Sovereign Energy Independence Properly Understood and Effectively Achieved in the 21St Century Spencer Abraham & Mark P

Total Page:16

File Type:pdf, Size:1020Kb

Sovereign Energy Independence Properly Understood and Effectively Achieved in the 21St Century Spencer Abraham & Mark P The Future of Energy Sovereign Energy Independence Properly Understood and Effectively Achieved in the 21st Century Spencer Abraham & Mark P. Mills Spencer Abraham is Energy, like food, is a foundational requirement for civiliza- Chairman & CEO of tion. The World Economic Forum’s 2012 Energy Vision Update The Abraham Group. He previously served as begins with the observation: “Energy is the lifeblood of the the tenth United States global economy – a crucial input to nearly all of the goods Secretary of Energy and 1 before that as a United and services of the modern world.” We disagree with the States Senator from Forum in one respect. Energy is crucial not to “nearly all” Michigan. but in fact to all goods and services. Mark P. Mills is a Ensuring the availability of an economically sustainable Senior Fellow at the Manhattan Institute and secure energy supply is one of the primary responsi- and CEO of the Digital bilities of sovereign governments. Energy independence, Power Group. properly understood, is a central component in achieving both supply and economic security. The policy options for pursuing “independence” depend on the realities of the day. In this paper we will argue that a clear understanding of the landscape is more important than clever policies, and that, in any case, there are precious few options in regards to the latter. We begin by noting that two central features of the global energy landscape are the same now as they have been for decades, even centuries. These are the underlying character of both geopolitics and geophysics. The animating forces in geopolitics have been the same Winter/Spring 2013 [65] SOVEREIGN ENERGY INDEPENDENCE for as long as there have been nation and social fallout from such a radical states. National goals, political sys- price hike may be muted, if not for- tems, and social objectives vary wide- gotten. Were prices to double today ly, and always have. Differences can the fallout would be almost inconceiv- lead to both unintentional and inten- able. However, such a possibility is far tional conflicts. Conflicts are ulti- from unimaginable and cannot even mately resolved using the same three be termed a “black swan” given how tools since time immemorial: business little progress has been achieved in the arrangements of mutual convenience, underlying issue of Middle East stabil- diplomacy, or war. Put simply, people ity. have not changed. Energy “independence” policies are Similarly, underlying geophysical no less vital today than they were at the realities of the planet remain constant. dawn of the modern era of energy pol- The asymmetric distribution of eas- icy in providing some measure of insu- ily accessible high-grade resources is lation against the possibility of events incontestably a fact that creates oppor- similar to those of 1973 and 1979. tunities for economic or geopolitical In fact, given the current geopolitical advantage, or conflict. environment we would argue “inde- On the other hand, some things pendence” should remain the first pri- today are quite different. Indeed, we ority of sovereign governments when The geopolitical objective of “indepen- dence” is really about preventing one or a few players from being in a position to under- mine or manipulate the marketplace, or from using energy as a political tool. will argue that the energy landscape has forging energy policies, against which undergone tectonic shifts in the para- all other goals should be secondary. digms of supply and demand since the The question for nations on how to dawn of the modern energy era, an era achieve energy independence requires that arguably began in the fall of 1973. first a definition, itself inherently a The modern lexicon of energy policy-centered consideration. For “independence” and policies attending most nations, the concept of indepen- thereto began with the one-two punch dence rarely means seeking closed-bor- of the 1973 OPEC embargo and the der self-sufficiency. For many nations 1979 Iranian revolution. With the first individually and, in particular, col- event, world oil prices roughly doubled lectively through regional or mutual nearly overnight. Prices doubled again alliances, the geopolitical objective of a few short years later.2 With the pas- “independence” is really about pre- sage of time, the political, economic, venting one or a few players (Iran and [66] Georgetown Journal of International Affairs ABRAHAM AND MILLS The Future of Energy Venezuela come to mind for many, consumption an amount equal to the or Russia, or OPEC) from being in a adding of two United States’ worth of position to undermine or manipulate energy demand.5 the marketplace, or from using energy This shift in the epicenter of demand as a political tool. means that policies intended to reduce In order to develop a framework to the use of oil in the United States (e.g., understand how best to pursue energy improving fuel efficiency of light vehi- independence, we start with the fea- cles) that would once have had a major tures that have in fact changed, the facts impact on global oil demand, no longer relating to how the two most important do so and increasingly have de minimis forces – technology and demographics impact on the geopolitics of oil. Argu- -- have altered the equation of sup- ments can still be made for efficiency ply and demand. As we earlier not- on the basis of domestic economic ed, human behavior (geopolitics) and benefits, but geopolitics motivated gov- nature (geophysics) remain unchanged. ernment intervention in this case of But human ingenuity (technology) and energy demand and security (and many populations (demographics) have sig- others similar). The modern and now nificantly changed since President Nix- firmly embedded Corporate Average on first used the phrase “energy inde- Fuel Economy (CAFÉ) standards were pendence” in the epoch-setting speech enacted in 1975 in direct response to of 7 November, 1973.3 the 1973 embargo.6 But today, even radical reductions in total U.S. light Supply and Demand in a New vehicle fuel use – whether from the Era. Throughout the 20th century, recently enacted expansions in CAFE the United States in particular and standards or a political goal of a mil- the West in general were the globe’s lion electric cars – would moot only a largest users and fastest growing major small percentage of future global oil consumers of energy. In the 21st cen- demand. The United States in particu- tury demographics, combined with the lar, and the West in general, no longer maturation of emerging economies, have a political foot on the accelerator have permanently shifted the center of or brake that determines the growth in gravity. energy demand. Western nation poli- The Asia-Pacific and emerging cies rooted in the 1970s demand para- regions, with the Asia-Pacific domi- digm are, if no longer valid, certainly nating, are now responsible for not emasculated in impact. only the fastest growth in large-energy Just as we see a shift in the 21st centu- demand, but also essentially all net ry metrics on the demand side of energy growth in demand. Within a few years, driven by demographics, so too has there the emerging economies will have com- been a shift on the supply side metrics, pleted their transitions and will con- in this case driven by technology. The sume in aggregate more total energy world is not in imminent danger of than the entire “West.”4 Indeed, over running out of hydrocarbons broadly, the coming two decades, the growth in nor oil in particular. The central issues emerging economies will add to global for the future will continue to be the Winter/Spring 2013 [67] SOVEREIGN ENERGY INDEPENDENCE same as those in the past, largely ones of progressive recognition of the underly- costs and access—the former is mainly ing engineering and economic reali- determined by technology and the latter ties rather than aspirational policies. by government policies which control They represent a consensus recognition or own about 80 percent of land where (some would say, capitulation) of the oil resources reside.7 And, in the face of practical nature of energy resources and today’s North American glut of natural technologies. gas, many have forgotten the passage in Dozens of nations, including for 1978 of the Powerplant and Industrial example the United States, Germany, Fuel Use Act (finally repealed in 1986), Spain, Britain, and China have over inspired by a fear of imminent limits the past several decades invested enor- to gas resources. The North American mous financial and policy resources in glut has already impacted world mar- attempting to create significant, eco- kets, and the technologies that created nomically viable capabilities to replace the glut are expected to spread around conventional fuels.10 While many influ- the world as well.8 ential policymakers believed otherwise Nonetheless, there continues today in recent decades, there is now a wide- an ‘industry’ if not an intellectual spread recognition that there is no framework that flowered in the post- realistic prospect of seeing technologies embargo era, anchored in the the- emerge in useful time-frames, and at sis of limits, epitomized by the iconic costs that are acceptable, that can fun- and politically prescient 1972 Club of damentally displace the central role Rome’s “Limits to Growth,” and fol- of hydrocarbons—coal, oil and natu- lowed in more recent years by the thesis ral gas—particularly in the context of of “peak oil.” For policy makers, the the magnitudes of projected demand existential debate about long-term geo- growth. physical resources limits or population Some would argue that the failure expansions are not, or should not, be to see an even larger non-hydrocar- relevant.
Recommended publications
  • Net Zero by 2050 a Roadmap for the Global Energy Sector Net Zero by 2050
    Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 Interactive iea.li/nzeroadmap Net Zero by 2050 Data iea.li/nzedata INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the Ireland reliability, affordability Italy and sustainability of Japan energy in its Korea 30 member Luxembourg countries, Mexico 8 association Netherlands countries and New Zealand beyond. Norway Poland Portugal Slovak Republic Spain Sweden Please note that this publication is subject to Switzerland specific restrictions that limit Turkey its use and distribution. The United Kingdom terms and conditions are available online at United States www.iea.org/t&c/ This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword We are approaching a decisive moment for international efforts to tackle the climate crisis – a great challenge of our times.
    [Show full text]
  • U.S. Energy in the 21St Century: a Primer
    U.S. Energy in the 21st Century: A Primer March 16, 2021 Congressional Research Service https://crsreports.congress.gov R46723 SUMMARY R46723 U.S. Energy in the 21st Century: A Primer March 16, 2021 Since the start of the 21st century, the U.S. energy system has changed tremendously. Technological advances in energy production have driven changes in energy consumption, and Melissa N. Diaz, the United States has moved from being a net importer of most forms of energy to a declining Coordinator importer—and a net exporter in 2019. The United States remains the second largest producer and Analyst in Energy Policy consumer of energy in the world, behind China. Overall energy consumption in the United States has held relatively steady since 2000, while the mix of energy sources has changed. Between 2000 and 2019, consumption of natural gas and renewable energy increased, while oil and nuclear power were relatively flat and coal decreased. In the same period, production of oil, natural gas, and renewables increased, while nuclear power was relatively flat and coal decreased. Overall energy production increased by 42% over the same period. Increases in the production of oil and natural gas are due in part to technological improvements in hydraulic fracturing and horizontal drilling that have facilitated access to resources in unconventional formations (e.g., shale). U.S. oil production (including natural gas liquids and crude oil) and natural gas production hit record highs in 2019. The United States is the largest producer of natural gas, a net exporter, and the largest consumer. Oil, natural gas, and other liquid fuels depend on a network of over three million miles of pipeline infrastructure.
    [Show full text]
  • Taylor Farms Achieves Industry First Sustainability Milestones in Energy Independence and Waste Conservation
    Taylor Farms Achieves Industry First Sustainability Milestones in Energy Independence and Waste Conservation January 14th, 2020 Three facilities are now Total Resource Use and Efficiency (TRUE) platinum zero waste certified and more than 90 percent energy independent SALINAS, Calif. – Jan. 13, 2020 –Taylor Farms, North America’s leading producer of salads and healthy fresh foods, has received the U.S. Green Building Council TRUE platinum zero waste certification at three facilities in California while simultaneously achieving 90 percent energy independence from the utility grid through unique microgrid solutions. Together, their unique suite of investments and programs reduced 175,000 metric ton (MT) of greenhouse gas (GHG) emissions in just two years, equivalent to 37,000 cars off the road annually. The three facilities in Monterey County are the first fresh food facilities to achieve the highest level of TRUE zero waste certification, diverting over 95 percent of materials from the environment, incinerators and landfills. “Now more than ever before, we are noticing a shift in customers, consumers and business partners to be increasingly more aware of the source of their food and the sustainable practices behind that food production,” said Bruce Taylor, Chairman and CEO, Taylor Farms. “We are proud that Taylor Farms is at the forefront of developing and identifying sustainability practices that are breaking down barriers and establishing new norms within the industry. Consumers should be confident that our product offerings are helping them to lead healthy lives while contributing to a healthy environment and healthy communities.” “We commend Taylor Farms for their leadership and climate action achievements, which have made a positive impact in our shared sustainability journey.” Townsend Bailey, Director - North America Sustainability, McDonald’s Building an industry first groundbreaking microgrid and Environmental Management System (EMS) takes entrepreneurial drive and strategic partnerships.
    [Show full text]
  • Improving Institutional Access to Financing Incentives for Energy
    Improving Institutional Access to Financing Incentives for Energy Demand Reductions Masters Project: Final Report April 2016 Sponsor Agency: The Ecology Center (Ann Arbor, MI) ​ Student Team: Brian La Shier, Junhong Liang, Chayatach ​ Pasawongse, Gianna Petito, & Whitney Smith Faculty Advisors: Paul Mohai PhD. & Tony Reames PhD. ​ ACKNOWLEDGEMENTS We would like to thank our clients Alexis Blizman and Katy Adams from the Ecology Center. ​ ​ We greatly appreciate their initial efforts in conceptualizing and proposing the project idea, and providing feedback throughout the duration of the project. We would also like to thank our advisors Dr. Paul Mohai and Dr. Tony Reames for providing their expertise, guidance, and support. This Master's Project report submitted in partial fulfillment of the OPUS requirements for the degree of Master of Science, Natural Resources and Environment, University of Michigan. ABSTRACT We developed this project in response to a growing local­level demand for information and guidance on accessing local, state, and federal energy financing programs. Knowledge regarding these programs is currently scattered across independent websites and agencies, making it difficult for a lay user to identify available options for funding energy efficiency efforts. We collaborated with The Ecology Center, an Ann Arbor nonprofit, to develop an information­based tool that would provide tailored recommendations to small businesses and organizations in need of financing to meet their energy efficiency aspirations. The tool was developed for use by The Ecology Center along with an implementation plan to strengthen their outreach to local stakeholders and assist their efforts in reducing Michigan’s energy consumption. We researched and analyzed existing clean energy and energy efficiency policies and financing opportunities available from local, state, federal, and utility entities for institutions in the educational, medical, religious, and multi­family housing sectors.
    [Show full text]
  • Energy Independence and Security Act of 2007: a Summary of Major Provisions
    Order Code RL34294 Energy Independence and Security Act of 2007: A Summary of Major Provisions December 21, 2007 Fred Sissine, Coordinator Specialist in Energy Policy Resources, Science, and Industry Division Energy Independence and Security Act of 2007: A Summary of Major Provisions Summary The Energy Independence and Security Act (P.L. 110-140, H.R. 6) is an omnibus energy policy law that consists mainly of provisions designed to increase energy efficiency and the availability of renewable energy. This report describes the key provisions of the enacted law, summarizes the legislative action on H.R. 6, and provides a summary of the provisions under each of the titles in the law. The highlights of key provisions enacted into law are as follows: ! Corporate Average Fuel Economy (CAFE). The law sets a target of 35 miles per gallon for the combined fleet of cars and light trucks by model year 2020. ! Renewable Fuels Standard (RFS). The law sets a modified standard that starts at 9.0 billion gallons in 2008 and rises to 36 billion gallons by 2022. ! Energy Efficiency Equipment Standards. The adopted bill includes a variety of new standards for lighting and for residential and commercial appliance equipment. The equipment includes residential refrigerators, freezers, refrigerator-freezers, metal halide lamps, and commercial walk-in coolers and freezers. ! Repeal of Oil and Gas Tax Incentives. The enacted law includes repeal of two tax subsidies in order to offset the estimated cost to implement the CAFE provision. The two most controversial provisions of H.R. 6 that were not included in the enacted law were the proposed Renewable Energy Portfolio Standard (RPS) and most of the proposed tax provisions, which included repeal of tax subsidies for oil and gas and new incentives for energy efficiency and renewable energy.
    [Show full text]
  • Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
    U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world.
    [Show full text]
  • Energy Independence Act (IEIA) March 2017
    Just the Facts: Incentives for Energy Independence Act (IEIA) March 2017 This fact sheet provides an overview of the Incentives for Energy Independence Act (IEIA) program. For a full discussion of the program requirements, please see KRS 154.27-010 through 154.27-090. As with all state administered tax incentive programs, any inducements offered to an eligible company under the IEIA program are negotiated by Cabinet for Economic Development officials and subject to approval of KEDFA. Eligible Companies Any company that constructs, retrofits, or upgrades a facility to: • Increase the production and sale of alternative transportation fuels • Increase the production and sale of synthetic natural gas, chemicals, chemical feed stocks, or liquid fuels, from coal, biomass resources, or waste coal through a gasification process • Increase the production and sale of energy-efficient alternative fuels. • Generate electricity for sale through alternative methods such as solar power, wind power, biomass resources, landfill methane gas, hydropower, or other renewable resources Eligible Projects Requirements to qualify for the incentives: • Alternative fuel facility or gasification facility that is carbon capture ready and uses oil shale, tar sands, or coal as the primary feedstock: the minimum capital investment is $100,000,000 • Alternative fuel facility or gasification facility that is carbon capture ready and uses biomass resources as the primary feedstock: the minimum capital investment is $25,000,000 • Energy-efficient alternative fuel facility that produces a homogeneous fuel from processes designed to densify feedstock coal, waste coal, or biomass resources. The minimum capital investment is $25,000,000. • Alternative fuel facility that uses natural gas or natural gas liquids as the primary feedstock.
    [Show full text]
  • Chapter 1: Energy Challenges September 2015 1 Energy Challenges
    QUADRENNIAL TECHNOLOGY REVIEW AN ASSESSMENT OF ENERGY TECHNOLOGIES AND RESEARCH OPPORTUNITIES Chapter 1: Energy Challenges September 2015 1 Energy Challenges Energy is the Engine of the U.S. Economy Quadrennial Technology Review 1 1 Energy Challenges 1.1 Introduction The United States’ energy system, vast in size and increasingly complex, is the engine of the economy. The national energy enterprise has served us well, driving unprecedented economic growth and prosperity and supporting our national security. The U.S. energy system is entering a period of unprecedented change; new technologies, new requirements, and new vulnerabilities are transforming the system. The challenge is to transition to energy systems and technologies that simultaneously address the nation’s most fundamental needs—energy security, economic competitiveness, and environmental responsibility—while providing better energy services. Emerging advanced energy technologies can do much to address these challenges, but further improvements in cost and performance are important.1 Carefully targeted research, development, demonstration, and deployment (RDD&D) are essential to achieving these improvements and enabling us to meet our nation’s energy objectives. This report, the 2015 Quadrennial Technology Review (QTR 2015), examines science and technology RDD&D opportunities across the entire U.S. energy system. It focuses primarily on technologies with commercialization potential in the mid-term and beyond. It frames various tradeoffs that all energy technologies must balance, across such dimensions as diversity and security of supply, cost, environmental impacts, reliability, land use, and materials use. Finally, it provides data and analysis on RDD&D pathways to assist decision makers as they set priorities, subject to budget constraints, to develop more secure, affordable, and sustainable energy services.
    [Show full text]
  • Is Energy Independence Possible in the United States?
    September 2013 IS ENERGY INDEPENDENCE POSSIBLE IN THE UNITED STATES? Eyal Aronoff, Gal Sitty, Nathan Taft IS ENERGY INDEPENDENCE POSSIBLE IN THE UNITED STATES? Eyal Aronoff, Gal Sitty, Nathan Taft Fuel Freedom Foundation 18100 Von Karman Avenue, Suite 870 Irvine, California 92612 Abstract This study investigates whether or not energy independence in the United States is possible in terms of quadrillion British thermal units (QBTU) and/or balance of payments in dollars. We used data from the U.S. government-based Energy Information Administration (EIA) 2013 annual energy outlook report [citation]. EIA data suggested that energy independence in both energy balance in QBTU and in balance of payments is unattainable in the foreseeable future. The conclusion of the study is that without mass adoption of natural gas and biomass as feedstock for transportation fuels to replace oil, the US and its economy will both be dependent on foreign oil and will be forced comply with the inflated prices set by the oil market. In addition even with the projected increased growth of domestic oil production the total cost of oil import will continue to top $300 billion a year. In other words, any projected increase in oil production will be eclipsed by larger projected increase in oil price. Contents Introduction…………………………………………………………………………………………………………………………………………….1 Methods………………………………………………………………………………………………………………………………………………….2 Results…………………………………………………………………………………………………………………………………………………….6 Conclusion………………………………………………………………………………………………………………………………………………9
    [Show full text]
  • Pathways to Sustainable Energy Accelerating Energy Transition in the UNECE Region
    UNEC E Pathways to Sustainable Energy Accelerating Energy Transition in the UNECE Region Energy underpins economic development and the 2030 Agenda for Sustainable Development and has a critical role to play in climate change mitigation. The recognition of the role that energy plays in modern society is highly signicant, however, there remains an important disconnection between agreed energy and climate targets and the Pathways to Sustainable Energy • Accelerating Transition in the UNECE Region approaches in place today to achieve them. Only international cooperation and innovation can deliver the accelerated and more ambitious strategies. Policies will be needed to ll the persistent gaps to achieve the 2030 Agenda. If the gaps are not addressed urgently, progressively more drastic and expensive measures will be required to avoid extreme and potentially unrecoverable social impacts as countries try to cope with climate change. This report uniquely focuses on sustainable energy in the UNECE region up to 2050 as regional economic cooperation is an important factor in achieving sustainable energy. Arriving at a state of attaining sustainable energy is a complex social, political, economic and technological challenge. The UNECE countries have not agreed on how collectively they will achieve energy for sustainable development. Given the role of the UNECE to promote economic cooperation it is important to explore the implications of dierent sustainable energy pathways and for countries to work together on developing and deploying policies and measures. Pathways to Sustainable Energy Accelerating Energy Transition in the UNECE Region 67UNECE Energy Series UNIT Palais des Nations CH - 1211 Geneva 10, Switzerland E Telephone: +41(0)22 917 12 34 D E-mail: [email protected] N A Website: www.unece.org TION S UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE Pathways to Sustainable Energy - Accelerating Energy Transition in the UNECE Region ECE ENERGY SERIES No.
    [Show full text]
  • Energy Policy Modernization Act of 2015’’
    JAC15A18 S.L.C. 114TH CONGRESS 1ST SESSION S. ll To provide for the modernization of the energy policy of the United States, and for other purposes. IN THE SENATE OF THE UNITED STATES llllllllll llllllllll introduced the following bill; which was read twice and referred to the Committee on llllllllll A BILL To provide for the modernization of the energy policy of the United States, and for other purposes. 1 Be it enacted by the Senate and House of Representa- 2 tives of the United States of America in Congress assembled, 3 SECTION 1. SHORT TITLE; TABLE OF CONTENTS. 4 (a) SHORT TITLE.—This Act may be cited as the 5 ‘‘Energy Policy Modernization Act of 2015’’. 6 (b) TABLE OF CONTENTS.—The table of contents for 7 this Act is as follows: Sec. 1. Short title; table of contents. Sec. 2. Definitions. TITLE I—EFFICIENCY Subtitle A—Buildings Sec. 1001. Greater energy efficiency in building codes. JAC15A18 S.L.C. 2 Sec. 1002. Budget-neutral demonstration program for energy and water con- servation improvements at multifamily residential units. Sec. 1003. Coordination of energy retrofitting assistance for schools. Sec. 1004. Energy efficiency retrofit pilot program. Sec. 1005. Utility energy service contracts. Sec. 1006. Use of energy and water efficiency measures in Federal buildings. Sec. 1007. Building training and assessment centers. Sec. 1008. Career skills training. Sec. 1009. Energy-efficient and energy-saving information technologies. Sec. 1010. Availability of funds for design updates. Sec. 1011. Energy efficient data centers. Sec. 1012. Weatherization Assistance Program. Sec. 1013. Reauthorization of State energy program.
    [Show full text]
  • Energy Policy 101 Pre - Clean Energy Legislative Academy July 14, 2020
    Energy Policy 101 Pre - Clean Energy Legislative Academy July 14, 2020 Tom Plant & Suzanne Tegen, CNEE Overview • U.S. Energy and Electricity Context • Electricity generation • Transmission, distribution, and rural electric cooperatives • Utilities, bills, and rate structures • Policy as a driver for clean energy • Energy justice • Mythbusters are sprinkled throughout • Renewable energy works even at night and when the wind doesn’t blow. • Wind power does not cause cancer. • Wildlife and wind power – clean energy is better for birds and bats. • Domestic vs. international manufacturing 2 The U.S. Energy Picture 3 4 Measuring Electricity – kW and kWh • A watt, kilowatt, megawatt (W, kW, MW) is how much energy is flowing or needs to flow, to power something • A kilowatt-hour (kWh) is the quantity – how much power you used over a period of time. One kilowatt-hour of electricity is enough to: • Examples in your house • Work on a laptop all day • Watch television for 3 hours (plasma) • Vacuum for one hour 5 Capacity Factor Ratio of actual electrical energy output over a given period of time to the maximum possible electrical energy output over that period. The time the power plant is not producing power can be due to routine maintenance, outages, the wind not blowing, power not needed, etc. For a land-based wind farm, it’s typically 35-50%. Coal plants’ typical capacity factors are about 60-70%. Natural gas plants’ typical capacity factors are about 50-60%. 6 50% Capacity Factor Examples Over the course of one Day Wind Farm - Capable of Producing 100 MW of power.
    [Show full text]