What Are the Keys to the Adaptive Success of European Wild Rabbit (Oryctolagus Cuniculus) in the Iberian Peninsula?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Rabbits in Chile: the History of a Biological Invasion
Historia. vol.4 no.se Santiago 2008 EUROPEAN RABBITS IN CHILE: THE HISTORY OF A BIOLOGICAL INVASION * ** *** PABLO C AMUS SERGIO C ASTRO FABIÁN J AKSIC * Centro de Estudios Avanzados en Ecología y Biodiversidad (CASEB) . email: [email protected] ** Departamento de Biología, Facultad de Química y Biología; Universidad de Santiago de Chile. Centro de Estudios Avanzados en Ecología y Biodiversidad (CASEB). email: [email protected] *** Departamento de Ecología, Pontificia Universidad Católica de Chile. Centro de Estudios Avanzados en Ecología y Biodiversidad (CASEB). email: [email protected] ABSTRACT This work analyses the relationship between human beings and their environment taking into consideration the adjustment and eventual invasion of rabbits in Chile. It argues that in the long run, human actions have unsuspected effects upon the environment. In fact rabbits were seen initially as an opportunity for economic development because of the exploitation of their meat and skin. Later, rabbits became a plague in different areas of Central Chile, Tierra del Fuego and Juan Fernández islands, which was difficult to control. Over the years rabbits became unwelcome guests in Chile. Key words: Environmental History, biological invasions, European rabbit, ecology and environment. RESUMEN Este trabajo analiza las relaciones entre los seres humanos y su ambiente, a partir de la historia de la aclimatación y posterior invasión de conejos en Chile, constatando que, en el largo plazo, las acciones humanas tienen efectos e impactos insospechados sobre el medio natural. En efecto, si bien inicialmente los conejos fueron vistos como una oportunidad de desarrollo económico a partir del aprovechamiento de su piel y su carne, pronto esta especie se convirtió en una plaga difícil de controlar en diversas regiones del país, como Chile central, Tierra del Fuego e islas Juan Fernández. -
Behavior and Ecology of the Riparian Brush Rabbit at the San Joaquin
BEHAVIOR AND ECOLOGY OF THE RIPARIAN BRUSH RABBIT AT THE SAN JOAQUIN RIVER NATIONAL WILDLIFE REFUGE AS DETERMINED BY CAMERA TRAPS A Thesis Presented to the Faculty of California State University, Stanislaus In Partial Fulfillment of the Requirements for the Degree of Master of Ecology and Sustainability By Celia M. Tarcha May 2020 CERTIFICATION OF APPROVAL BEHAVIOR AND ECOLOGY OF THE RIPARIAN BRUSH RABBIT AT THE SAN JOAQUIN RIVER NATIONAL WILDLIFE REFUGE AS DETERMINED BY CAMERA TRAPS By Celia M. Tarcha Signed Certification of Approval page is on file with the University Library Dr. Patrick A. Kelly Date Professor of Zoology Dr. Michael P. Fleming Date Associate Professor of Biology Education Dr. Marina M. Gerson Date Professor of Zoology Matthew R. Lloyd Date U.S. Fish and Wildlife Service © 2020 Celia M. Tarcha ALL RIGHTS RESERVED DEDICATION For my family, living and departed, who first introduced me to wildlife and appreciating inconspicuous beauty. iv ACKNOWLEDGEMENTS I wish to express my deepest gratitude to my committee members, Matt Lloyd, Dr. Fleming, Dr. Gerson, and Dr. Kelly, for their time and effort towards perfecting this project. I would also like to thank Eric Hopson, refuge manager of San Joaquin River National Wildlife Refuge for his insight and field support. Thank you as well to refuge biologists Fumika Takahashi and Kathryn Heffernan for their field surveys and reports. Additional thanks to Camera Bits Inc. for their donation of the Photomechanic license. I would like to thank the CSU Stanislaus Department of Biological Sciences for their help and support. Thank you to Bernadette Paul of the Endangered Species Recovery Program for her equipment management and support. -
For the Riparian Brush Rabbit (Sylvilagus Bachmani Riparius)
CONTROLLED PROPAGATION AND REINTRODUCTION PLAN FOR THE RIPARIAN BRUSH RABBIT (SYLVILAGUS BACHMANI RIPARIUS) Ó B. Moose Peterson, Wildlife Research Photography by DANIEL F. WILLIAMS, PATRICK A. KELLY, AND LAURISSA P. HAMILTON ENDANGERED SPECIES RECOVERY PROGRAM CALIFORNIA STATE UNIVERSITY, STANISLAUS TURLOCK, CA 95382 6 JULY 2002 EXECUTIVE SUMMARY We present a plan for controlled propagation and reintroduction of riparian brush rab- bits (Sylvilagus bachmani riparius), a necessary set of tasks for its recovery, as called for in the Recovery Plan for Upland Species of the San Joaquin Valley, California1. This controlled propagation and reintroduction plan follows the criteria and recommendations of the U.S. Fish and Wildlife Service’s Policy Regarding Controlled Propagation of Spe- cies Listed under the Endangered Species Act2. It is organized along the lines recom- mended in the draft version of that policy and meets the criteria of the final policy. It should be viewed in an adaptive management context in that as events unfold, unexpected changes and new information will require modifications. Modifications will be appended to this document. Controlled Propagation is necessary for the riparian brush rabbit 1) to provide a source of individuals for reintroduction to restored habitat for establishing new, self- sustaining populations, 2) to augment existing populations if needed, 3) and to ensure the prevention of extinction of the species in the wild. We propose to establish three breed- ing colonies in separate enclosures of 1.2-1.4 acres each. Predator-resistant enclosures will be erected around existing, but unoccupied natural habitat for brush rabbits. Enclo- sures will be located on State land surrounded by irrigated agriculture that provides no habitat for brush rabbits. -
Learning About Mammals
Learning About Mammals The mammals (Class Mammalia) includes everything from mice to elephants, bats to whales and, of course, man. The amazing diversity of mammals is what has allowed them to live in any habitat from desert to arctic to the deep ocean. They live in trees, they live on the ground, they live underground, and in caves. Some are active during the day (diurnal), while some are active at night (nocturnal) and some are just active at dawn and dusk (crepuscular). They live alone (solitary) or in great herds (gregarious). They mate for life (monogamous) or form harems (polygamous). They eat meat (carnivores), they eat plants (herbivores) and they eat both (omnivores). They fill every niche imaginable. Mammals come in all shapes and sizes from the tiny pygmy shrew, weighing 1/10 of an ounce (2.8 grams), to the blue whale, weighing more than 300,000 pounds! They have a huge variation in life span from a small rodent living one year to an elephant living 70 years. Generally, the bigger the mammal, the longer the life span, except for bats, which are as small as rodents, but can live for up to 20 years. Though huge variation exists in mammals, there are a few physical traits that unite them. 1) Mammals are covered with body hair (fur). Though marine mammals, like dolphins and whales, have traded the benefits of body hair for better aerodynamics for traveling in water, they do still have some bristly hair on their faces (and embryonically - before birth). Hair is important for keeping mammals warm in cold climates, protecting them from sunburn and scratches, and used to warn off others, like when a dog raises the hair on its neck. -
The Wild Rabbit: Plague, Polices and Pestilence in England and Wales, 1931–1955
The wild rabbit: plague, polices and pestilence in England and Wales, 1931–1955 by John Martin Abstract Since the eighteenth century the rabbit has occupied an ambivalent position in the countryside. Not only were they of sporting value but they were also valued for their meat and pelt. Attitudes to the rabbit altered though over the first half of the century, and this paper traces their redefinition as vermin. By the 1930s, it was appreciated that wild rabbits were Britain’s most serious vertebrate pest of cereal crops and grassland and that their numbers were having a significant effect on agricultural output. Government took steps to destroy rabbits from 1938 and launched campaigns against them during wartime, when rabbit was once again a form of meat. Thereafter government attitudes to the rabbit hardened, but it was not until the mid-1950s that pestilence in the form of a deadly virus, myxomatosis, precipitated an unprecedented decline in their population. The unprecedented decline in the European rabbit Oryctolagus( cuniculus) in the mid- twentieth century is one of the most remarkable ecological changes to have taken place in Britain. Following the introduction of myxomatosis into Britain in September 1953 at Bough Beech near Edenbridge in Kent, mortality rates in excess of 99.9 per cent were recorded in a number of affected areas.1 Indeed, in December 1954, the highly respected naturalist Robin Lockley speculated that 1955 would constitute ‘zero hour for the rabbit’, with numbers being lower by the end of the year than at any time since the eleventh century.2 In spite of the rapid increases in output and productivity which British agriculture experienced in the post-myxomatosis era, the importance of the disease as a causal factor in raising agricultural output has been largely ignored by agricultural historians.3 The academic neglect of the rabbit as a factor influencing productivity is even more apparent in respect of the pre-myxomatosis era, particularly the period before the Second World War. -
2011 COLUMBIA BASIN PYGMY RABBIT REINTRODUCTION and GENETIC MANAGEMENT PLAN Washington Department of Fish and Wildlife
2011 COLUMBIA BASIN PYGMY RABBIT REINTRODUCTION AND GENETIC MANAGEMENT PLAN Washington Department of Fish and Wildlife Addendum to Washington State Recovery Plan for the Pygmy Rabbit (1995) Penny A. Becker, David W. Hays & Rodney D. Sayler EXECUTIVE SUMMARY This plan addresses the recovery strategy for the federal and state endangered Columbia Basin pygmy rabbit (Brachylagus idahoensis) in shrub-steppe habitat of central Washington. It is a consolidated update of the 2010 genetic management plan and the 2007 reintroduction plan for the pygmy rabbit. Technical background for the plan, covering the history, biology, and ecology of pygmy rabbits, has been reviewed extensively in a 5-Year Status Review (USFWS 2010) and an amendment to the federal Draft Recovery Plan (USFWS 2011) for the Columbia Basin distinct population segment of the pygmy rabbit. Currently, there are no wild pygmy rabbit populations known to occur in Washington’s Columbia Basin. As a result, the recovery strategy relies on the reintroduction of captive-bred pygmy rabbits originating from the joint captive population maintained since 2001 at Northwest Trek, Oregon Zoo, and Washington State University, in conjunction with the release of wild pygmy rabbits captured from other populations within the species’ historic distribution. The reintroduction plan was formulated with information gleaned from studies of pygmy rabbits in the wild, results of the 2002-04 pilot-scale reintroductions in southeastern Idaho, results of a trial 2007 release of animals into Washington, and comparable reintroduction efforts for other endangered species. Beginning in the spring of 2011, pygmy rabbits were reintroduced at Washington Department of Fish and Wildlife’s Sagebrush Flat Wildlife Area. -
The State of Lagomorphs Today
HOUSE RABBIT JOURNAL The publication for members of the international House Rabbit Society Winter 2016 The State of Lagomorphs Today by Margo DeMello, PhD Make Mine Chocolate™ Turns 15 by Susan Mangold and Terri Cook Advocating For Rabbits by Iris Klimczuk Fly Strike (Myiasis) in Rabbits by Stacie Grannum, DVM $4.99 CONTENTS HOUSE RABBIT JOURNAL Winter 2016 Contributing Editors Amy Bremers Shana Abé Maureen O’Neill Nancy Montgomery Linda Cook The State of Lagomorphs Today p. 4 Sandi Martin by Margo DeMello, PhD Rebecca Clawson Designer/Editor Sandy Parshall Veterinary Review Linda Siperstein, DVM Executive Director Anne Martin, PhD Board of Directors Marinell Harriman, Founder and Chair Margo DeMello, President Mary Cotter, Vice President Joy Gioia, Treasurer Beth Woolbright, Secretary Dana Krempels Laurie Gigous Kathleen Wilsbach Dawn Sailer Bill Velasquez Judith Pierce Edie Sayeg Nancy Ainsworth House Rabbit Society is a 501c3 and its publication, House Rabbit Journal, is published at 148 Broadway, Richmond, CA 94804. Photograph by Tom Young HRJ is copyright protected and its contents may not be republished without written permission. The Bunny Who Started It All p. 7 by Nareeya Nalivka Goldie is adoptable at House Rabbit Society International Headquarters in Richmond, CA. rabbitcenter.org/adopt Make Mine Chocolate™ Turns 15 p. 8 by Susan Mangold and Terri Cook Cover photo by Sandy Parshall, HRS Program Manager Bella’s Wish p. 9 by Maurice Liang Advocating For Rabbits p. 10 by Iris Klimczuk From Grief to Grace: Maurice, Miss Bean, and Bella p. 12 by Chelsea Eng Fly Strike (Myiasis) in Rabbits p. 13 by Stacie Grannum, DVM The Transpacifi c Bunny p. -
Nuttall's Cottontail (Sylvilagus Nuttallii) in British Columbia'', Prepared by the BC Nuttall's Cottontail Working Group
PROPOSED Species at Risk Act Management Plan Series Adopted under Section 69 of SARA Management Plan for the Nuttall’s Cottontail nuttallii subspecies (Sylvilagus nuttallii nuttallii) in Canada Nuttall’s Cottontail nuttallii subspecies 2014 Recommended citation: Environment Canada. 2014. Management Plan for the Nuttall’s Cottontail nuttallii subspecies (Sylvilagus nuttallii nuttallii) in Canada. Species at Risk Act Management Plan Series. Environment Canada, Ottawa. III p. + Annex. For copies of the management plan or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry (www.sararegistry.gc.ca). Cover illustration: David Nagorsen Également disponible en français sous le titre « Plan de gestion du lapin de Nuttall de la sous-espèce nuttallii (Sylvilagus nuttallii nuttallii) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2014. All rights reserved. ISBN Catalogue no. Content (photos excluded) may be used without permission, with appropriate credit to the source. MANAGEMENT PLAN FOR THE NUTTALL’S COTTONTAIL NUTTALLII SUBSPECIES (Sylvilagus nuttallii nuttallii) IN CANADA 2014 Under the Accord for the Protection of Species at Risk (1996), the federal, provincial, and territorial governments agreed to work together on legislation, programs, and policies to protect wildlife species at risk throughout Canada. In the spirit of cooperation of the Accord, the Government of British Columbia has given permission to the Government of Canada to adopt the “Management Plan for the Nuttall’s Cottontail (Sylvilagus nuttallii) in British Columbia” (Part 2) under section 69 of the Species at Risk Act. -
Introduction to Risk Assessments for Methods Used in Wildlife Damage Management
Human Health and Ecological Risk Assessment for the Use of Wildlife Damage Management Methods by USDA-APHIS-Wildlife Services Chapter I Introduction to Risk Assessments for Methods Used in Wildlife Damage Management MAY 2017 Introduction to Risk Assessments for Methods Used in Wildlife Damage Management EXECUTIVE SUMMARY The USDA-APHIS-Wildlife Services (WS) Program completed Risk Assessments for methods used in wildlife damage management in 1992 (USDA 1997). While those Risk Assessments are still valid, for the most part, the WS Program has expanded programs into different areas of wildlife management and wildlife damage management (WDM) such as work on airports, with feral swine and management of other invasive species, disease surveillance and control. Inherently, these programs have expanded the methods being used. Additionally, research has improved the effectiveness and selectiveness of methods being used and made new tools available. Thus, new methods and strategies will be analyzed in these risk assessments to cover the latest methods being used. The risk assements are being completed in Chapters and will be made available on a website, which can be regularly updated. Similar methods are combined into single risk assessments for efficiency; for example Chapter IV contains all foothold traps being used including standard foothold traps, pole traps, and foot cuffs. The Introduction to Risk Assessments is Chapter I and was completed to give an overall summary of the national WS Program. The methods being used and risks to target and nontarget species, people, pets, and the environment, and the issue of humanenss are discussed in this Chapter. From FY11 to FY15, WS had work tasks associated with 53 different methods being used. -
Raising Hares
Raising Hares Photographs by Andy Rouse/naturepl.com The agility and grace of the European hare (Lepus europaeus) is a familiar sight in the British countryside, and their spirited springtime antics mark the end of winter in the minds of many. Despite their similarities in appearance to the European rabbit, the life history and behaviour of the European hare differs significantly from that of their smaller cousins. We join photographer Andy Rouse as he captures the story of the hare and discovers the true meaning of ‘Mad as a March hare’. Brown hares are widespread throughout central and west- ern Europe, including most of the UK, where they were thought to be introduced by the Romans. “I’ve been passionate about watching and photographing hares for years”, says Rouse. “They are always a challenge because they’re so wary and elusive. Getting decent images usually requires hours of lying quietly in a ditch! So I was de- lighted when I found a unique site in Southern England that has a thriving population of hares”. “Hares are wonderful to work with”, says Rouse. “Concentrating on one population opens up much greater opportunities than photo- graphing at a multitude of sites. It has been such a pleasure getting to know individuals on this project”. “I took these images at a former WWI airfield”, says Rouse. “It is the oldest in the world and still in use, with grass runways. The alternation of cut and long grass provides ideal habitat for hares, which are traditionally found along field margins”. “The hares here are used to people so it’s easier to observe them and predict their behaviour”, says Rouse. -
Cottontail Rabbits
Cottontail Rabbits Biology of Cottontail Rabbits (Sylvilagus spp.) as Prey of Golden Eagles (Aquila chrysaetos) in the Western United States Photo Credit, Sky deLight Credit,Photo Sky Cottontail Rabbits Biology of Cottontail Rabbits (Sylvilagus spp.) as Prey of Golden Eagles (Aquila chrysaetos) in the Western United States U.S. Fish and Wildlife Service Regions 1, 2, 6, and 8 Western Golden Eagle Team Front Matter Date: November 13, 2017 Disclaimer The reports in this series have been prepared by the U.S. Fish and Wildlife Service (Service) Western Golden Eagle Team (WGET) for the purpose of proactively addressing energy-related conservation needs of golden eagles in Regions 1, 2, 6, and 8. The team was composed of Service personnel, sometimes assisted by contractors or outside cooperators. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service. Suggested Citation Hansen, D.L., G. Bedrosian, and G. Beatty. 2017. Biology of cottontail rabbits (Sylvilagus spp.) as prey of golden eagles (Aquila chrysaetos) in the western United States. Unpublished report prepared by the Western Golden Eagle Team, U.S. Fish and Wildlife Service. Available online at: https://ecos.fws.gov/ServCat/Reference/Profile/87137 Acknowledgments This report was authored by Dan L. Hansen, Geoffrey Bedrosian, and Greg Beatty. The authors are grateful to the following reviewers (in alphabetical order): Katie Powell, Charles R. Preston, and Hillary White. Cottontails—i Summary Cottontail rabbits (Sylvilagus spp.; hereafter, cottontails) are among the most frequently identified prey in the diets of breeding golden eagles (Aquila chrysaetos) in the western United States (U.S.). -
Ecography ECOG-01063 Verde Arregoitia, L
Ecography ECOG-01063 Verde Arregoitia, L. D., Leach, K., Reid, N. and Fisher, D. O. 2015. Diversity, extinction, and threat status in Lagomorphs. – Ecography doi: 10.1111/ecog.01063 Supplementary material 1 Appendix 1 2 Paleobiogeographic summaries for all extant lagomorph genera. 3 4 Pikas – Family Ochotonidae 5 The maximum diversity and geographic extent of pikas occurred during the global climate 6 optimum from the late-Oligocene to middle-Miocene (Ge et al. 2012). When species evolve 7 and diversify at higher temperatures, opportunities for speciation and evolution of thermal 8 niches are likely through adaptive radiation in relatively colder and species poor areas 9 (Araújo et al. 2013). Extant Ochotonids may be marginal (ecologically and geographically) 10 but diverse because they occur in topographically complex areas where habitat diversity is 11 greater and landscape units are smaller (Shvarts et al. 1995). Topographical complexity 12 creates new habitat, enlarges environmental gradients, establishes barriers to dispersal, and 13 isolates populations. All these conditions can contribute to adaptation to new environmental 14 conditions and speciation in excess of extinction for terrestrial species (Badgley 2010). 15 16 Hares and rabbits - Family Leporidae 17 Pronolagus, Bunolagus, Romerolagus, Pentalagus and Nesolagus may belong to lineages 18 that were abundant and widespread in the Oligocene and subsequently lost most (if not all) 19 species. Lepus, Sylvilagus, Caprolagus and Oryctolagus represent more recent radiations 20 which lost species unevenly during the late Pleistocene. Living species in these four genera 21 display more generalist diet and habitat preferences, and are better represented in the fossil 22 record. (Lopez-Martinez 2008).