Morphological Variation of Allagoptera Arenaria (Gomes) Kuntze, 1891

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Variation of Allagoptera Arenaria (Gomes) Kuntze, 1891 Brazilian Journal of Biological Sciences, 2019, Vol. 6, No. 14, p. 515-520. ISSN 2358-2731 https://doi.org/10.21472/bjbs.061404 Morphological variation of Allagoptera arenaria (Gomes) Kuntze, 1891 (Arecaceae) in continental and insular environment Ana Paula Jejesky de Oliveira* and Amanda Toledo Lourenço Ecology and Ecosystems Postgraduate Program. Vila Velha University. Vila Velha-ES, Brazil (CEP 29102-920). *Email: [email protected]. Abstract. Various evolutionary and ecological aspects in isolated environments, such as islands, associated with speciation events, Received play a role in biological diversification. In this sense, the Octuber 30, 2019 morphological characteristics of Allagoptera arenaria (Gomes) Kuntze, 1891 (Arecaceae) species on mainland and island were Accepted December 21, 2019 evaluated to detect possible differences that reflect adaptive responses to the island environment. This study provides the Released first demonstration on the relationship of morphological December 31, 2019 differences of A. arenaria species. Height, perimeter, and total number of fruits and flowers from each plant were used for Full Text Article nonparametric analysis using the Mann-Whitney U test. The plants of the island did not show evident patterns in the different morphological characteristics of the plants of the continent. It is believed that the species may not be a good representative of adaptive evidence for islands. Keywords: Island biogeography; Guriri; Morphology; Speciation; Seashore palm; Plant. 0000-0003-2933-9764 Ana Paula Jejesky de Oliveira 0000-0003-0877-3270 Amanda Toledo Lourenço Introduction reduced size and isolation of the islands, scarcity of resources, decrease of Considering evolutionary aspects competition interspecific, lack of subject to isolation patterns, immigration predators and restrictions to dispersal and extinction rates and environmental over long distances are closely linked to patterns, they are targets for studies of the distribution and evolution of island biogeography (Petrocchi et al., populations to islands (Lomolino, 2005). 2013). Some ecological factors like the ISSN 2358-2731/BJBS-2019-0083/2019/6/14/4/515 Braz. J. Biol. Sci. http://revista.rebibio.net 516 Oliveira and Lourenço Species of isolated islands often of Guarapari and the extreme south of differ dramatically in size in comparison the Municipality of Vila Velha with their relatives on the continent, for (20° 35’ 04” S and 40° 25’ 27” W) around reasons that are little understood. the Parque Estadual Paulo César Vinha Although decades of research have (PEPCV), cut in half by the Highway of sought to better understand the changes the Sun. The APA Setiba presents 12.960 in size and other characteristics in ha of territorial extension, where, 7.500 animals that occur on islands, very few ha are in terrestrial environment, and studies have investigated the changes of 5.460 ha in the marine environment size in plants island (Burns, 2016). (archipelago of Three Islands, comprising There are some hypotheses for the largest APA State. The APA Setiba understanding the morphological works as a buffer zone to the Parque variation. In the event of a variation of Estadual Paulo Cesar Vinha (PEPCV). the niche is expected that the morphological variation overlaps Characterization of the kind of positively with the amplitude of the niche study (Van Valen, 1965). Another prediction Allagoptera arenaria (Gomes) under this hypothesis is that the Kuntze, 1891 is a palm in the Family morphological variation increases on Arecaceae, with a maximum height of islands (Meiri et al., 2005). The approximately 1.5 m and 2.0 m diameter populations of these islands face less cup. It is a kind monoic and distributes species competitors, and the increase of on the plain of Brazil, occurring from morphological variation may facilitate Sergipe to Paraná, in the dunes or areas the occupation of the space of the niche of restinga, in soils, extremely sandy soils available (Grant, 1965; Lomolino, 2005). (Lorenzi et al., 2004). It is one of the Alternatively, you can become less main facilitators in the succession of pronounced in the islands, contrary to thickets in the formation bushy of Clusia the predictions of the hypothesis of (Zaluar and Scarano, 2000), since it variation of the niche. This can result in germinates easily under natural the reduction of the diversity of habitats, conditions, and accumulates organic abundance of resources, gene flow, or of matter in the soil, allowing the the fluctuations of the cycle of taxa establishment of other species (Menezes (Ricklefs and Bermingham, 2002; Meiri and Araujo, 2000). et al., 2005). In this sense, we aimed to Collection and analysis compare attributes morphological The collection of the data was Allagoptera arenaria (Gomes) Kuntze, performed in species of the mainland and 1891 (Arecaceae) present on the island of the island in two days in the month of and the mainland, aiming to detect April of 2018. Each plant adult possible differences that reflect adaptive reproductive stage of the species and responses to the environment of the Allagoptera arenaria were marked as to island. its location by GPS, and measures such as the height and circumference total was Material and methods checked by means of a measuring tape. Information about the number of fruiting Area of study and number of flowering were also The study was developed in the recorded. Area of Environmental Protection of To check the normality of the Setiba (APA Setiba), created by Decree data, it was used the Shapiro-Wilk Test. 3.747-N/1994, which is located between The assessment of the morphological the northeast region of the Municipality variation and amount of fruiting of the Braz. J. Biol. Sci., 2019, Vol. 6, No. 14, p. 515-520. Morphological variation of Allagoptera arenaria 517 Figure 1. Graphical representations of morphological data of Allagoptera arenaria environment of the islands and mainland. In A represents the data of height of the individuals of the island and the mainland with a slight indication of plants island the largest. In B describes the data of the circumference practically equal in the two environments. In C describes the data of flowering of individuals in the two environments. In the D informs the data of fruiting, mature or not in plants the insular and continental. environment of the islands and the Results continental was used the non-parametric test U of Mann-Whitney Test. Using the Shapiro-Wilk Test, it was found the abnormality of the data. Braz. J. Biol. Sci., 2019, Vol. 6, No. 14, p. 515-520. 518 Oliveira and Lourenço With the U Test of Mann-Whitney test, effect on morphological characteristics the mature plants on the mainland and (Table 1). on the island did not show any significant Table 1. Results of the U Test of Mann-Whitney for morphological data of Allagoptera arenaria environment of the islands and continental. U test: Environment in insular and continental Height x Local Circumference x Fruiting x Local Flowering x Latitude x Local Local Local U= 189.5 U= 177.5 U= 141.5 U= 117.5 U = 257 p-value= p-value= 0.1396 p-value= p-value= 0.4204 p-value = 1.172e- 0.0562 0.8554 06 It was found that plants of the the islands. The population densities of island did not differ consistently in the species in the island are also much measurements of height, circumference, higher than that of the mainland number of fruiting or flowering and as (MacArthur et al., 1972; Rodda and Dean- the latitude between the plants of Bradley, 2002). However, the results of Allagoptera arenaria when compared to this study did not indicate significant the plants of the same species on the differences to confirm these hypotheses mainland (Figure 1). (Figure 1). According to Cody and Overton Discussion (1996), morphological changes associated with the reduced ability of Many processes are hypothesized dispersal in plants island can evolve very to promote change in taxa island. The quickly, perhaps in less than a decade. competition for limited resources might However, assuming the results are not promote morphological changes significant for the data of Allagoptera (Blondel, 2000; Millien, 2004), as well as arenaria, they also do not express the climatic differences (Clegg and Owens, hypothesis of Cody and Overton (1996). 2002; Millien and Damuth, 2004), It is believed that the sample number of changes in resource availability (Boyer individuals of the island may be small or and Jetz, 2010; McNab, 2010) and even the evolutionary time can be short different rates of evolutionary change on to highlight possible differences. the island (Anderson and Handley, In his study of island evolution, 2004). The sizes of the leaves, stems, and Carlquist (1974) speculated that changes seeds, for example, can evolve in a in the height of island plants could result coordinated fashion (Corner, 1949). from differences in the types of habitat The islands usually support fewer that plants can occupy on islands. Thus, species than areas of similar size on the the decline or increase in plant height in mainland (MacArthur and Wilson 2001; island plants may result from structural Whittaker and Fernández-Palacios, changes in their preferred habitat. 2007). However, Darwin (1859) had However, the population of Three Islands already raised the hypothesis that the showed no significant differences. In this increase of competition intraspecific sense, it also becomes opposed to the should favor the evolution of plants on variation hypothesis proposed by Meiri Braz. J. Biol. Sci., 2019, Vol. 6, No. 14, p. 515-520. Morphological variation of Allagoptera arenaria 519 et al. (2005), supported by the niche Blondel, J. Evolution and ecology of birds on variation hypothesis (Van Valen, 1965) islands: Trends and prospects. Vie et Milieu, because in this study it was not predicted v. 50, no. 4, p. 205-220, 2000. that the morphological variability is Boyer, A.
Recommended publications
  • Anatomia Foliar De Allagoptera Nees (Arecaceae) Como Subsídio À
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Dissertação de Mestrado Anatomia foliar de Allagoptera Nees (Arecaceae) como subsídio à taxonomia André Silva Pinedo Orientadora: Profª Drª Sueli Maria Gomes Brasília, março de 2015 i Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Dissertação de Mestrado Anatomia foliar de Allagoptera Nees (Arecaceae) como subsídio à taxonomia Dissertação apresentada ao Programa de Pós- Graduação em Botânica da Universidade de Brasília como um dos requisitos para obtenção do título de Mestre em Botânica. André Silva Pinedo Orientadora: Profª Drª Sueli Maria Gomes Brasília, março de 2015 ii Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Banca examinadora: iii Agradecimentos Primeiramente a Deus, sou eternamente grato pela minha vida, pela oportunidade proporcionada e pela capacitação de estar realizando este curso de pós-graduação, que tem sido uma grande experiência de amadurecimento para mim; À minha orientadora, Profª. Drª. Sueli Maria Gomes, pela sua paciência ao me ensinar e constantes críticas construtivas que fez ao longo do período em que trabalhamos juntos, que fizeram desse mestrado uma grande oportunidade para o meu crescimento profissional; À Profª. Drª. Renata Corrêa Martins, por sua parceria nesse projeto, auxiliando na coleta e identificação das espécies, além de ser uma profissional extremamente prestativa; À Profª. Drª. Cássia Munhoz, minha orientadora em estágio de Iniciação Científica na graduação, motivando-me a trabalhar com plantas; Ao Prof. Dr. Eduardo Gomes Gonçalves, por ter me incentivado a trabalhar com o grupo das palmeiras; À Profª.
    [Show full text]
  • Evaluate, Ornamental Palm, Edible Fruit, Rhizomatous, Mammal
    Family: Arecaceae Taxon: Allagoptera arenaria Synonym: Cocos arenaria Gomes (basionym) Common Name: seashore palm coco da praia Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 2 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 n 406
    [Show full text]
  • Allagoptera and Diplothemium
    19621 MOORE:ALLAGOPTERA 2a place the nuts on an up-turned axehead seeds"like babassu.to enter the U.S.A. and beat them into splinters with a piece free of the three-cents tax levied on of hardwood. Thus they removethe ker- copra. This brought a storm of protest nels, 80,000 tons of them a year. from the Middle West. Governor Lan- Another story worth telling is that don, the Republican candidate and Roosevelt'sopponent, made the most of of the furoi causedduring Franklin D. the situation and Republican newspapers Roosevelt's secbnd presidential cam- published, with big headlines, articles paign. The subject was babassi. Roose- "What with captions such as is ba- velt, in his Good Neighbor Policy, had bassu?" So babasstiplayed a part in signed an agreement with Brazil (itt U.S. politics, even in a presidential elec- 1935) to allow certain vegetable oil- tion. AllagopteraAnd Diplothemium HenoroE. Moons,Jn. The small palm genus Diploiltemiu,rn vation outside botanical gardens re- (about five species) occurs in Brazil cently, it may be helpful to point out and Paraguay. It was described by the correct names to be used at present Martius in IB24 and was elaboratedby under the International Code ol Botani- him in 1826 to include four species, cal Nomenclature (1956) and to com- one of which, D. caud,escens,has since ment briefly on these names. been separated as Polyantlrococos cau- Allagoptera was described by C. G. d,escens(Martius) Barbosa Rodrigues. Nees in a list of corrections and addi- Still later, in 1845, Martius describeda tions following the appendix to the sec- {i{th species (since variously placed in ond volume of Prince Maximilian of Iubaea, Polyandrococos and Paraju- Wied-Neuwied's rtejse nach Brasilien, baea) and equated Diplothemiurzr.with Allagoptera which had been describecl an account of the Prince's travels in in 1821.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • Species Convergence Into Life-Forms in a Hyperseasonal Cerrado in Central Brazil Silva, IA.* and Batalha, MA
    Species convergence into life-forms in a hyperseasonal cerrado in central Brazil Silva, IA.* and Batalha, MA. Laboratório de Ecologia Vegetal, Departamento de Botânica, Universidade Federal de São Carlos – UFSCar, CP 676, CEP 13565-905, São Carlos, SP, Brazil *e-mail: [email protected] Received September 21, 2006 – Accepted November 30, 2006 – Distributed May 31, 2008 (With 3 figures) Abstract Whether the functional structure of ecological communities is deterministic or historically contingent is still quite con- troversial. However, recent experimental tests did not find effects of species composition variation on trait convergence and therefore the environmental constraints should play the major role on community convergence into functional groups. Seasonal cerrados are characterized by a sharp seasonality, in which the water shortage defines the community functioning. Hyperseasonal cerrados experience additionally waterlogging in the rainy season. Here, we asked whether waterlogging modifies species convergences into life-forms in a hyperseasonal cerrado. We studied a hyperseasonal cerrado, comparing it with a nearby seasonal cerrado, never waterlogged, in Emas National Park, central Brazil. In each area, we sampled all vascular plants by placing 40 plots of 1 m2 plots in four surveys. We analyzed the species convergences into life-forms in both cerrados using the Raunkiaer’s life-form spectrum and the index of divergence from species to life-form diversity (IDD). The overall life-form spectra and IDDs were not different, indicating that waterlogging did not affect the composition of functional groups in the hyperseasonal cerrado. However, there was a seasonal variation in IDD values only in the hyperseasonal cerrado. As long as we did not find a seasonal variation in life-form diversity, the seasonal variation of convergence into life-forms in the hyperseasonal cerrado was a conse- quence of the seasonal variation of species diversity.
    [Show full text]
  • A “World of Palms” at Gardens by the Bay, Singapore
    PALMS van der Schans & Loo: Gardens by the Bay Vol. 59(4) 2015 A “World of ANTON S. VAN DER SCHANS Palms” at AND ADRIAN H.B. LOO Gardens by the Bay, Gardens by 18 Marina Gardens Drive Singapore 018953, the Bay, Republic of Singapore. adrian.loo@gardensbythebay. Singapore com.sg Since its official opening in June 2012, Gardens by the Bay has welcomed over 18 million visitors. The gardens, built right in the heart of Singapore’s new downtown and developed over reclaimed land, comprise three waterfront gardens, namely, Bay South, Bay East and Bay Central, altogether spanning 101 hectares. The 54-hectare Bay South is the largest of the orchid flower motif are gardenesque three and currently the most developed with horticultural displays centered on two main two cooled conservatories (a 1.2-hectare Flower themes – “Plants and People” and “Plants and Dome and the 0.8-hectare Cloud Forest) as Planet.” The map in Fig. 1 shows part of Bay well as 18 Supertrees that range from 25 to 50 South and serves as a reference for sections m in height. Amidst these Supertrees, a 128 m being described further below. long walkway suspended at a height of 22 m allows a panoramic view of the gardens, the Plants and People – The Heritage Gardens waterfront and the city skyline. The inspiration and the Flower Dome for the Supertrees came from the giant Karri (Eucalyptus diversicolor) trees from the Valley The Indian, Chinese, Malay and Colonial of the Giants in Walpole-Nornalup National Gardens form the Heritage-themed gardens Park, Western Australia.
    [Show full text]
  • UFFLORIDA IFAS Extension
    ENH854 UFFLORIDA IFAS Extension Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction The term "low-maintenance" refers to a plant that does not require frequent maintenance-such as This publication was developed in response to regular watering, pruning, or spraying-to remain requests from participants in the Florida Yards & healthy and to maintain an acceptable aesthetic Neighborhoods (FYN) program in Miami-Dade quality. A low-maintenance plant has low fertilizer County for a list of recommended landscape plants requirements and few pest and disease problems. In suitable for south Florida. The resulting list includes addition, low-maintenance plants suitable for south over 350 low-maintenance plants. The following Florida must also be adapted to--or at least information is included for each species: common tolerate-our poor, alkaline, sand- or limestone-based name, scientific name, maximum size, growth rate soils. (vines only), light preference, salt tolerance, and other useful characteristics. An additional criterion for the plants on this list was that they are not listed as being invasive by the Criteria Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws This section will describe the criteria by which (Burks, 2000). Miami-Dade County does have plants were selected. It is important to note, first, that restrictions for planting certain species within 500 even the most drought-tolerant plants require feet of native habitats they are known to invade watering during the establishment period. Although (Miami-Dade County, 2001); caution statements are this period varies among species and site conditions, provided for these species.
    [Show full text]
  • Allagoptera Caudescens in PALM BEACH COUNTY
    GROWING Allagoptera caudescens IN PALM BEACH COUNTY Submitted by Charlie Beck I first saw Allagoptera GROWING CONDITIONS IN OUR GARDEN (formerly Polyandrococus) FOR Allagoptera caudescens caudescens while touring Dale Holton’s garden. I came upon Location 4 miles from ocean in suburban Lantana this unique palm and it stopped me in my tracks. The top side Soil Sand over a layer of hardpan (pineland flatwood habitat) of the frond looked like a dark green coconut leaf but the Irrigation ¾ inch applied twice a week underside of the leaf was as Flooding Periodic inundation in sandy soil acceptable white as any Astrocaryum or Cryosophila. Dale informed Fertilization 3 times a year with Palm special analysis me it was then known as Polyandrococos caudescens Light Shade and was native to Brazil. Polyandrococos was a Micronutrient Deficiencies None observed monotypic genus but was combined with Allagoptera. Insect Damage None observed Allagoptera is closely related to Attalea, Lytocaryum, and Hurricane Resistance Excellent Syagrus. Allagoptera caudescens is a monoecious palm with a solitary stem usually 12 to 24 feet tall in habitat, but the stem can also be short or subterranean. The fronds are pinnate with an extremely short petiole. These palms are native to lowland tropical rainforest along the coast of Brazil at elevation of up to 1,000 feet. They are reported to persist in cleared areas which indicate they will tolerate full sun exposure. I have three specimens planted in the shade in an area which is prone to flooding during heavy rain. Dale Holton and Ruth Sallenbach also have their palms planted in the shade.
    [Show full text]
  • NAPPRA Plants from the Prohibited Articles List
    NAPPRA plants from the Prohibited Articles list (7CFR319.37-2a) (includes seeds only if specifically mentioned): (Restructure Rule, April 18, 2018) For details of import requirements see Plants for Planting Manual, Chapter Six https://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/plants_for_planting.pdf Abelmoschus spp. (okra) Abies spp. (fir) Adonidia spp (Arecaceae) Aeglopsis spp. seed (Rutaceae) Aiphanes spp. (coyure, ruffle, and spine palm) (Arecaceae) Allagoptera arenaria (Arecaceae) Althaea spp. (althaea, hollyhock) Areca spp (Arecaceae) Arenga spp. (sugarpalm) (Arecaceae) Atalantia spp. seed (Rutaceae) Balsamocitrus spp. seed (Rutaceae) Bambuseae (seeds, plants, and cuttings) Berberis spp. (barberry, includes Mahoberberis and Mahonia spp.) (plants of all species and horticultural varieties not designated as resistant to black stem rust) Berberis spp. (barberry, includes Mahoberberis and Mahonia spp.) destined to an eradication State (plants of all species and horticultural varieties designated as resistant to black stem rust) Berberis spp. (barberry, includes Mahoberberis and Mahonia spp.) seed Bergera spp. seed (Rutaceae) Blighia sapida (akee) Borassus spp. (palmyra palm) (Arecaceae) Brugmansia spp. Calodendrum spp. seed (Rutaceae) Caryota spp. (fishtail palm) (Arecaceae) Castanea spp. (chestnut) Chrysanthemum spp. (chrysanthemum, includes Dendranthema spp.) Citrofortunella spp. seed (Rutaceae) xCitroncirus spp. seed (Rutaceae) Citrus spp. seed (Rutaceae) Clausena spp. seed (Rutaceae) Cocos spp. (other than Cocos nucifera) (Arecaceae) Cocos nucifera (coconut) (including seed) (Coconut seed without husk or without milk may be imported into the United States in accordance with §319.56-11) Corypha spp. (Arecaceae) Crocosmia spp. (montebretia) Crocosmia spp. (montebretia), except bulbs in commercial shipments Datura spp. Dendranthema spp. (chrysanthemum) Dictyosperma spp. (Princess palm) (Arecaceae) Dracaena spp. Dypsis spp.
    [Show full text]
  • Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene Ndhf Thomas J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 4 2006 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Thomas J. Givnish University of Wisconsin-Madison J. Chris Pires University of Wisconsin-Madison; University of Missouri Sean W. Graham University of British Columbia Marc A. McPherson University of Alberta; Duke University Linda M. Prince Rancho Santa Ana Botanic Gardens See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Givnish, Thomas J.; Pires, J. Chris; Graham, Sean W.; McPherson, Marc A.; Prince, Linda M.; Patterson, Thomas B.; Rai, Hardeep S.; Roalson, Eric H.; Evans, Timothy M.; Hahn, William J.; Millam, Kendra C.; Meerow, Alan W.; Molvray, Mia; Kores, Paul J.; O'Brien, Heath W.; Hall, Jocelyn C.; Kress, W. John; and Sytsma, Kenneth J. (2006) "Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/4 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Authors Thomas J. Givnish, J. Chris Pires, Sean W. Graham, Marc A. McPherson, Linda M. Prince, Thomas B. Patterson, Hardeep S. Rai, Eric H. Roalson, Timothy M. Evans, William J. Hahn, Kendra C. Millam, Alan W. Meerow, Mia Molvray, Paul J. Kores, Heath W. O'Brien, Jocelyn C. Hall, W. John Kress, and Kenneth J. Sytsma This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 4 Aliso 22, pp.
    [Show full text]
  • Phylogenetic Analysis of Attalea (Arecaceae): Insights Into the Historical Biogeography of a Recently Diversified Neotropical Plant Group
    Botanical Journal of the Linnean Society, 2016, 182, 287–302. With 3 figures Phylogenetic analysis of Attalea (Arecaceae): insights into the historical biogeography of a recently diversified Neotropical plant group CINTIA FREITAS1,2*, ALAN W. MEEROW3, JEAN-CHRISTOPHE PINTAUD4†, ANDREW HENDERSON1, LARRY NOBLICK5, FLAVIA R. C. COSTA6, CARLOS E. BARBOSA6 and DAVID BARRINGTON2 1The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA 2Plant Biology Department, University of Vermont, 63 Carrigan Drive, Burlington, VT 05405, USA 3USDA-ARS, National Germplasm Repository, 13601 Old Cutler Road, Miami, FL 33158, USA 4UMR 232 DIADE/DYNADIV, Institut de Recherche pour le Developpement (IRD), BP 64501, 911 avenue Agropolis, F-34394 Montpellier, France 5Montgomery Botanical Center, 11901 Old Cutler Rd, Coral Gables, FL 33156, USA 6Instituto de Pesquisas da Amazo^nia, Av. Ephigenio^ Sales 2239, CEP 69011-970, Manaus, Amazonas, Brazil Received 21 September 2015; revised 20 May 2016; accepted for publication 28 June 2016 We present a dated phylogenetic tree for the Neotropical genus Attalea (Arecaceae). We used six orthologues from the nuclear WRKY gene family across 98 accessions to address relationships among species and biogeographical hypotheses. We found that the formerly recognized groups within Attalea are not monophyletic and therefore there is no support for multiple genera as previously thought. Species of Attalea-like palms from the Atlantic forest form a well-supported clade sister to the Attalea species from Amazonia, the Andean valleys and Mesoamerica. Dates for the main divergence events suggest a relationship with the development of the dry forests that now span eastern South America and the now-lost Pebas Lake region in the western Amazon.
    [Show full text]
  • Field Guide to the Palms of Rio De Janeiro State, Brazil
    PALM S Henderson: Palms of Rio de Janeiro Vol. 53(4) 2009 Field Guide to the Palms ANDREW HENDERSON New York Botanical Garden Bronx, New York 10458 of Rio de USA Janeiro State, Brazil This Guide is designed specifically for the participants in the IPS Rio Biennial, but will allow anyone to identify naturally occurring palms within Rio de Janeiro State and in adjacent areas of São Paulo, Minas Gerais, and Espírito Santo. Note that cultivated palms (of which there are 4b. Leaflets green, rarely silvery-gray on the many in Rio) are not included. I have lower surfaces; fruits not spiny . Bactris indicated, for each species, sites in Rio de 5a. Leaf sheaths forming a distinct crownshaft; Janeiro State where they may be found, mostly inflorescences borne below the crown-shaft . National Parks or other protected areas. So, . Euterpe enjoy the Biennial, and don’t forget to bring this guide! 5b. Leaf sheaths not forming a crownshaft; inflorescences borne amongst the leaves . 6. Key to the Genera 6a. Stems slender, brown, ringed, 1–4.5 cm tall 1a. Spiny palms . 2. and 1–4 cm diameter; fruits small, black, to 1b. Non-spiny palms . 5. 1.5 cm long . Geonoma 6b. Stems short and subterranean or stout, not 2a. Climbing or scrambling palms; leaf tips ringed, 5–25 m tall, 10–35 cm diameter; fruits with hooks instead of leaflets . Desmoncus larger, brown or greenish, to 9 cm long . 7. 2b. Non-climbing palms; leaf tips without 7a. Inflorescences unbranched, with the fruits hooks . 3. densely crowded . Allagoptera 3a.
    [Show full text]