Social complexity, life-history and lineage inuence the molecular basis of caste in a major transition in evolution Christopher Wyatt (
[email protected] ) University College London Michael Bentley University College London Daisy Taylor University College London Emeline Favreau University College London https://orcid.org/0000-0002-0713-500X Ryan Brock University of East Anglia https://orcid.org/0000-0003-2977-1370 Benjamin Taylor University College London Emily Bell School of Biological Sciences, University of Bristol https://orcid.org/0000-0002-7309-5456 Ellouise Leadbeater Royal Holloway University of London https://orcid.org/0000-0002-4029-7254 Seirian Sumner UCL https://orcid.org/0000-0003-0213-2018 Article Keywords: Superorganismality, Castes, Wasps, Transcriptomics Posted Date: August 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-835604/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Social complexity, life-history and lineage influence the molecular basis of caste in a major 2 transition in evolution 3 4 Christopher D. R. Wyatt1*, Michael Bentley1,†, Daisy Taylor1,2,†, Emeline Favreau1, 5 Ryan E. Brock2,3, Benjamin A. Taylor1, Emily Bell2, Ellouise Leadbeater4 & Seirian 6 Sumner1* 7 8 1 Centre for Biodiversity and Environment Research, University College London, 9 London, UK. 10 2 School of Biological Sciences, University of Bristol, United Kingdom, BS8 1TQ. 11 3 School of Biological Sciences, University of East Anglia, Norwich Research Park, 12 Norwich, Norfolk, NR4 7TJ, UK 13 4 Department of Biological Sciences, Royal Holloway University of London, Egham, 14 UK. 15 * Corresponding authors 16 † Equal contribution 17 18 Christopher Douglas Robert Wyatt 19 Centre for Biodiversity and Environment Research, 20 University College London, London, UK.