag coefficients. Depending on the approach, we found that the propulsive forces, both for cruise swimming and escape jumps, scaled with prosome length (L) to a power between 2 and 3.
    [Show full text]
  • UC San Diego UC San Diego Previously Published Works
    UC San Diego UC San Diego Previously Published Works Title Integrated molecular and morphological biogeography of the calanoid copepod family Eucalanidae Permalink https://escholarship.org/uc/item/3hv940x9 Journal Deep-Sea Research Part II: Topical Studies in Oceanography, 57(24-26) ISSN 0967-0645 Authors Goetze, E Ohman, MD Publication Date 2010-12-01 DOI 10.1016/j.dsr2.2010.09.014 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Author's personal copy Deep-Sea Research II 57 (2010) 2110–2129 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Integrated molecular and morphological biogeography of the calanoid copepod family Eucalanidae Erica Goetze a,n, Mark D. Ohman b a Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA b Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA article info abstract Article history: Species range information forms the empirical data of pelagic biogeography. Early descriptions of Received 18 September 2010 canonical zooplankton distributions in the Pacific Ocean were based, in part, on distributional data from Accepted 18 September 2010 the planktonic copepod family Eucalanidae. A large-scale molecular survey of this group, covering Available online 21 September 2010 Atlantic, Pacific, and Indian Oceans (1295 individuals), increased the total diversity from 24 to 39 Keywords:
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Deep-Sea Research II 57 (2010) 2110–2129 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Integrated molecular and morphological biogeography of the calanoid copepod family Eucalanidae Erica Goetze a,n, Mark D. Ohman b a Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA b Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA article info abstract Article history: Species range information forms the empirical data of pelagic biogeography. Early descriptions of Received 18 September 2010 canonical zooplankton distributions in the Pacific Ocean were based, in part, on distributional data from Accepted 18 September 2010 the planktonic copepod family Eucalanidae. A large-scale molecular survey of this group, covering Available online 21 September 2010 Atlantic, Pacific, and Indian Oceans (1295 individuals), increased the total diversity from 24 to 39 Keywords: evolutionarily significant units (ESUs). New biogeographies are presented here for 18 lineages within 10 Pelagic biogeography described species in the genera Subeucalanus, Pareucalanus, and Rhincalanus. Integration of molecular Cryptic species and morphological data on diversity and distribution resulted in three primary outcomes: (1) the Mitochondrial 16S rRNA morphological species was confirmed to be valid, and the biogeographic distribution remains largely Nuclear internal transcribed spacer 2 unchanged from prior reports, (2) the species was found to contain multiple ESUs, each of which has a Phylogeography more restricted distribution than the parent taxon, and (3) the species was found to contain multiple ESUs, whose biogeographic distributions remain unclear.
    [Show full text]
  • Effects of the Kuroshio Current on Copepod Assemblages in Taiwan
    Zoological Studies 50(4): 475-490 (2011) Effects of the Kuroshio Current on Copepod Assemblages in Taiwan Shih Hui Hsiao1,2,5, Tien-Hsi Fang2, Chang-tai Shih3,4, and Jiang-Shiou Hwang5,* 1Department of Science Education, National Taipei University of Education, Taipei 106, Taiwan 2Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan 3Institute of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung 202, Taiwan 4Canadian Museum of Nature, Ottawa K1P 6P4, Canada 5Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan (Accepted February 25, 2011) Shih Hui Hsiao, Tien-Hsi Fang, Chang-tai Shih, and Jiang-Shiou Hwang (2011) Effects of the Kuroshio Current on copepod assemblages in Taiwan. Zoological Studies 50(4): 475-490. The Kuroshio Current (KC) is a northerly flowing warm-water current, which has major effects on the hydrography and faunal assemblages along the east coast of Taiwan. We studied the abundance and diversity of copepods at 5 stations for 3 consecutive years (2000-2002). Copepod samples were collected with a plankton net with a 1-m mouth opening and a mesh size of 333 μm deployed in oblique tows from 200 to 0 m in depth. In total, 174 copepod species including 6 orders, 31 families, and 68 genera (111 calanoids, 11 cyclopoids, 4 harpacticoids, 2 mormonilloids, 44 poecilostomatoids, and 2 siphonostomatoids) were identified at the species level. Spatial variations in copepod abundances among these 5 stations were not significant. The composition of the indicator species and cluster analysis varied seasonally, indicating seasonal succession. We suggest that copepod species of Acartia negligens, Clausocalanus mastigophorus, Cosmocalanus darwini, and Lucicutia flavicornis are indicator species of the KC in winter when the northeast monsoon (NEM) prevails; in contrast, Acrocalanus spp.
    [Show full text]
  • Australian Marine Zooplankton-Calanoid Copepods Part 2
    Phylum Arthropoda Order Calanoida Candacia truncata Family Candaciidae Dana, 1849 Size ♂ Male: 1.87 – 2.11 mm scale: mm A1 P5 Male • Geniculate right A1 has a series of stout proximal segments followed by a thin section, then a broad club 1.0 section, beyond club section, segment 16 has a finger-like protrusion which is difficult to observe clearly; fused segments 17 and 18 are characteristically curved • Last prosome somite symmetrical with sharp points • P5 left segment 4 with 3 setae; right P5 not chelate and segment 3 urosome terminates in long plumose setae • Urosome and caudal rami symmetrical with no projections Ecology • Specialised predator, grasping prey with large and robust maxillae • Larvaceans are major prey item Source Boxshall & Halsey (2004) Bradford-Grieve (1999) Chen and Zhang (1965) Conway (2003) Tanaka (1935) ; Chen & Zhang (1965) Greenwood (1978) Razouls et al. (2010) preserved specimen Tanaka (1935) (Full reference available at http://www.imas.utas.edu.au/zooplankton/references ) Compiled: C. H. Davies & A. S. Slotwinski 2012 Images: AusCPR Verified: K. M. Swadling 2013 Phylum Arthropoda Centropages australiensis Order Calanoida Fairbridge, 1944 Family Centropagidae Synonyms None ♀ exopod 2 spine-like scale: mm process Size Female: 1.43 mm 1.0 Genus notes • Small to medium size • Cephalosome and pedigerous somite 1 are fused (fusion lines visible on sides) • Single naupliar eye P5 • Lateral corners of posterior prosome often end in asymmetrical points • Characteristic undulating edge on last prosomal somite between
    [Show full text]
  • The Distribution of Some Copepods (Crustácea) in the Southern Ocean and Adjacent Regions from 40° to 81° W Long *
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) Bolm. Zool., Univ. S. Paulo 1:161-198, 1976 The distribution of some Copepods (Crustácea) in the Southern Ocean and adjacent regions from 40° to 81° W long * NAOYO YAMANARA Departamento de Zoologia Inst. de Biociências — U.S.P. São Paulo — Brasil Present address: Instituto de Pesca — Secr. Agricultura — Santos — Brasil RESUMO Distribuição de alguns copépodos (Crustácea) no Oceano Austral e Adjacên­ cias entre 40° e 81° W. A distribuição zoogeográfica das espécies de copépodos Rhincalanus gigas, R. nasutus, R. cornutus, Pseudeuchirella hirsuta, Valdiviella insigáis, V. brevicornis, Pseudeuchaeta brevicauda, Undeuchaeta major, U. intermedia, Euchaeta longicornis, E. marina, E. tenuis, Paraeuchaeta antárctica, P. aequatorialis, P. barbata, P biloba, P. birostrata, P. bisinuata, P californica, P. confusa, P dubia, P farrani, P. gran- diremis, P hanseni, P. malayensis, P. pseudotonsa, P polita, P. rasa, P. sarsi, P. scotti, P- similis, P. tonsa, P weberi foi estudada de 129 am ostras coletadas do U.S.N.S. “Eltanin” em águas entre as latitudes 2°34’ N e 67°28’S e longitudes 42°44’ e 81°61’W. Onde possível a distribuição das espécies foi correlacionada com a profundidade, os meses do ano e as massas dágua ocorrentes na região. Um ciclo migratório foi proposto, e as espécies mais freqüentes, assim como as novas ocorrências, foram registradas. ABSTRACT The zoogeographical distribution of the copepod species Rhincalanus gigas, R. nasutus, P. cornutus, Pseudeuchirella hirsuta, Valdiviella insignis, V brevicornis, Pseudeuchaeta brevicauda, Undeuchaeta major, U.
    [Show full text]
  • Marine Ecology Progress Series 439:127
    Vol. 439: 127–138, 2011 MARINE ECOLOGY PROGRESS SERIES Published October 20 doi: 10.3354/meps09324 Mar Ecol Prog Ser Lipid composition of tropical and subtropical copepod species of the genus Rhincalanus (Copepoda: Eucalanidae): a novel fatty acid and alcohol signature Christine J. Cass1,2,*, Stuart G. Wakeham3,4, Kendra L. Daly1 1College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA 2Department of Oceanography, Humboldt State University, Arcata, California 95521, USA 3Skidaway Institute of Oceanography, Savannah, Georgia 31411, USA 4School of Oceanography, University of Washington, Seattle, Washington 98195, USA ABSTRACT: Rhincalanus nasutus, R. rostrifrons, and R. cornutus are primarily found in subtropi- cal and tropical waters and accumulate large lipid stores, an uncommon feature in low-latitude copepods. While R. nasutus fatty acid and alcohol profiles have been examined previously, little is known about lipids in R. rostrifrons or R. cornutus. Lipid profiles for wax ester, triacylglycerol, phospholipid, free fatty acid, sterol, and free fatty alcohol fractions were determined for these 3 species collected from the eastern tropical north Pacific, Gulf of California, and Gulf of Mexico. Storage lipids, primarily wax esters, were the dominant component (>88%) of total lipid in all 3 Rhincalanus species. R. nasutus, however, had distinctly different storage lipid fatty acid and alcohol profiles, with primarily 16:1(n-7)/18:1(n-9) fatty acids and 14:0/16:0 fatty alcohols, while R. cornutus and R. rostrifrons accumulated 14:0/16:0 fatty acids and 16:1/18:1 fatty alcohols. Species differences also were observed in sterol profiles, with R.
    [Show full text]
  • The Scottish Coastal Observatory 1997-2013
    The Scottish Coastal Observatory 1997-2013 Part 3 - Appendices Scottish Marine and Freshwater Science Vol 7 No 26 E Bresnan, K Cook, J Hindson, S Hughes, J-P Lacaze, P Walsham, L Webster and W R Turrell The Scottish Coastal Observatory 1997-2013 Part 3 - Appendices Scottish Marine and Freshwater Science Vol 7 No 26 E Bresnan, K Cook, J Hindson, S Hughes, J-P Lacaze, P Walsham, L Webster and W R Turrell Published by Marine Scotland Science ISSN: 2043-772 DOI: 10.7489/1881-1 Marine Scotland is the directorate of the Scottish Government responsible for the integrated management of Scotland’s seas. Marine Scotland Science (formerly Fisheries Research Services) provides expert scientific and technical advice on marine and fisheries issues. Scottish Marine and Freshwater Science is a series of reports that publishes results of research and monitoring carried out by Marine Scotland Science. It also publishes the results of marine and freshwater scientific work that has been carried out for Marine Scotland under external commission. These reports are not subject to formal external peer-review. This report presents the results of marine and freshwater scientific work carried out by Marine Scotland Science. © Crown copyright 2016 You may re-use this information (excluding logos and images) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit: http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/ or email: [email protected]. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.
    [Show full text]
  • Title Studies on the Phylogenetic Implications of Ontogenetic
    Studies on the Phylogenetic Implications of Ontogenetic Title Features in the Poecilostome Nauplii (Copepoda : Cyclopoida) Author(s) Izawa, Kunihiko PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1987), 32(4-6): 151-217 Issue Date 1987-12-26 URL http://hdl.handle.net/2433/176145 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Studies on the Phylogenetic Implications of Ontogenetic Features in the Poecilostome Nauplii (Copepoda: Cyclopoida) By Kunihiko Izawa Faculty ofBioresources, Mie University, Tsu, Mie 514, Japan With Text-figures 1-17 and Tables 1-3 Introduction The Copepoda includes a number of species that are parasitic or semi-parasitic onjin various aquatic animals (see Wilson, 1932). They live in association with par­ ticular hosts and exhibit various reductive tendencies (Gotto, 1979; Kabata, 1979). The reductive tendencies often appear as simplification and/or reduction of adult appendages, which have been considered as important key characters in their tax­ onomy and phylogeny (notably Wilson, op. cit.; Kabata, op. cit.). Larval morpholo­ gy has not been taken into taxonomic and phylogenetic consideration. This is par­ ticularly unfortunate when dealing with the poecilostome Cyclopoida, which include many species with transformed adults. Our knowledge on the ontogeny of the Copepoda have been accumulated through the efforts of many workers (see refer­ ences), but still it covers only a small part of the Copepoda. History of study on the nauplii of parasitic copepods goes back to the 1830's, as seen in the description of a nauplius of Lernaea (see Nordmann, 1832). I have been studying the ontogeny of the parasitic and semi-parasitic Copepoda since 1969 and have reported larval stages of various species (Izawa, 1969; 1973; 1975; 1986a, b).
    [Show full text]
  • Guide to the Coastal and Surface Zooplankton of the South-Western Indian Ocean
    GUIDE TO THE COASTAL AND SURFACE ZOOPLANKTON OF THE SOUTH-WESTERN INDIAN OCEAN David VP Conway Rowena G White Joanna Hugues-Dit-Ciles Christopher P Gallienne David B Robins DEFRA Darwin Initiative Zooplankton Programme Version 1 June 2003 Marine Biological Association of the United Kingdom Occasional Publication No 15 GUIDE TO THE COASTAL AND SURFACE ZOOPLANKTON OF THE SOUTH-WESTERN INDIAN OCEAN David VP Conway Marine Biological Association Plymouth Rowena G White University of Wales Bangor Joanna Hugues-Dit-Ciles, Christopher P Gallienne and David B Robins Plymouth Marine Laboratory UK-DEFRA Darwin Initiative Project 162/09/004 Zooplankton of the Mascarene Plateau Version 1 June 2003 Marine Biological Association of the United Kingdom Occasional Publication No 15 General disclaimer The authors, the Marine Biological Association and the Plymouth Marine Laboratory do not guarantee that this publication is without flaw of any kind and disclaims all liability for any error, loss, or other consequence which may arise from you relying on any information in this publication. Citation Conway, D.V.P., White, R.G., Hugues-Dit-Ciles, J., Gallienne, C.P., Robins, D.B. (2003). Guide to the coastal and surface zooplankton of the south-western Indian Ocean, Occasional Publication of the Marine Biological Association of the United Kingdom, No 15, Plymouth, UK. Electronic copies This guide is available for download, without charge, from the Plymouth Marine Laboratory Website at http://www.pml.ac.uk/sharing/zooplankton.htm. © 2003 by the Marine Biological Association of the United Kingdom and the Plymouth Marine Laboratory, Plymouth, UK. No part of this publication may be reproduced in any form without permission of the authors.
    [Show full text]
  • Zooplankton Abundance and Diversity in the Tropical and Subtropical Ocean
    diversity Article Zooplankton Abundance and Diversity in the Tropical and Subtropical Ocean Ma Luz Fernández de Puelles 1,*, Magdalena Gazá 1, Miguel Cabanellas-Reboredo 1 , Ma del Mar Santandreu 1, Xabier Irigoien 2,3, Juan Ignacio González-Gordillo 4 , Carlos M. Duarte 5 and Santiago Hernández-León 6 1 Instituto Español de Oceanografía, Centro de Baleares, Muelle de Poniente s/n., 07015 Palma de Mallorca, Spain; [email protected] (M.G.); [email protected] (M.C.-R.); [email protected] (M.d.M.S.) 2 AZTI-Marine Research, Herrera Kaia, Portualdea z/g, 20110 Pasaia (Gipuzkoa), Spain; [email protected] 3 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain 4 Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real Cádiz, Spain; [email protected] 5 Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; [email protected] 6 Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Unidad Asociada ULPGC-CSIC, 35017 Las Palmas de Gran Canaria, Spain; [email protected] * Correspondence: [email protected] Received: 27 September 2019; Accepted: 21 October 2019; Published: 23 October 2019 Abstract: The abundance and composition of zooplankton down to 3000 m depth was studied in the subtropical and tropical latitudes across the Atlantic, Pacific and Indian Oceans (35 ◦N–40 ◦S). Samples were collected from December 2010 to June 2011 during the Malaspina Circumnavigation Expedition. Usually, low abundances were observed with the highest values found in the North Pacific Ocean, Benguela, and off Mauritania, and the lowest in the South Pacific Ocean.
    [Show full text]
  • Grazing During Early Spring in the Gulf of Aqaba and the Northern Red Sea
    MARINE ECOLOGY PROGRESS SERIES Vol. 239: 251–261, 2002 Published August 23 Mar Ecol Prog Ser Grazing during early spring in the Gulf of Aqaba and the northern Red Sea Ulrich Sommer1,*, Ulrike G. Berninger1, 2, Ruth Böttger-Schnack3, Astrid Cornils2, Wilhelm Hagen3, Thomas Hansen1, Tariq Al-Najjar4, Anton F. Post5, Sigrid B. Schnack-Schiel2, Herwig Stibor6, Dorothea Stübing3, Stephen Wickham5, 7 1Institut für Meereskunde an der Universität Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 2Alfred-Wegener-Institut für Polar- und Meeresforschung, 27515 Bremerhaven, Germany 3Marine Zoologie, Universität Bremen (NW2), Postfach 33040, 28334 Bremen, Germany 4Marine Science Station, PO Box 195, Aqaba, Jordan 5Interuniversity Institute, PO Box 469, 88103 Eilat, Israel 6Zoologisches Institut, Ludwig-Maximilians-Universität, Karlsstraße 23-25, 80333 München, Germany 7Zoologisches Institut, Universität Köln, Weyertal 119, 50923 Köln, Germany ABSTRACT: Zooplankton grazing on bacterio- and phytoplankton was studied in the Gulf of Aqaba and the Northern Red Sea during Meteor Cruise Me 44-2 in February-March 1999. Protozoan graz- ing on bacterioplankton and autotrophic ultraplankton was studied by the Landry dilution method. Microzooplankton grazing on phytoplankton >6 µm was studied by incubation experiments in the presence and absence of microzooplankton. Mesozooplankton grazing was studied by measuring per capita clearance rates of individual zooplankton with radioactively labelled food organisms and esti- mating in situ rates from abundance values. Protozoan grazing rates on heterotrophic bacteria and on algae <6 µm were high (bacteria: 0.7 to 1.1 d–1, ultraphytoplankton: 0.7 to 1.3 d–1), while grazing rates on Synechococcus spp. were surprisingly low and undetectable in some experiments.
    [Show full text]