Paper 1.Pdf (199.2Kb)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE
National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE Contents White / Cream ................................ 2 Grasses ...................................... 130 Yellow ..........................................33 Rushes ....................................... 138 Red .............................................63 Sedges ....................................... 140 Pink ............................................66 Shrubs / Trees .............................. 148 Blue / Purple .................................83 Wood-rushes ................................ 154 Green / Brown ............................. 106 Indexes Aquatics ..................................... 118 Common name ............................. 155 Clubmosses ................................. 124 Scientific name ............................. 160 Ferns / Horsetails .......................... 125 Appendix .................................... 165 Key Traffic light system WF symbol R A G Species with the symbol G are For those recording at the generally easier to identify; Wildflower Level only. species with the symbol A may be harder to identify and additional information is provided, particularly on illustrations, to support you. Those with the symbol R may be confused with other species. In this instance distinguishing features are provided. Introduction This guide has been produced to help you identify the plants we would like you to record for the National Plant Monitoring Scheme. There is an index at -
The Caledonian Mountains. Northern Europe, and Their Changing
Pirineos, 151-152: 111 a 130, JACA; 1998 THE CALEDONIAN MOUNTAINS, NORTHERN EUROPE, AND THEIR CHANGING ECOSYSTEMS M. SONESSON* & U. MOLAU** *Abisko Scientific Research Station, The Royal Swedish Academy of Sciences, S-981 07 Abisko, Sweden **Botanical Institute, University of Gothenburg, Carl Skottsbergs Gata 22, S-413 19 Goteborg, Siveden SUMMARY.- With the exception of solar conditions, the climate of the Caledonian Mountains, Northern Europe, is influenced more by the nearness to the Atlantic Ocean and the Gulf Stream than by altitude and latitude. The length of the photoperiod during the growing season increases with latitude, although the total solar influx decreases. Heaths composed of species with a boreal distribution are particularly characteristic at low altitudes and latitudes, whereas species with an arctic and arctic-alpine distribution dominate at high altitudes and latitudes. Periodic events in the population dynamics of certain plant and animal species distinguish the ecosystems at high latitudes from those at low latitude. The effects of global change are likely to become most pronounced in the north since the rate at which the ultraviolet-B (UV-B) absorbing ozone layer is being reduced and the increase in concentration of «greenhouse gases» in the atmosphere are both higher in the arctic than in regions further south. Changes in the ecosystems due to increased direct human impacts are also likely to occur in some areas. RÉSUMÉ.- À l'exception des conditions solaires, le climat des montagnes dites «Caledonian», au Nord de l'Europe, est beaucoup plus influencé par la proximité de l'Océan Atlantique et le Goulf Stream que par l'altitude ou la latitude. -
A Vascular Plant Red Data List for Wales
A Vascular Plant Red Data List for Wales A Vascular Plant Red Data List for Wales Rhestr o Blanhigion Fasgwlaidd Data Coch ar gyfer Cymru Rhestr o Blanhigion Fasgwlaidd Data Coch ar gyfer Cymru Dr Trevor Dines Plantlife Wales With the help of the Vice-county Recorders Plantlife International - The Wild Plant Conservation Charity and Committee of the Botanical Society of the 14 Rollestone Street, Salisbury Wiltshire SP1 1DX UK. British Isles in Wales, and the Countryside Telephone +44 (0)1722 342730 Fax +44 (01722 329 035 Council for Wales [email protected] www.plantlife.org.uk Plantlife International – The Wild Plant Conservation Charity is a charitable company limited by guarantee. Gyda chymorth Cofnodwyr yr is-siroedd a hefyd Registered Charity Number: 1059559 Registered Company Number: 3166339. Registered in England and Wales. Pwyllgor Cymreig y ‘Botanical Society of the Charity registered in Scotland no. SC038951. British Isles’ a Chyngor Cefn Gwlad Cymru © Plantlife International, June 2008 1 1 ISBN 1-904749-92-5 DESIGN BY RJPDESIGN.CO.UK RHESTROBLANHIGIONFASGWLAIDDDATACOCHARGYFERCYMRU AVASCULARPLANTREDDATALISTFORWALES SUMMARY Featured Species In this report, the threats facing the entire vascular plant flora of Wales have Two species have been selected to illustrate the value of producing a Vascular Plant been assessed using international criteria for the first time. Using data supplied Red Data List for Wales. by the Botanical Society of the British Isles and others, the rate at which species are declining and the size of remaining populations have been quantified in detail to provide an accurate and up-to-date picture of the state of vascular Bog Orchid (Hammarbya paludosa) plants in Wales.The production of a similar list (using identical criteria) for Least Concern in Great Britain but Endangered in Wales Great Britain in 2005 allows comparisons to be made between the GB and Welsh floras. -
Last-Century Vegetational Changes in Northern Europe Characterisation, Causes, and Consequences
Last-century vegetational changes in northern Europe Characterisation, causes, and consequences Last-century vegetational changes in northern Europe Characterisation, causes, and consequences Jutta Kapfer Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen August 2011 “You cannot step twice into the same river” - Heraklit - Preface This thesis is the result of my three years Ph.D. study at the Department of Biology, University of Bergen. The Ph.D. project was financed by the Nor- wegian Research Council as part of the programme Norsk Miljøforskning mot 2015 (Miljø 2015), and additional support was given by the Olaf Grolle Olsen legat. Fieldwork on Svalbard in 2009 and on Jan Mayen in 2010 was supported by The Norwegian Polar Institute. The last three years of working for my dissertation were a unique, in- structive, and exciting experience for me, which I would have never wanted to have missed. Yet in the face of all the ups and downs connected with this work, the thesis would not have been completed without the personal and practical help of several people. Thus, it is to them I wish to express my deep gratitude. First of all, I want to thank my principal supervisor, John-Arvid Grytnes, for his constant support and readiness to help and for fruitful discussions, ideas, and countless valuable comments and feedback. Thanks for sharing permanent good humour, optimism, and enthusiasm both in the field and in the office from start to finish. I am grateful to my co-supervisor, John Birks, for valuable advice and encouragement. I appreciate his reliable support and motivating feedback I have been given, especially in key situations. -
Chemistry of Cirsium and Carduus: a Role in Ecological Risk Assessment for Biological Control of Weeds?
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 12-2003 Chemistry of Cirsium and Carduus: A role in ecological risk assessment for biological control of weeds? Ingrid E. Jordon-Thaden University of Nebraska - Lincoln Svata M. Louda University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Life Sciences Commons Jordon-Thaden, Ingrid E. and Louda, Svata M., "Chemistry of Cirsium and Carduus: A role in ecological risk assessment for biological control of weeds?" (2003). Faculty Publications in the Biological Sciences. 85. https://digitalcommons.unl.edu/bioscifacpub/85 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Biochemical Systematics and Ecology 31:12 (December 2003), pp. 1353–1396; doi: 10.1016/S0305-1978(03)00130-3 Copyright © 2003 Elsevier Ltd. Used by permission. http://www.elsevier.com/locate/biochemsyseco Submitted September 26, 2002; accepted March 26, 2003; published online July 18, 2003. Chemistry of Cirsium and Carduus: A role in ecological risk assessment for biological control of weeds? Ingrid E. Jordon-Thaden and Svata M. Louda School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588-0118, USA Corresponding author — S. M. Louda, tel 402 472-2763, fax 402 472-2083, email [email protected] Abstract Prediction of host plant range and ecological impact of exotic phytophagous insects, such as insects for classical biological control of weeds, represents a major challenge. -
How Can Seed Feeders Regulate Dispersion of Thistles, Cirsium Arvense and C
Journal of Plant Diseases and Protection, Special Issue XXI, 000–000, 2008, ISSN 1861-4051. © Eugen Ulmer KG, Stuttgart How can seed feeders regulate dispersion of thistles, Cirsium arvense and C. heterophyllum? Wie können samenverzehrende Arten die Ausbreitung der Disteln Cirsium arvense und C. heterophyllum regulieren? J. Skuhrovec*, S. Koprdová & J. Mikulka Crop Research Institute, Drnovska 507, 16106 Praha 6 - Ruzyne, Czech Republic * Corresponding author, [email protected] Summary Besiedlung und Dichte ermittelt und mit Literaturangaben verglichen. Thistles (Asteraceae) are permanent or biennial (up to per- ennial) weeds, which are highly competitive and invasive, Stichwörter: Curculionidae, Parasitoide, and well spread in the whole area of the Czech Repub- samenverzehrende Insekten, Stauden, Tephritidae, lic. Despite the thistles are relatively adequately armored Tortricidae by spines, they support a rich and varied fauna of insect herbivores with their associated predators and parasitoids. Herbivores can significantly reduce reproductive potential 1 Introduction of the host plant. Two studied thistle species (Cirsium arvense and C. het- Cirsium is a large genus of plants from the family Asterace- erophyllum) can propagate by two ways – vegetative (by the ae. Recently are known more than 250 species of this genus roots) and generative (by the seeds). Our study is focused occurring primarily in the subtropical and boreal regions of on the occurrence of seed-feeding insects (pre-dispersal Eurasia and North America. The occurrence in the southern seed predators) in flower heads of both thistle species. hemisphere is probably only secondary (BUREŠ 2004). The Despite some species spread particularly vegetative, the role majority of thistle species is categorized as important and of pre-dispersal seed predators is highly important because serious weeds (BUREŠ 2004). -
Soininen Et Al. 2009.Pdf
Frontiers in Zoology BioMed Central Research Open Access Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures Eeva M Soininen*1, Alice Valentini2, Eric Coissac2, Christian Miquel2, Ludovic Gielly2, Christian Brochmann3, Anne K Brysting4, Jørn H Sønstebø3, Rolf A Ims1, Nigel G Yoccoz1 and Pierre Taberlet2 Address: 1Department of Biology, University of Tromsø, N-9037 Tromsø, Norway, 2Laboratoire d'Ecologie Alpine, CNRS-UMR 5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France, 3National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway and 4Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway Email: Eeva M Soininen* - [email protected]; Alice Valentini - [email protected]; Eric Coissac - [email protected]; Christian Miquel - [email protected]; Ludovic Gielly - [email protected]; Christian Brochmann - [email protected]; Anne K Brysting - [email protected]; Jørn H Sønstebø - [email protected]; Rolf A Ims - [email protected]; Nigel G Yoccoz - [email protected]; Pierre Taberlet - pierre.taberlet@ujf- grenoble.fr * Corresponding author Published: 20 August 2009 Received: 12 March 2009 Accepted: 20 August 2009 Frontiers in Zoology 2009, 6:16 doi:10.1186/1742-9994-6-16 This article is available from: http://www.frontiersinzoology.com/content/6/1/16 © 2009 Soininen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
RAD Sequencing Rejects a Long-Distance Disjunction in Stellaria (Caryophyllaceae) and Yields Support for a New Southern Rocky Mountains Endemic Mathew T
TAXON 2019 Sharples and Tripp • RADseq rejects disjunction in Stellaria SYSTEMATICS AND PHYLOGENY RAD sequencing rejects a long-distance disjunction in Stellaria (Caryophyllaceae) and yields support for a new southern Rocky Mountains endemic Mathew T. Sharples1 & Erin A. Tripp1,2 1 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, U.S.A. 2 Museum of Natural History, COLO Herbarium, University of Colorado, Boulder, Colorado 80309, U.S.A. Address for correspondence: Mathew T. Sharples, [email protected] DOI https://doi.org/10.1002/tax.12059 Abstract Whereas the eastern North American–eastern Asian floristic connection represents one of the most widely studied biogeo- graphical relationships in flowering plant evolution, connections between western North America and Asia have been comparatively rarely investigated, especially through genetic approaches. Stellaria irrigua is one of several plants that has been treated as an excep- tionally dramatic example of a disjunction between floristically similar, high alpine biotas of the southern Rocky Mountains and south-central Siberia. We here employ numerous new field collections and ddRADseq data to test the hypothesis that S. irrigua—a spe- cies that has been known for over 180 years—represents a long-distance disjunction between the southern Rocky Mountains and central Asia. Extensive fieldwork, review and perusal of herbarium materials, and phylogenomic analyses indicate that S. irrigua is broadly distributed across an amphi-Beringian arc extending from southern and central Asia, east through Beringia, and south throughout moun- tainous regions of western North America. Sampled Asian populations formed two clades, and North American individuals all formed a clade embedded within this broader Asian lineage. -
Caryophyllaceae.Pdf
Flora of China 6: 1–113. 2001. CARYOPHYLLACEAE 石竹科 shi zhu ke Lu Dequan (鲁德全)1, Wu Zhengyi (吴征镒 Wu Cheng-yih)2, Zhou Lihua (周丽华)2, Chen Shilong (陈世龙)3; Michael G. Gilbert4, Magnus Lidén5, John McNeill6, John K. Morton7, Bengt Oxelman8, Richard K. Rabeler9, Mats Thulin8, Nicholas J. Turland10, Warren L. Wagner11 Herbs annual or perennial, rarely subshrubs or shrubs. Stems and branches usually swollen at nodes. Leaves opposite, decussate, rarely alternate or verticillate, simple, entire, usually connate at base; stipules scarious, bristly, or often absent. Inflorescence of cymes or cymose panicles, rarely flowers solitary or few in racemes, capitula, pseudoverticillasters, or umbels. Flowers actinomorphic, bisexual, rarely unisexual, occasionally cleistogamous. Sepals (4 or)5, free, imbricate, or connate into a tube, leaflike or scarious, persistent, sometimes bracteate below calyx. Petals (4 or)5, rarely absent, free, often comprising claw and limb; limb entire or split, usually with coronal scales at juncture of claw and limb. Stamens (2–)5–10, in 1 or 2 series. Pistil 1; carpels 2–5, united into a compound ovary. Ovary superior, 1-loculed or basally imperfectly 2–5-loculed. Gynophore present or absent. Placentation free, central, rarely basal; ovules (1 or) few or numerous, campylotropous. Styles (1 or)2–5, sometimes united at base. Fruit usually a capsule, with pericarp crustaceous, scarious, or papery, dehiscing by teeth or valves 1 or 2 × as many as styles, rarely berrylike with irregular dehiscence or an achene. Seeds 1 to numerous, reniform, ovoid, or rarely dorsiventrally compressed, abaxially grooved, blunt, or sharply pointed, rarely fimbriate-pectinate; testa granular, striate or tuberculate, rarely smooth or spongy; embryo strongly curved and surrounding perisperm or straight but eccentric; perisperm mealy. -
169 Udc 582.998.1-19(292.452) Cirsium Heterophyllum (L
CIRSIUM HETEROPHYLLUM (L.) HILL (ASTERACEAE) IN THE CARPATHIAN MOUNTAINS OF UKRAINE 169 Biol. Stud. 2015: 9(3–4); 169–174 • DOI: https://doi.org/10.30970/sbi.0903.219 www.http://publications.lnu.edu.ua/journals/index.php/biology UDC 582.998.1-19(292.452) CIRSIUM HETEROPHYLLUM (L.) HILL (ASTERACEAE) IN THE CARPATHIAN MOUNTAINS OF UKRAINE I. I. Chorney, A. I. Tokaryuk, V. V. Budzhak Yuriy Fedkovych Chernivtsi National University, 11, Fedkovych St., Chernivtsi 58022, Ukraine e-mail: [email protected] Coenotic peculiarities of the Cirsium heterophyllum (L.) Hill. population found in the Carpathian Mountains of Ukraine have been presented. The community of C. hetero- phyllum is located within the National Nature Park “Verkhovynskyi” on Mt. Gnetesa and occupies an area of about 40 sq. meters. It is distributed on the slope of south-eastern exposition with inclination of 15° and located on the altitude of 1,600 m above sea level. Total cover of community is 100 %, C. heterophyllum is dominant and its cover is 90– 95 %. There are 19 species growing in the studied community. The community with participation of the C. heterophyllum occupies a small area, borders with coenosis of the Hyperico alpigeni-Calamagrostietum villosae Pawł. et Wal. 1949 association of the Calamagrostion villosae Pawł. 1928 alliance, Calamagrostietalia villosae Pawł. 1928 order, Mulgedio-Aconitetea Hadač et Klika in Klika and Hadač 1944 class and is distrib- uted along the upper border of the forest. At present, this is the only known habitat of this species in the Carpathian Mountains of Ukraine. The revealed population of C. -
Flavonoids of the Caryophyllaceae
Phytochem Rev https://doi.org/10.1007/s11101-021-09755-3 (0123456789().,-volV)( 0123456789().,-volV) Flavonoids of the Caryophyllaceae Katarzyna Jakimiuk . Michael Wink . Michał Tomczyk Received: 1 December 2020 / Accepted: 9 April 2021 Ó The Author(s) 2021 Abstract The plant family Caryophyllaceae, com- flavonols, isoflavones, and their O-orC-glycosides, monly known as the pink family, is divided into 3 exhibit multiple interesting biological and pharmaco- subfamilies and contains over 80 genera with more logical activities, such as antioxidant, anti-inflamma- than 2600 species that are widely distributed in tory, anti-oedemic, antimicrobial, and temperate climate zones. Plants belonging to this immunomodulatory effects. Thus, this review anal- family produce a variety of secondary metabolites ysed the flavonoid composition of 26 different genera important in an ecological context; however, some of and more than 120 species of Caryophyllaceae for the these metabolites also show health-promoting activi- first time. ties. The most important classes of phytochemicals include saponins, phytoecdysteroids, other sterols, Keywords Caryophyllaceae Á Phytochemistry Á flavonoids, lignans, other polyphenols, essential oils, Flavonoids Á Secondary metabolites and N-containing compounds such as vitamins, alka- loids or cyclopeptides. Flavonoids are polyphenolic compounds that remain one of the most extensively studied constituents of the Caryophyllaceae family. Introduction Numerous structurally diverse aglycones, including flavones, flavonols, flavonones (dihydroflavones), The Caryophyllaceae family, commonly known as the pink family, contains over 80 genera with more than 2600 species. The pink family is divided into 3 K. Jakimiuk Á M. Tomczyk (&) subfamilies, Paronychioideae, Alsinoideae, and Department of Pharmacognosy, Faculty of Pharmacy with Caryophylloideae, according to the presence or the Division of Laboratory Medicine, Medical University absence of stipules as well as the type of calyx and of Białystok, ul. -
The Vascular Plant Red Data List for Great Britain
Species Status No. 7 The Vascular Plant Red Data List for Great Britain Christine M. Cheffings and Lynne Farrell (Eds) T.D. Dines, R.A. Jones, S.J. Leach, D.R. McKean, D.A. Pearman, C.D. Preston, F.J. Rumsey, I.Taylor Further information on the JNCC Species Status project can be obtained from the Joint Nature Conservation Committee website at http://www.jncc.gov.uk/ Copyright JNCC 2005 ISSN 1473-0154 (Online) Membership of the Working Group Botanists from different organisations throughout Britain and N. Ireland were contacted in January 2003 and asked whether they would like to participate in the Working Group to produce a new Red List. The core Working Group, from the first meeting held in February 2003, consisted of botanists in Britain who had a good working knowledge of the British and Irish flora and could commit their time and effort towards the two-year project. Other botanists who had expressed an interest but who had limited time available were consulted on an appropriate basis. Chris Cheffings (Secretariat to group, Joint Nature Conservation Committee) Trevor Dines (Plantlife International) Lynne Farrell (Chair of group, Scottish Natural Heritage) Andy Jones (Countryside Council for Wales) Simon Leach (English Nature) Douglas McKean (Royal Botanic Garden Edinburgh) David Pearman (Botanical Society of the British Isles) Chris Preston (Biological Records Centre within the Centre for Ecology and Hydrology) Fred Rumsey (Natural History Museum) Ian Taylor (English Nature) This publication should be cited as: Cheffings, C.M. & Farrell, L. (Eds), Dines, T.D., Jones, R.A., Leach, S.J., McKean, D.R., Pearman, D.A., Preston, C.D., Rumsey, F.J., Taylor, I.