The Rhizobiome of Vachellia (Acacia) Woodlands Surrounding Witwatersrand Gold and Uranium Mine Tailings

Total Page:16

File Type:pdf, Size:1020Kb

The Rhizobiome of Vachellia (Acacia) Woodlands Surrounding Witwatersrand Gold and Uranium Mine Tailings The rhizobiome of Vachellia (Acacia) woodlands surrounding Witwatersrand gold and uranium mine tailings Michelle Toni Buck A Thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment for the degree of Doctor of Philosophy Declaration I, Michelle Toni Buck (Person number: 322062), am a student registered for the degree of Doctor of Philosophy (PhD) in the academic year 2018. I hereby declare the following: I am aware that plagiarism (the use of someone else‟s work without their permission and/or without acknowledging the original source) is wrong. I confirm that the work submitted for assessment for the above degree is my own unaided work except where I have explicitly indicated otherwise and acknowledged. In this context, I understand that the use of editing services is considered airded work and must be declared. I have not submitted this work before for any other degree or examination at this or any other University. The informationing used in the Thesis HAS NOT been obtained by me while employed by, or working under the aegis of, any person or organization other than the University. I have followed the required conventions in referencing the thoughts and ideas of others. I understand that the University of the Witwatersrand may take disciplinary action against me if there is a belief that this is not my own unaided work or that I have failed to acknowledge the source of the ideas or words in my writing Signature: Date: 8th August 2018 i Abstract Phytoremediation of mine tailings and surrounding areas provide the most cost-effective means of alleviating their pollutant effects. Research has shown that successful revegetation of mine tailings and surrounding areas can be optimised by providing appropriate microbial symbionts for the plants. Microorganisms are beneficial to plant growth and health which is essential for revegetation and phytoremediation of contaminated sites. The aim of this study was to assess the microbial status of Vachellia karroo rhizosphere currently growing on the surrounding areas of two mining operations, namely Vaal River (VR) and West Wits (WW) Operations. Metataxonomy is the study/use of genetic material isolated from field/environmental samples. It has been reported from metataxonomy studies that a large amount of microbial biodiversity had been missed by cultivation-based methods. Metataxonony allows for an unbiased genetic analysis from all members of the sampled community since it is a PCR directed sequencing approach for identification. Root and soil samples were collected in spring, roots were removed and physio-chemical analyses were preformed on the soil, including pH, conductivity, cation exchange capacity and XRF analysis. The soil samples were then prepared for DNA extraction by mixing/bulking 5 g of soil for each niche site and control. Then 500 mg of soil was used to extract DNA using the DNeasy® PowerSoil® Kit (Qiagen). Target genes, namely the 16S rRNA V1-V3 hypervariable region and the ITS2 hypervariable region, were sequenced at Molecular Research LP MR DNA (http://www.mrdnalab.com), Texas. The rhizosphere bacterial communities of V. karroo from VR Operations was predominantly comprised of Acidobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, Firmicutes, Planctomycetes, Gemmatimonadetes, (between 1 % and 47 % depending on the niche sites and controls) and the remainder of the phyla (Chloroflexi, Armatimonadetes, Nitrospirae, Candidatus Saccharibacteria, candidate division WPS-1 and candidate division WPS-2) were less than 1 %. The numbers all represent the average percentage of sequences across 14 phyla. For WW Operations the bacterial communities were predominantly comprised of Actinobacteria, Acidobacteria, Planctomycetes, Verrucomicrobia, Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, (between 0.7 % and 41.4 % depending on the niche sites and controls) and the remainder of the phyla (candidate division WPS-1, candidate division WPS-2, Armatimonadetes, Candidatus Saccharibacteria, Nitrospirae and Cyanobacteria/Chloroplast) were around 1 %. The numbers all ii represent the average percentage of sequences across 15 phyla. The rhizosphere fungal communities of V. karroo from VR Operations was predominantly comprised of Ascomycota (Sordariomycetes, Dothideomycetes, Eurotiomycetes, Ascomycota_unidentified, Leotiomycetes and Incertae_sedis_14); Zygomycota (Incertae_sedis_10); Basidiomycota, Agaricomycetes, Atractiellomycetes, Tremellomycetes (between 0.01 % and 77.1 % depending on the niche sites and controls) and to a lesser degree Glomeromycota (Glomeromycetes) and Fungi_unidentified (between 0.2-6 % depending on the niche sites and controls). The numbers all represent the average percentage of sequences across 12 classes. For WW Operations the fungal communities were predominantly comprised of Ascomycota (Sordariomycetes, Dothideomycetes, Eurotiomycetes, Ascomycota_unidentified, Leotiomycetes and Archaeorhizomycetes), Zygomycota (Incertae_sedis_10), Basidiomycota, Agaricomycetes, Tremellomycetes, Atractiellomycetes, Basidiomycota_unidentified, Fungi_unidentified and Glomeromycota (Glomeromycetes) (between 0.01 % and 91.42 % depending on the niche sites and controls). The numbers all represent the average percentage of sequences across 13 classes. The study represents a first report utilising metataxonomic tools in the analysis of the rhizobiome of V. karroo from areas around mine tailings. The results will assist in making decisions about future microbial surveys and applying microbial inoculum in revegetation of mine waste sites and the affected areas. Key words: mine tailings, revegetation, Vachellia karroo, metataxonomy, ITS2, 16S rRNA iii Dedication I would like to dedicate this project to Alexander Spruyt (fondly known as Lexx) who thought up the initial project and who I wish was here to continue his own research. “This day is remembered and quietly kept, No words are needed, we shall never forget, For those we love don't go away, They walk beside us every day. Unseen and unheard, but always near, So loved, so missed, and so very dear.” – Author unknown iv Acknowledgements I would like to to take this opportunity to express my deepest gratitude to people who have been immensely supportive during the course of completing this difficult research project First and foremost I would like to thank my supervisor, Professor Vincent M. Gray, who supported me every step of the way financially, intellectually and emotionally, and for his always welcoming and understanding attitude for discussion, his advice and enthusiasm throughout the course of this study. To Dr Pieter De Maayer, without whom the project would not have been completed. For his time spent brainstorming and always willing presence in assisting me. To Professor Crissie Rey for all her advice and financial assistance. To Stephen Naegeli, without whom I would never have had the courage to continue this research project. He was my rock and support and he always encouraged me to complete my research that I had started. To my beloved parents who always believed in me and were always willing to listen to my troubles. To my friend Joshua Hazzan, who always had something encouraging to do or say and who assisted with cataloguing my vast quantity of results. To my family and friends who always had encouraging things to say and kept me positive. To Isabel Weiersbye for her advice, assistance and support in collection of samples, sample analysis and compiling results. v Finally I would like to thank the National Research Foundation (NRF), the University of the Witwatersrand for the Postgraduate Merit Award (PMA), THRIP, Professor M. E. C. Rey and Professor V. M. Gray for financial assistance. vi Research output Conference attendance Poster presentations Molecular Biosciences Research Thrust Research Day 8 December 2016 Wits Club, West Campus, University of the Witwatersrand Title: Identification of arbuscular mycorrhizal (AM) fungal genes associated with the tolerance, transport and/or accumulation of non-micronutrient metals found in gold and uranium mine tailings Authors: M. T. Buck, V. M. Gray and A. J. Valentine 8th Cross Faculty Postgraduate Symposium 25-26 October 2017 Auditorium at the School of Public Health, Education Campus, 27 St Andrews Road, Parktown Title: The rhizobiome of Vachellia (Acacia) woodlands surrounding Witwatersrand gold and uranium mine tailings Authors: M. T. Buck, V. M. Gray, P. De Maayer, I. Weiersbye and M. E. C. Rey Molecular Biosciences Research Thrust Research Day 30 November 2017 Wits Club, West Campus, University of the Witwatersrand Title: The rhizobiome of Vachellia (Acacia) woodlands surrounding Witwatersrand gold and uranium mine tailings Authors: M. T. Buck, V. M. Gray, P. De Maayer, I. Weiersbye and M. E. C. Rey vii Table of contents Declaration......................................................................................................................... i Abstract .............................................................................................................................. ii Dedication .......................................................................................................................... iv Acknowledgements ........................................................................................................... v Research output ...............................................................................................................
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Chapter 1-General Introduction
    Tuscia University Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE) XXVI Cycle of Doctorate in Plant Protection In collaboration with INRA Institute of Avignon, France, Department of Plant Pathology Thesis: Importance of environmental habitats as a reservoir of phytopathogenic bacteria and their role in the evolution of pathogenicity traits AGR/12 By: Dott. Claudia Bartoli Coordinator and Supervisor: Assistant supervisor Prof. Leonardo Varvaro Dott. Cindy E. Morris Signature Signature Dott. Giorgio M. Balestra Signature Defended on: Monday 30 June 2014 Thesis Committee Prof. Laura Mugnai Dr. Elena Di Mattia Prof. Kubilay Kurtulus Bastas Referee Prof. Matthieu Arlat Prof. Gonçalo Almeida Importance of environmental habitats as a reservoir of phytopathogenic bacteria and their role in the evolution of pathogenicity traits Claudia Bartoli Thesis Submitted in partial fulfilment of requirements for the degree of Doctor of Philosophy in Plant Protection at Tuscia University by the authority of the Rector Magnificus Prof. Alessandro Ruggieri In the presence of the Thesis committed appointed by the Doctorate Board To be defended in public On Monday 30 June 2014 Ai miei ragazzacci Himal and Jay Ram Fidelity is the faithful driver Microbes depend on good housekeeping They thrive, survive and flourish Yet new forms appear Confounding the scientist Woe to the status quo . David Sands Contents Chapter 1- General Introduction...................................................................................1 Chapter 2 - Methyl-directed mismatch repair: a mechanism underlying emergence of pathogenic bacteria...................................................................................7 Chapter 3 - A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex.........................25 Chapter 4 - The Pseudomonas viridiflava phylogroups in the P.
    [Show full text]
  • Characterization of Chemosensing in the Alphaproteobacterium <I> Azospirillum Brasilense </I>
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Characterization of Chemosensing in the Alphaproteobacterium Azospirillum brasilense Matthew Hamilton Russell University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Organismal Biological Physiology Commons Recommended Citation Russell, Matthew Hamilton, "Characterization of Chemosensing in the Alphaproteobacterium Azospirillum brasilense . " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1469 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Matthew Hamilton Russell entitled "Characterization of Chemosensing in the Alphaproteobacterium Azospirillum brasilense ." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Biochemistry and Cellular and Molecular Biology. Gladys M. Alexandre, Major Professor We have read this dissertation and recommend its acceptance: Dan Roberts, Andreas Nebenfuehr, Erik Zinser Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Characterization of the chemosensory abilities of the alphaproteobacterium Azospirillum brasilense A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Matthew Hamilton Russell August 2012 ii Copyright © 2012 by Matthew Russell All rights reserved.
    [Show full text]
  • Occurrence of Glomeromycota Species in Aquatic Habitats: a Global Overview
    Occurrence of Glomeromycota species in aquatic habitats: a global overview MARIANA BESSA DE QUEIROZ1, KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, JULIANA APARECIDA SOUZA LEROY1, STEPHANIA RUTH BASÍLIO SILVA GOMES2, BRUNO TOMIO GOTO3 1 Programa de Pós-Graduação em Sistemática e Evolução, 2 Curso de Ciências Biológicas, and 3 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil * CORRESPONDENCE TO: [email protected] ABSTRACT — Arbuscular mycorrhizal fungi (AMF) are recognized in terrestrial and aquatic ecosystems. The latter, however, have received little attention from the scientific community and, consequently, are poorly known in terms of occurrence and distribution of this group of fungi. This paper provides a global list on AMF species inhabiting aquatic ecosystems reported so far by scientific community (lotic and lentic freshwater, mangroves, and wetlands). A total of 82 species belonging to 5 orders, 11 families, and 22 genera were reported in 8 countries. Lentic ecosystems have greater species richness. Most studies of the occurrence of AMF in aquatic ecosystems were conducted in the United States and India, which constitute 45% and 78% reports coming from temperate and tropical regions, respectively. KEY WORDS — checklist, flooded areas, mycorrhiza, taxonomy Introduction Aquatic ecosystems comprise about 77% of the planet surface (Rebouças 2006) and encompass a diversity of habitats favorable to many species from marine (ocean), transitional estuaries to continental (wetlands, lentic and lotic) environments (Reddy et al. 2018). Despite this territorial representativeness and biodiversity already recorded, there are gaps when considering certain types of organisms, e.g. fungi. Fungi are considered a common and important component of almost all trophic levels.
    [Show full text]
  • (Hayne) Banfi and Galasso Pods Using Brine Shrimp Assay
    Pharmacogn J. 2020; 12(1): 01-05 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Original Article www.phcogj.com Toxicity Assessment of Vachellia karro (Hayne) Banfi and Galasso Pods using Brine Shrimp Assay S Maposa, AJ Afolayan, GA Otunola* ABSTRACT Background and Objective: Vachellia karroo is widely used in folk medicine in the Eastern Cape Province South Africa, however, the pods are usually discarded as waste. This study evaluated the toxicity of acetone, hexane, aqueous and methanol extracts of Vachellia karroo S Maposa, AJ Afolayan, GA pods using brine shrimp model. Materials and Methods: Different concentrations (0.0625-1 Otunola* mg/mL) of the extracts were used to incubate the cysts and nauplii of brine shrimp (Artemia Medicinal Plants and Economic Development salina) to evaluate their effects on the hatching of the cyst and mortality of the nauplii (MPED) Research Centre, Department of respectively. The percentage of hatched cysts and Lethal Concentration (LC50) needed to kill Botany, University of Fort Hare, Alice 5700, 50% of the nauplii were recorded. Results: Successful hatching of the cysts was in order: SOUTH AFRICA. Aqueous extract> methanol extract> hexane extract> acetone extract. The hatching of nauplii Correspondence was in a concentration dependent fashion, with hatching success decreasing with increase GA Otunola in concentration of extracts. Conclusion: Lethality of extracts determined based on Meyers’ Medicinal Plants and Economic index of toxicity, revealed that acetone and hexane extracts of V. karroo were moderately toxic. Development (MPED) Research Centre, Key words: Vachellia karroo, Toxicity, Brine shrimp, Lethality, Nauplii, Cyst. Department of Botany, University of Fort Hare, Alice 5700, SOUTH AFRICA.
    [Show full text]
  • Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
    plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; [email protected] * Correspondence: [email protected] Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa).
    [Show full text]
  • Arbuscular Mycorrhizal Fungi in Soil Aggregates from Fields of “Murundus” Converted to Agriculture
    Arbuscular mycorrhizal fungi in soil aggregates from fields of “murundus” converted to agriculture Marco Aurélio Carbone Carneiro(1), Dorotéia Alves Ferreira(2), Edicarlos Damacena de Souza(3), Helder Barbosa Paulino(4), Orivaldo José Saggin Junior(5) and José Oswaldo Siqueira(6) (1)Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, CEP 37200‑000 Lavras, MG, Brazil. E‑mail: [email protected](2) Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo, Avenida Pádua Dias, no 11, CEP 13418‑900 Piracicaba, SP, Brazil. E‑mail: [email protected] (3)Universidade Federal de Mato Grosso, Campus de Rondonópolis, Instituto de Ciências Agrárias e Tecnológicas de Rondonópolis, Rodovia MT 270, Km 06, Sagrada Família, CEP 78735‑901 Rondonópolis, MT, Brazil. E‑mail: [email protected] (4)Universidade Federal de Goiás, Regional Jataí, BR 364, Km 192, CEP 75804‑020 Jataí, GO, Brazil. E‑mail: [email protected] (5)Embrapa Agrobiologia, BR 465, Km 7, CEP 23891‑000 Seropédica, RJ, Brazil. E‑mail: [email protected] (6)Instituto Tecnológico Vale, Rua Boaventura da Silva, no 955, CEP 66055‑090 Belém, PA, Brazil. E‑mail: [email protected] Abstract – The objective of this work was to evaluate the spore density and diversity of arbuscular mycorrhizal fungi (AMF) in soil aggregates from fields of “murundus” (large mounds of soil) in areas converted and not converted to agriculture. The experiment was conducted in a completely randomized design with five replicates, in a 5x3 factorial arrangement: five areas and three aggregate classes (macro‑, meso‑, and microaggregates).
    [Show full text]
  • Complete Genome Sequence of the Nitrogen-Fixing Bacterium Azospirillum Humicireducens Type Strain Sgz-5T
    Yu et al. Standards in Genomic Sciences (2018) 13:28 https://doi.org/10.1186/s40793-018-0322-2 SHORT GENOME REPORT Open Access Complete genome sequence of the nitrogen-fixing bacterium Azospirillum humicireducens type strain SgZ-5T Zhen Yu1, Guiqin Yang1, Xiaoming Liu1, Yueqiang Wang1, Li Zhuang2* and Shungui Zhou3 Abstract The Azospirillum humicireducens strain SgZ-5T, belonging to the Order Rhodospirillales and the Family Rhodospirillaceae, was isolated from a microbial fuel cell inoculated with paddy soil. A previous work has shown that strain SgZ-5T was able to fix atmospheric nitrogen involved in plant growth promotion. Here we present the complete genome of A. humicireducens SgZ-5T, which consists of a circular chromosome and six plasmids with the total genome size of 6,834,379 bp and the average GC content of 67.55%. Genome annotations predicted 5969 protein coding and 85 RNA genes including 14 rRNA and 67 tRNA genes. By genomic analysis, we identified a complete set of genes that is potentially involved in nitrogen fixation and its regulation. This genome also harbors numerous genes that are likely responsible for phytohormones production. We anticipate that the A. humicireducens SgZ-5T genome will contribute insights into plant growth promoting properties of Azospirillum strains. Keywords: Azospirillum humicireducens, Complete genome, Nitrogen fixation, PGPP Introduction report [11], the nitrogen-fixing capability of strain Bacteria that live in the plant rhizosphere and possess a SgZ-5T was confirmed by acetylene-reduction assay and large array of potential mechanisms to enhance plant identification of a nifH gene. Furthermore, this strain growth are considered as PGPR [1–3].
    [Show full text]
  • Biodiversity Impact Assessment
    March 2020 19121900-328397-9 APPENDIX H Biodiversity Impact Assessment REPORT Specialist Assessment for the Proposed Surface Pipeline and Associated Infrastructure - Biodiversity Impact Assessment AngloGold Ashanti (Pty) Limited South African Operations Submitted to: Anglo Gold Ashanti (Pty) Limited South African Operations Mr J van Wyk Carletonville - Fochville Road R500 Carletonville Gauteng 2501 Submitted by: Golder Associates Africa (Pty) Ltd. Building 1, Maxwell Office Park, Magwa Crescent West, Waterfall City, Midrand, 1685, South Africa P.O. Box 6001, Halfway House, 1685 +27 11 254 4800 19121900-327695-6 February 2020 February 2020 19121900-327695-6 Distribution List 1 eCopy to Anglo Gold Ashanti (Pty) Limited South African Operations 1 eCopy to [email protected] i February 2020 19121900-327695-6 Executive Summary Project overview The AGA operations in the West Wits mining lease areas are at risk of flooding due to ingress of fissure water from surrounding mining operations. Approximately 25 Mℓ/day of fissure water flows into the underground workings of the defunct Blyvooruitzicht Mine, which spans a strike of 6 km along the boundary with AGA. If dewatering at the Old Blyvooruitzicht Shafts (#4, #5 & 6#) shafts were to cease, uncontrolled fissure water would report to the AGA operations, which would pose both a flood and safety risk of AGA personnel and the mining operations. This report provides a professional opinion regarding the anticipated terrestrial, wetland and aquatic impacts from this proposed project. Location The proposed water pipeline and associated infrastructure is located approximately 80 km west of Johannesburg. It originates at CWC 4#, approximately 3.3 km south east of Carletonville and ends at the North Boundary Dam (NBD) approximately 6 km south-south-west of Carletonville in Blyvooruitzicht, Merafong City Local Municipality, West Rand District Municipality in the Gauteng Province of South Africa.
    [Show full text]
  • Redalyc.Diversidad, Abundancia Y Variación Estacional En La
    Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Álvarez-Sánchez, Javier; Sánchez-Gallen, Irene; Hernández Cuevas, Laura; Hernández- Oro, Lilian; Meli, Paula Diversidad, abundancia y variación estacional en la comunidad de hongos micorrizógenos arbusculares en la selva Lacandona, Chiapas, México Revista Mexicana de Micología, vol. 45, junio, 2017, pp. 37-51 Sociedad Mexicana de Micología Xalapa, México Disponible en: http://www.redalyc.org/articulo.oa?id=88352759005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Scientia Fungorum vol. 45: 37-51 2017 Diversidad, abundancia y variación estacional en la comunidad de hongos micorrizógenos arbusculares en la selva Lacandona, Chiapas, México Diversity, abundance, and seasonal variation of arbuscular mycorrhizal fungi in the Lacandona rain forest, Chiapas, Mexico Javier Álvarez-Sánchez 1, Irene Sánchez-Gallen 1, Laura Hernández Cuevas 2, Lilian Hernández-Oro 1, Paula Meli 3 1 Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria 04510, México, D.F. 2 Laboratorio de Micorrizas, Centro de Investigaciones en Ciencias Biológicas, Universidad Autónoma de Tlaxcala. Km 10.5 Carretera San Martín Texmeluca-Tlaxcala s/n, San Felipe Ixtacuixtla 90120, Tlaxcala, México. 3 Natura y Ecosistemas Mexicanos A.C. Plaza San Jacinto 23-D, Col. San Ángel, México DF, 01000, México. Dirección Actual: Escola Superior de Agricultura ‘Luiz de Queiroz’, Departamento de Ciências Florestais, Universidade de São Paulo, Brasil.
    [Show full text]
  • Females to Host Plant Volatiles
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University OLFACTORY RESPONSES OF DASINEURA DIELSI RÜBSAAMEN (DIPTERA: CECIDOMYIIDAE) FEMALES TO HOST PLANT VOLATILES Town M.J. KOTZE Cape of Thesis presented for the Degree of DOCTOR OF PHILOSOPHY Universityin the Department of Zoology of UNIVERSITY OF CAPE TOWN June 2012 Dedicated to Town my mother, Hester WJ Kotze 5 April 1927 – 4 June 2011 Cape of University ii ACKNOWLEDGEMENTS There are several people without whom this thesis and the work it describes would not have been possible at all. It gives me great pleasure to thank all those people who have contributed towards the successful completion of this work. My sincere thanks go to Prof. John Hoffman, my supervisor for this project. John, I arrived on your doorstep with a slightly out-of-the-ordinary story, and you took me on as a student. I am grateful that you were my supervisor. Thank you for giving me freedom to work my project in my own personal style, but at the same time growing my skills as researcher. Thanks for allowing me to investigate some of the side paths that inevitably presented itself, andTown at the same time reminding me of the “storyline”. Thanks specifically for your excitement when I reported the results as it became unveiled; your enthusiasm fuelled my own excitement.Cape of To Dr.
    [Show full text]
  • Microbial Degradation of Organic Micropollutants in Hyporheic Zone Sediments
    Microbial degradation of organic micropollutants in hyporheic zone sediments Dissertation To obtain the Academic Degree Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth by Cyrus Rutere Bayreuth, May 2020 This doctoral thesis was prepared at the Department of Ecological Microbiology – University of Bayreuth and AG Horn – Institute of Microbiology, Leibniz University Hannover, from August 2015 until April 2020, and was supervised by Prof. Dr. Marcus. A. Horn. This is a full reprint of the dissertation submitted to obtain the academic degree of Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth. Date of submission: 11. May 2020 Date of defense: 23. July 2020 Acting dean: Prof. Dr. Matthias Breuning Doctoral committee: Prof. Dr. Marcus. A. Horn (reviewer) Prof. Harold L. Drake, PhD (reviewer) Prof. Dr. Gerhard Rambold (chairman) Prof. Dr. Stefan Peiffer In the battle between the stream and the rock, the stream always wins, not through strength but by perseverance. Harriett Jackson Brown Jr. CONTENTS CONTENTS CONTENTS ............................................................................................................................ i FIGURES.............................................................................................................................. vi TABLES ..............................................................................................................................
    [Show full text]