Social Complexity, Life-History and Lineage in Uence the Molecular

Total Page:16

File Type:pdf, Size:1020Kb

Social Complexity, Life-History and Lineage in Uence the Molecular Social complexity, life-history and lineage inuence the molecular basis of caste in a major transition in evolution Christopher Wyatt ( [email protected] ) University College London Michael Bentley University College London Daisy Taylor University College London Emeline Favreau University College London https://orcid.org/0000-0002-0713-500X Ryan Brock University of East Anglia https://orcid.org/0000-0003-2977-1370 Benjamin Taylor University College London Emily Bell School of Biological Sciences, University of Bristol https://orcid.org/0000-0002-7309-5456 Ellouise Leadbeater Royal Holloway University of London https://orcid.org/0000-0002-4029-7254 Seirian Sumner UCL https://orcid.org/0000-0003-0213-2018 Article Keywords: Superorganismality, Castes, Wasps, Transcriptomics Posted Date: August 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-835604/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Social complexity, life-history and lineage influence the molecular basis of caste in a major 2 transition in evolution 3 4 Christopher D. R. Wyatt1*, Michael Bentley1,†, Daisy Taylor1,2,†, Emeline Favreau1, 5 Ryan E. Brock2,3, Benjamin A. Taylor1, Emily Bell2, Ellouise Leadbeater4 & Seirian 6 Sumner1* 7 8 1 Centre for Biodiversity and Environment Research, University College London, 9 London, UK. 10 2 School of Biological Sciences, University of Bristol, United Kingdom, BS8 1TQ. 11 3 School of Biological Sciences, University of East Anglia, Norwich Research Park, 12 Norwich, Norfolk, NR4 7TJ, UK 13 4 Department of Biological Sciences, Royal Holloway University of London, Egham, 14 UK. 15 * Corresponding authors 16 † Equal contribution 17 18 Christopher Douglas Robert Wyatt 19 Centre for Biodiversity and Environment Research, 20 University College London, London, UK. 21 E-mail: [email protected]; Phone +447307390637 22 23 Seirian Sumner 24 Centre for Biodiversity and Environment Research, 25 University College London, London, UK. 26 E-mail: [email protected] 27 28 Key words: Superorganismality, Castes, Wasps, Transcriptomics 1 29 Abstract 30 Major evolutionary transitions describe how biological complexity arises; e.g. in the 31 evolution of complex multicellular bodies, and superorganismal insect societies. 32 Such transitions involve the evolution of division of labour, e.g. among queen and 33 worker castes in insect societies. A key mechanistic hypothesis for the evolution of 34 division of labour is that a shared set of genes co-opted from a common solitary 35 ancestral ground plan - a so-called genetic toolkit for sociality - regulates insect 36 castes across different levels of social complexity. The vespid wasps represent an 37 excellent system in which to test this. Here, using conventional and machine learning 38 analyses of brain transcriptome data from nine species of vespid wasps, we find 39 evidence of a shared genetic toolkit across species representing different levels of 40 social complexity, with a large suite of genes classifying castes correctly across 41 species. However, we also found evidence of additional fine-scale differences in 42 predictive gene sets, functional enrichment and rates of gene evolution that were 43 related to level of social complexity, but also life-history traits (e.g. mode of colony 44 founding). Thus, there appear to be shifts in the gene networks regulating social 45 behaviour and rates of gene evolution that are influenced by innovations in both 46 social complexity and life-history. These results suggest that the concept of a shared 47 genetic toolkit for sociality may be too simplistic to fully describe the process of the 48 major transition to sociality, even within a single lineage. Diversity in lineage, social 49 complexity and life-history traits must be taken into account in the quest to uncover 50 the molecular bases of the major transition to sociality. 51 2 52 Main 53 The major evolutionary transitions span all levels of biological organisation, 54 facilitating the evolution of life’s complexity on earth via cooperation between single 55 entities (e.g. genes in a genome, cells in a multicellular body, insects in a colony), 56 generating fitness benefits beyond those attainable by a comparable number of 57 isolated individuals1. The evolution of sociality is one of the major transitions and is 58 of general relevance across many levels of biological organisation from genes 59 assembled into genomes, single-cells into multi-cellular entities, and insects 60 cooperating in superorganismal societies. The best-studied examples of sociality are 61 in the hymenopteran insects (bees, wasps and ants) - a group of over 17,000 62 species, exhibiting different forms of sociality across the transition from simple 63 sociality (with small societies where all group members are able to reproduce and 64 switch roles in response to opportunity), through to complex societies (consisting of 65 thousands of individuals, each committed during development to a specific 66 cooperative role and working for a shared reproductive outcome within the higher- 67 level ‘individual’ of the colony, known as the ‘superorganism’2). Recent analyses of 68 the molecular mechanisms of insect sociality have revealed how conserved suites of 69 genes, networks and functions are shared among independent evolutionary events 70 of insect superorganismality3–8. An outstanding question is whether there are fine- 71 scale differences in the genetic mechanisms operating at different levels of 72 complexity across the spectrum of the major transition – from the simplest to most 73 complex societies. 74 A key step in the evolution of sociality is the emergence of a reproductive 75 division of labour, where some individuals commit to reproductive or non- 3 76 reproductive roles, known as queens and workers respectively in the case of insect 77 societies. An overarching mechanistic hypothesis for social evolution is that the 78 repertoire of behaviours typically exhibited in the life cycle of the solitary ancestor of 79 social species were uncoupled to produce a division of labour among group 80 members with individuals specialising in either the reproductive (‘queen’) or 81 provisioning (‘worker’) phases of the solitary ancestor9. Such phenotypic decoupling 82 implies that there will be a conserved mechanistic toolkit that regulates queen and 83 worker phenotypes in species representing different levels of social complexity 84 across the spectrum of the major transition (reviewed in10). An alternative to the 85 shared toolkit hypothesis is that the molecular processes regulating social 86 behaviours in non-superorganismal societies (where caste remains flexible, and 87 selection acts primarily on individuals) differ fundamentally from those processes that 88 regulate social behaviours in superorganismal societies 11,12. Phenotypic innovations 89 across the animal kingdom have been linked to genomic evolution: taxonomically- 90 restricted genes13–16, rapid evolution of proteins17,18 and regulatory elements17,19 91 been found in most lineages of social insects20. Indeed, some recent studies have 92 suggested that the processes regulating different levels of social complexity may be 93 different8,17,19,21. The innovations in social complexity and the shift in the unit of 94 selection (from individual- to group-level22) that occur in a major transition may 95 therefore be accompanied by shifts in genomic processes and evolution, throwing 96 into question whether the concept of a universal conserved genomic toolkit that 97 regulates social behaviours across the spectrum of the major transition may be too 98 simplistic23. The roles of conserved and novel processes are not necessarily 99 mutually exclusive; novel processes may coincide with phenotypic innovations, whilst 4 100 conserved mechanisms may regulate core processes at all stages of social 101 evolution. 102 Until recently, the data available to test these hypotheses were largely limited 103 to species that represent either the most complex – superorganismal - forms of 104 sociality (e.g. most ants, honeybees24), or the simplest forms of social complexity as 105 non-superorganisms (e.g. Polistes wasps7,25–27 and incipiently social bees28–31), the 106 latter of which likely represent the first stages in the major transition. Recent studies 107 have identified core gene sets underlying caste-differentiated brain gene expression 108 across a range of ants5 and bees8; ants lack ancestrally non-superorganismal 109 representatives and so may not be informative for studying simpler societies and, 110 putatively, the process of social evolution32. Analyses of molecular evolution across 111 two independently evolved lineages of sociality in bees showed increased levels of 112 regulatory complexity with social complexity. These insights highlight the need for a 113 fine-scale dissection of the molecular processes regulating social behaviour for 114 species representing different forms of social complexity8, but also the need to 115 consider the influence of life-history traits on gene evolution, as a selective process 116 that is independent of complexity per se. 117 A promising group for unpicking the molecular basis of social complexity are 118 the vespid wasps33, which exhibit the full diversity of social complexity among some 119 1,100 species, as well as diversity in life-history traits such as mode of colony 120 founding. Aculeate wasps are of paramount importance in studying the evolution of 121 sociality
Recommended publications
  • The Coexistence
    Division of labour and risk taking in the dinosaur ant, Dinoponera quadriceps Article (Published Version) Asher, Claire L, Nascimento, Fabio S, Sumner, Seirian and Hughes, William O H (2013) Division of labour and risk taking in the dinosaur ant, Dinoponera quadriceps. Myrmecological News, 18. pp. 121-129. ISSN 1994-4136 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/46186/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Myrmecological News 18 121-129 Vienna, March 2013 Division of labour and risk taking in the dinosaur ant, Dinoponera quadriceps (Hyme- noptera: Formicidae) Claire L.
    [Show full text]
  • International Union for the Study of Social Insects International Congress 13 - 18 July 2014 Cairns Convention Centre | Queensland, Australia PROGRAM
    International Union for the Study of Social Insects International Congress 13 - 18 July 2014 Cairns Convention Centre | Queensland, Australia PROGRAM www.iussi2014.com 1 Sponsors Contents Thank you to our sponsors Welcome .................................................... 3 and exhibitors General Information ................................... 4 Venue ......................................................... 7 Sponsors and Exhibitors Profiles ................ 8 Social Events ............................................. 11 Plenary Speakers ...................................... 13 Program Monday 14 July 2014 .......................... 23 Tuesday 15 July 2014 .......................... 39 Wednesday 16 July 2014 ..................... 57 Thursday 17 July 2014 ......................... 65 Friday 18 July 2014 .............................. 85 Posters ...................................................... 98 Poster Session 1 - Monday ....................... 99 Poster Session 2 - Tuesday ..................... 106 Poster Session 3 - Thursday .................... 112 Presenting Author Index ........................ 119 Delegate List ........................................... 127 Event Management by: ICMS Australasia Pty Ltd GPO Box 3270 Sydney NSW 2001 AUSTRALIA Ph: +61 2 9254 5000 | Fax: +61 2 9251 3552 Email: [email protected] www.icmsaust.com.au 2 Welcome The Australian Section welcomes you to the Union’s 17th Congress. This is going to be a fabulous conference in a wonderful place. The program reflects the diversity of current social
    [Show full text]
  • Sociobiology 64(1): 125-129 (March, 2017) DOI: 10.13102/Sociobiology.V64i1.1215
    Sociobiology 64(1): 125-129 (March, 2017) DOI: 10.13102/sociobiology.v64i1.1215 Sociobiology An international journal on social insects SHORT NOTE Social wasps (Vespidae: Polistinae) from an Amazon rainforest fragment: Ducke Reserve A. Somavilla1,2, M.L. de Oliveira1 Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Amazonas, Brazil Article History Abstract Social wasps are common elements in Neotropics, although Edited by even elementary data about this taxon in the Amazon region Gilberto M. M. Santos, UEFS, Brazil Received 16 October 2016 is partially unknown. Therefore the purpose of this work was Initial acceptance 13 February 2017 to increase the knowledge of social wasp fauna at the Ducke Final acceptance 14 February 2017 Reserve, Amazonas. One hundred and three species belonging to Publication date 29 May 2017 nineteen genera were recorded. The richest genera were Polybia (28 species), Agelaia (12) and Mischocyttarus (12). Seventy species Keywords Malaise Agelaia, Amazon rainforest, INPA, paper were collected in active search, 42 species using trap, wasps, Polybia. 25 in suspended trap, 20 in attractive trap and nine in light trap. Ducke Reserve has one of the highest number of Polistinae wasps Corresponding author in reserves or parks in the Neotropic region. Alexandre Somavilla Instituto Nacional de Pesquisas da Amazônia Coordenação de Biodiversidade Avenida André Araújo, 2936 Petrópolis, CEP 69067-375 Manaus, Amazonas, Brasil E-Mail: [email protected] The Polistinae social wasps comprise 26 genera and respectively (Silveira et al., 2008),Gurupi Biological Reserve 958 species, and Brazilian social wasps fauna include the with 38 species (Somavilla et al., 2014), Jaú National Park richest in the world, with 321 species (Carpenter & Marques, with 49 species (Somavilla et al., 2015) and Embrapa-Manaus 2001).
    [Show full text]
  • IUSSI, North-West European Section Autumn/Winter Newsletter 2008
    IUSSI, North-west European Section (International Union for the Study of Social Insects) Autumn/Winter Newsletter 2008 Officers of the British Section of the IUSSI President Prof. Andrew Bourke, Professor in Evolutionary Biology, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ U.K. Tel. +44 (0)1603 591868. Fax +44 (0)1603 592250. E-mail: [email protected]. Webpage: http://bioweb2.bio.uea.ac.uk/faculty/BourkeA.aspx Contact him about: inspiration, leadership, anything too challenging for Rob or Seirian to deal with. Secretary Dr Seirian Sumner, Research Fellow, Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY. Tel: +44 (0) 207 449 6617. Fax: +44 (0) 207 586 2870. Email: [email protected]. Webpage: http://www.zoo.cam.ac.uk/ioz/people/sumner.htm Contact her about: newsletter, meetings, general information. Treasurer Dr Rob Hammond, Lecturer in Evolutionary Biology, Department of Biological Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX. Tel: +44 (0)1482 465506. Fax: +44 (0)1482 465458. Email: [email protected] Webpage:http://www.hull.ac.uk/biosci/staff/academic/MolecularEcologyandEvolutio n/RobHammond.html Contact him about: membership, subscriptions to Insectes Sociaux Webmaster Dr. David Nash, Department of Population Biology, Institute of Biology, Universitetsparken 15, DK-2100 Copenhagen East, Denmark. Tel: ++45 3532 1328; Fax: ++45 3532 1250; E-mail: [email protected] Contact him with: information and suggestions for the web site Meetings site: http://www.zi.ku.dk/iussi/meetings.html Who’s who site: http://www.zi.ku.dk/iussi/newsletter.html Upcoming Meetings David Nash keeps a comprehensive and regularly updated webpage of upcoming meetings at http://www.zi.ku.dk/iussi/meetings.html#iussiuk.
    [Show full text]
  • A Molecular Concept of Caste in Insect Societies
    Accepted Manuscript Title: A molecular concept of caste in insect societies Author: Seirian Sumner Emily Bell Daisy Taylor PII: S2214-5745(17)30110-4 DOI: https://doi.org/doi:10.1016/j.cois.2017.11.010 Reference: COIS 402 To appear in: Received date: 26-9-2017 Revised date: 21-11-2017 Accepted date: 21-11-2017 Please cite this article as: Seirian SumnerEmily BellDaisy Taylor A molecular concept of caste in insect societies (2017), https://doi.org/10.1016/j.cois.2017.11.010 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 A molecular concept of caste in insect societies 2 Seirian Sumner 1 3 Emily Bell 2 4 Daisy Taylor 2 5 6 1Centre for Biodiversity and Environmental Research , Medawar Building , University 7 College London, Gower Street, London WC1E 6BT 8 9 2 School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 10 24 Tyndall Avenue, Bristol BS8 1TQ, UK 11 12 Corresponding author: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Accepted Manuscript 33 Abstract 34 The term ‘caste’ is used to describe the division of reproductive labour that defines 35 eusocial insect societies.
    [Show full text]
  • Hymenoptera: Vespidae) in Three Ecosystems in Itaparica Island, Bahia State, Brazil
    180 March - April 2007 ECOLOGY, BEHAVIOR AND BIONOMICS Diversity and Community Structure of Social Wasps (Hymenoptera: Vespidae) in Three Ecosystems in Itaparica Island, Bahia State, Brazil GILBERTO M. DE M. SANTOS 1, CARLOS C. BICHARA FILHO1, JANETE J. RESENDE 1, JUCELHO D. DA CRUZ 1 AND OTON M. MARQUES2 1Depto. Ciências Biológicas, Univ. Estadual de Feira de Santana, 44.031-460, Feira de Santana, BA, [email protected] 2Depto. Fitotecnia, Centro de Ciências Agrárias e Ambientais - UFBA, 44380-000, Cruz das Almas, BA Neotropical Entomology 36(2):180-185 (2007) Diversidade e Estrutura de Comunidade de Vespas Sociais (Hymenoptera: Vespidae) em Três Ecossistemas da Ilha de Itaparica, BA RESUMO - A estrutura e a composição de comunidades de vespas sociais associadas a três ecossistemas insulares com fisionomias distintas: Manguezal, Mata Atlântica e Restinga foram analisadas. Foram coletados 391 ninhos de 21 espécies de vespas sociais. A diversidade de vespas encontrada em cada ecossistema está significativamente correlacionada à diversidade de formas de vida vegetal encontrada em cada ambiente estudado (r2 = 0,85; F(1.16) = 93,85; P < 0, 01). A floresta tropical Atlântica foi o ecossistema com maior riqueza de vespas (18 espécies), seguida pela Restinga (16 espécies) e pelo Manguezal (8 espécies). PALAVRAS-CHAVE: Ecologia, Polistinae, manguezal, restinga, Mata Atlântica ABSTRACT - We studied the structure and composition of communities of social wasps associated with the three insular ecosystems: mangrove swamp, the Atlantic Rain Forest and the ´restinga´- lowland sandy ecosystems located between the mountain range and the sea. Three hundred and ninety-one nests of 21 social wasp species were collected.
    [Show full text]
  • Detection and Replication of Moku Virus in Honey Bees and Social Wasps
    viruses Communication Detection and Replication of Moku Virus in Honey Bees and Social Wasps Andrea Highfield 1,*, Jessica Kevill 2,3, Gideon Mordecai 1,4 , Jade Hunt 1, Summer Henderson 1, Daniel Sauvard 5 , John Feltwell 6, Stephen J. Martin 2 , Seirian Sumner 7 and Declan C. Schroeder 1,3,8,* 1 The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; [email protected] (G.M.); [email protected] (J.H.); [email protected] (S.H.) 2 School of Environmental and Life Sciences, The University of Salford, Manchester M5 4WT, UK; [email protected] (J.K.); [email protected] (S.J.M.) 3 Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA 4 Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada 5 INRAE UR633 Zoologie Forestière, 45075 Orléans, France; [email protected] 6 Wildlife Matters Consultancy Unit, Battle, East Sussex TN33 9BN, UK; [email protected] 7 Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK; [email protected] 8 School of Biological Sciences, University of Reading, Reading RG6 6LA, UK * Correspondence: [email protected] (A.H.); [email protected] (D.C.S.); Tel.: +1-612-413-0030 (D.C.S.) Received: 6 May 2020; Accepted: 26 May 2020; Published: 2 June 2020 Abstract: Transmission of honey bee viruses to other insects, and vice versa, has previously been reported and the true ecological importance of this phenomenon is still being realized.
    [Show full text]
  • Novitattes PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, NY 10024 Number 3224, 39 Pp., 26 Figures April 6, 1998
    AMIERICANt MUSEUM Novitattes PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3224, 39 pp., 26 figures April 6, 1998 A Generic Key to the Nests of Hornets, Yellowjackets, and Paper Wasps Worldwide (Vespidae: Vespinae, Polistinae) JOHN W. WENZEL' ABSTRACT The 31 genera of Vespinae and Polistinae tary Hymenoptera with which they may be con- worldwide are identified in a key to nest struc- fused. Many characteristics are illustrated or de- ture. Fifty-nine couplets and more than 80 pho- scribed here for the first time, with notes on tographs and illustrations permit both special- both anomalous species and anomalous forms ists and amateurs to recognize these nests in the of nests of common species. Pertinent published field or museum collections. A brief overview figures and museum collections are cited to explains the distinction between nests of these assist the professional in finding reference ma- social wasps and those of other social or soli- terial. INTRODUCTION All over the world, both entomologists and female (Wenzel, 1987) or millions (Zucchi et the lay public recognize and fear colonies of al., 1995). The aggressive, boldly striped social wasps. More than 900 species range adults advertise their unforgettable stings, from the Arctic to Tasmania, from prairie to and many moths, flies, and other defenseless rain forest to desert, from pristine habitats to insects have developed elaborate morpholog- industrial cities. Their sophisticated, all-fe- ical and behavioral mimicry to benefit from male societies provided the inspiration for a general desire among most animals to several of the major discoveries in insect be- avoid wasps.
    [Show full text]
  • September 2013
    IUSSI North-west European section International Union for the Study of Social Insects Autumn Newsletter 2013 President Prof. Mark Brown School of Biological Sciences Royal Holloway University of London [email protected] http://pure.rhul.ac.uk/portal/en/persons/mark- brown_77a0e94b-96b7-4118-a740-163e7867e3b1.html +44 (0)1784 276443 Secretary Dr. Elli Leadbeater School of Biological Sciences Royal Holloway University of London [email protected] http://pure.rhul.ac.uk/portal/en/persons/elli- leadbeater(a2edc845-5d79-4c83-bab4-6c58102f485f).html +44 (0)1784 443547 Contact her about: Newsletter, meetings, general information Treasurer Prof. William Hughes School of Life Sciences University of Sussex [email protected] http://www.sussex.ac.uk/lifesci/hugheslab/ +44 (0)1273 872751 Contact him about: Membership, student grants Webmaster Dr. David Nash Centre for Social Evolution University of Copenhagen [email protected] http://www.zi.ku.dk/personal/drnash/ Contact him about: Website queries or suggestions Announcements The IUSSI NW Europe section 2013 Winter Meeting (www.iussi.org/NWEurope/meetings.htm): This year’s meeting will take place at Royal Holloway, University of London, on Monday and Tuesday the 16th and 17th December (giving you the opportunity to spend a weekend in London beforehand, if you're coming from afar). The timetable will run from 9-10 on the Monday morning until around lunchtime on the Tuesday (a detailed timetable and agenda will be posted closer to the date). Royal Holloway's 135-acre campus is one of the most beautiful in the world with bars, cafés,and high-quality accommodation.
    [Show full text]
  • Universidade De São Paulo Ffclrp
    UNIVERSIDADE DE SÃO PAULO FFCLRP - DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA “Influência do tamanho do fragmento na diversidade de Hymenoptera Sociais (Apidae; Apinae: Apini, Vespidae; Polistinae, Formicidae) em fragmentos remanescentes de Floresta Estacional Semidecidual do Noroeste do Estado de São Paulo: uma análise preliminar” Simony Lavezzo Coró Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: Entomologia RIBEIRÃO PRETO -SP 2010 UNIVERSIDADE DE SÃO PAULO FFCLRP - DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA “Influência do tamanho do fragmento na diversidade de Hymenoptera Sociais (Apidae; Apinae: Apini, Vespidae; Polistinae, Formicidae) em fragmentos remanescentes de Floresta Estacional Semidecidual do Noroeste do Estado de São Paulo: uma análise preliminar” Simony Lavezzo Coró Orientador: Prof. Dr. Fernando Barbosa Noll Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: Entomologia RIBEIRÃO PRETO -SP 2010 Coró, Simony Lavezzo Influência do tamanho do fragmento na diversidade de Hymenoptera Sociais (Apidae; Apinae: Apini, Vespidae; Polistinae, Formicidae) em fragmentos remanescentes de Floresta Estacional Semidecidual do Noroeste do Estado de São Paulo: uma análise preliminar, 2010. 146 p.: il.; 30 cm. Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/ USP. Área de concentração: Entomologia. Orientador: Noll, Fernando Barbosa. 1. Hymenoptera sociais 2. Fragmentação 3. Diversidade 4. Conectividade 5. Guildas Dedicatória Aos meus pais, Odari e Rosi, por todo amor, apoio e confiança, dedico.
    [Show full text]
  • Comparative Morphology of the Stinger in Social Wasps (Hymenoptera: Vespidae)
    insects Article Comparative Morphology of the Stinger in Social Wasps (Hymenoptera: Vespidae) Mario Bissessarsingh 1,2 and Christopher K. Starr 1,* 1 Department of Life Sciences, University of the West Indies, St Augustine, Trinidad and Tobago; [email protected] 2 San Fernando East Secondary School, Pleasantville, Trinidad and Tobago * Correspondence: [email protected] Simple Summary: Both solitary and social wasps have a fully functional venom apparatus and can deliver painful stings, which they do in self-defense. However, solitary wasps sting in subduing prey, while social wasps do so in defense of the colony. The structure of the stinger is remarkably uniform across the large family that comprises both solitary and social species. The most notable source of variation is in the number and strength of barbs at the tips of the slender sting lancets that penetrate the wound in stinging. These are more numerous and robust in New World social species with very large colonies, so that in stinging human skin they often cannot be withdrawn, leading to sting autotomy, which is fatal to the wasp. This phenomenon is well-known from honey bees. Abstract: The physical features of the stinger are compared in 51 species of vespid wasps: 4 eumenines and zethines, 2 stenogastrines, 16 independent-founding polistines, 13 swarm-founding New World polistines, and 16 vespines. The overall structure of the stinger is remarkably uniform within the family. Although the wasps show a broad range in body size and social habits, the central part of Citation: Bissessarsingh, M.; Starr, the venom-delivery apparatus—the sting shaft—varies only to a modest extent in length relative to C.K.
    [Show full text]
  • Nesting of Social Wasps (Hymenoptera: Vespidae) in a Riparian Forest of Rio Das Mortes in Southeastern Brazil
    Acta Scientiarum http://www.uem.br/acta ISSN printed: 1679-9283 ISSN on-line: 1807-863X Doi: 10.4025/actascibiolsci.v36i2.21460 Nesting of social wasps (Hymenoptera: Vespidae) in a riparian forest of rio das Mortes in southeastern Brazil Marcos Magalhães de Souza1, Epifânio Porfiro Pires2*, Abner Elpino-Campos3 and Júlio Neil Cassa Louzada4 1Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas, Campus Inconfidentes, Inconfidentes, Minas Gerais, Brazil. 2Departamento de Entomologia, Universidade Federal de Lavras, Cx Postal 3037, 37200-000, Lavras, Minas Gerais, Brazil. 3Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. 4Setor de Ecologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. The survival of social wasp species depends on the success in founding new nests. These species can use plant species with different specific characteristics for nesting, with nest architecture varying according to the habits of those plant species. The nesting of social wasps in natural environments was studied in the period from October 2005 to September 2007 in the rio das Mortes riparian forest, municipal district of Barroso, Minas Gerais State, Brazil, with the objective of evaluating the different types of plant substrate used by social wasps for nesting, and to investigate whether there is a relationship between nest construction type and the habits of plant species. A total of 171 colonies of social wasps belonging to 29 species were recorded, which used 78 plant species as nesting substrate (76 Angiosperms and two Pteridophytes) of arbustive, herbaceous, arboreal, epiphyte and liana habits.
    [Show full text]