Geothermal District Heating

Total Page:16

File Type:pdf, Size:1020Kb

Geothermal District Heating Geothermal District Heating Dr. Oddur B. Björnsson Fjarhitun hf, Reykjavík, Iceland SUMMARY In geothermal heating maximum effective temperature drop should be strived at across the house heating systems. This is commensurate minimum flow rate, optimal pumping requirements and minimal fluid extraction from the geothermal reservoir. This requires the adoption of: Large and effective radiators. Double pipe heating system. Thermostatic control on each radiator. In certain cases modification of existing house heating systems, e.g. conversion from a single pipe to a double pipe system or installation of larger radiators, may not be feasible. In such cases cascaded flow of the geothermal fluid through a combination of heating systems of different temperature levels may be the solution. Direct use of the geothermal water in the house heating systems is preferred where the chemical characteristics of the geothermal fluid are suitable. Otherwise heat exchangers of resistant materials are necessary to isolate the geothermal fluid from the heating fluid where corrosion or scaling of the piping and radiator system are to be expected. Such heat exchangers must be designed for maximum temperature drop of the geothermal fluid. The paper describes the commonly used heating system configurations in Iceland and elsewhere. It outlines moreover the characteristics of geothermal heating systems, their automatic control systems and recommended geothermal field management and monitoring systems. KEYWORDS: Geothermal, direct use, cascaded use, control. INTRODUCTION Icelandic homes were converted from oil and coal fired heating to geothermal heating in the fourties, fifties and sixties. They have therefore undergone the necessary changes from a conventional fuel heated house system to a geothermal one. Experience shows that this was a wise decision. The economy of a properly designed and operated geothermal district heating system is far better than that of a conventional fossil fuel system: Heating cost is from 20% to 80% of the cost of heating with oil. Cost of heating-energy to the customer in Reykjavik is 1,5 US cents/kWh. The most expensive district heating in Iceland charges 3 US cents/kWh. Reduced tariff is offered for recreation facilities such as for swimming pools and heating of football fields. Maximum effective temperature drop in the house heating systems - hence minimum flow rate - is of fundamental importance in geothermal systems calling for: Large and effective radiators Double pipe heating system. Thermostatic control on each radiator. Where modification of existing house heating systems, e.g. conversion from a single pipe to a double pipe system or the installation of larger radiators, is not deemed feasible, cascaded flow of 1/19 the geothermal fluid through a combination of heating systems of different temperature levels may be the solution. If chemistry of the geothermal fluid permits, direct use in the house heating systems is preferred. Heat exchangers of resistant materials are necessary where corrosion or scaling of the piping system may be expected. The heat exchangers shall be designed for maximum temperature drop of the geothermal fluid. Low cost of operation and usually high cost of initial investment is what characterises geothermal district heating systems. The high initial cost involves the exploration and the drilling of the geothermal wells, as well as the production field development. The cost of investment and operation is directly related to the quantity of the geothermal fluid in motion, i.e. the number of wells, pumping from the well, and transmission to the market area and distributing to the customer. Therefore: The supply temperature to the customer is kept constant throughout the heating season and as high as legally permitted (normally 80°C in Iceland). The return temperature is made as low as possible (35°C or lower in Iceland). All hot water is metered by volume. The tariff system provides an incentive to the client to use the heat from the purchased water efficiently. Due to high initial investment the geothermal energy shall be used as base load (see the typical load duration diagram below) Load duration curves for a) Reykjavík, Iceland b) Central Eastern Europe (typical) 100% Peak load 90% fossil fuel 80% Capacity of geothermal wells 70% 60% 50% Base a) load 40% geo- Demand ratio thermal 30% b) 20% 10% Heating season (in CEE) Hot tap water only 0% 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Hours pr. annum Figure 1 Typical load duration curves. Curve a) depicts a district heating system with a high load factor and b) system with a low load factor (no space heating during summer season.) 2/19 1 DISTRICT HEATING SYSTEMS 1.1 Types of district heating systems Geothermal district heating systems may be divided into two main groups depending on whether the geothermal water is used directly in the house heating systems (secondary system) or indirectly by transferring the geothermal heat to the secondary system via heat exchangers. In the latter case the geothermal water is confined to the primary system. Figure 1 depicts a few examples of direct and indirect use of geothermal water for district heating. Temperature values shown are typical values under design conditions (e.g. -15°C outdoor temperature in Iceland.) Figure 2 Examples of district heating network with geothermal water Direct use If the chemistry of the geothermal fluid permits the water may be used directly in the house heating systems without any fluid separation by heat exchangers (example: Reykjavik, the capital of Iceland.) In such cases the following technical solutions have been used: a) Single pipe system: This single-pass or once-through system uses the geothermal fluid (temperature below 100°C) directly for heating in radiators, floor coils etc.. The spent fluid from the radiators is discharged to waste. Due to safety limits to maximum temperature of hot tap water, usually 55 to 60°C (38°C for baths), heat exchangers or automatic mixing valves are employed. In the former case cold water is heated with geothermal water through a heat 3/19 exchanger to the required temperature and in the latter the geothermal water is mixed directly with cold water. b) Dual pipe system: A part of the spent return water from the house system (temperature 30°C to 40°C) is collected and mixed with the geothermal supply water (temperature 100°C - 130°C) to obtain a constant supply temperature (e.g. 80°C) irrespective of weather conditions. The excess return water is discharged to waste or injected back into the reservoir (re-injected.) Geothermal District Heating Direct use of low temperature water Peak load boiler plant Single Gas Hot tap water distribution separator system Drain Temperature sensorTemperature 80°C Heating Supply Pump system pipline Hot tap Control water Double 130°C valve distribution Well 80°C Gas separator system Mixing pump Deep well Pump Pump 35°C Drain Return pipeline 35°C Well 130°C Deep well Pump Figure 3 Process diagram for direct use of geothermal water in a single pipe network Figure 3 shows a process diagram for direct use of geothermal water at temperatures ranging from 80°-130°C. This is in reality a simplified process diagram for Reykjavík Energy as it has been operated for over 60 years. Still today the main part of the district heating system is operated in this way. The wells are 1000 – 3000 m deep. Line shaft driven deep well pumps immersed to a depth of up to 200 m pump the water to a gas separator. The geothermal water is 80° to 130°C and the supply temperature to the consumers is 80°C. Part of the distribution network is a dual pipe system. The return water from that part is mixed together with the water from the wells to produce 80°C supply temperature. The excess return water from the double distribution system is discharged to drain. Part of the distribution network is single-pipe from which the return water is discharged from each user into the sewage system or to the rainwater discharge system. Most of the consumers receive hot tap water directly from the distribution system. The volumetric flow rate to the users is measured and the tariff is based on cubic meter of hot water. Now the charge in Reykjavík is ca. 80 UScent per m3 of hot water. The users can utilise the heat energy from the water at free will and return it to the system or discharge it to drain at as low temperature as possible. With conventional radiator system 25°C – 40°C return temperature is common, but with other heating systems such as floor heating, heated fresh air and even combined with snow melting, the return temperature can be 4/19 as low as 10°C - 20°C. This means that each m3 of hot water yields from 45 and up to 80 kWh and the corresponding energy price thus varies from 1,0 – 1,7 U Scent/kWh. There is no doubt that a district heating system of this type has the lowest energy production cost. The single pipe distribution system is less costly and has lower heat loss than a closed loop (dual pipe) system and the pumping cost is also less. It is possible to install a peak load boiler in this system, even if the well temperature is 80°C and the whole system is a single one. Then the supply temperature will be varied according to the load demand, let´s say between 80°C and 130°C. In this case, the building heating systems have to be of indirect closed loop type and the charge for energy would probably be via energy meter. The direct use process shown in Figure 3 is only possible where the chemistry of the geothermal water is such that there is no danger of mineral scaling and corrosion of ordinary carbon steel pipes and heating equipment.
Recommended publications
  • Boiler & Furnace Combustion Imaging
    IMPAC Non-Contact Infrared Temperature Sensors IMPACApplication Non-Contact Note Infrared Temperature Sensors BOILER & FURNACE COMBUSTION IMAGING The Opportunity The continued rise of worldwide electricity consumption has put an ever increasing demand on power generation facilities. With coal fired power plants, this demand results in challenges to increase production while minimizing environmental impact. Optimizing the performance of the downtime. In addition, lance systems coal boiler can provide immediate typically operate blindly; attempting benefits and maximize the Rankine to uniformly target all boiler tubes for cycle efficiency. One common problem cleaning. It is possible to reduce the is the buildup of fly ash and soot furnace power to obtain a visual inspec- on the boiler tube surfaces which tion of some tubes, but the efficiency reduces the heat exchange efficiency. loss during this process is significant. These deposits (Slag) can be removed Properly tuning the combustion process with lances, and similar systems, but can help reduce the buildup of tube identifying when to implement this deposits, and can minimize emissions. action can be difficult to estimate and However, switching coal composition routine periodic lance operation can can further complicate the tuning cause thermal stress to boiler tubes, process, and lead to varying fouling of leading to failure and unscheduled the boiler tubes. Our Solution Advanced Energy leverages more than 25 years of infrared thermal imaging experience to developing the BoilerSpection™ SD solutions specifically designed to address the monitoring of heat exchange tubes in coal fired boilers and furnaces. Using a custom narrowband 3.9μm filter and precision boroscope optics, we view through boiler flames and provide the clearest image of boiler tubes available.
    [Show full text]
  • Consider Installing a Condensing Economizer, Energy Tips
    ADVANCED MANUFACTURING OFFICE Energy Tips: STEAM Steam Tip Sheet #26A Consider Installing a Condensing Economizer Suggested Actions The key to a successful waste heat recovery project is optimizing the use of the recovered energy. By installing a condensing economizer, companies can im- ■■ Determine your boiler capacity, prove overall heat recovery and steam system efficiency by up to 10%. Many average steam production, boiler applications can benefit from this additional heat recovery, such as district combustion efficiency, stack gas heating systems, wallboard production facilities, greenhouses, food processing temperature, annual hours of plants, pulp and paper mills, textile plants, and hospitals. Condensing economiz- operation, and annual fuel ers require site-specific engineering and design, and a thorough understanding of consumption. the effect they will have on the existing steam system and water chemistry. ■■ Identify in-plant uses for heated Use this tip sheet and its companion, Considerations When Selecting a water, such as boiler makeup Condensing Economizer, to learn about these efficiency improvements. water heating, preheating, or A conventional feedwater economizer reduces steam boiler fuel requirements domestic hot water or process by transferring heat from the flue gas to the boiler feedwater. For natural gas-fired water heating requirements. boilers, the lowest temperature to which flue gas can be cooled is about 250°F ■■ Determine the thermal to prevent condensation and possible stack or stack liner corrosion. requirements that can be met The condensing economizer improves waste heat recovery by cooling the flue through installation of a gas below its dew point, which is about 135°F for products of combustion of condensing economizer.
    [Show full text]
  • Modu-Fire® Forced Draft Gas-Fired Boiler 2500 - 3000
    MODU-FIRE® FD 2500-3000 Rev. 1.1 (11/21/11) MODU-FIRE® FORCED DRAFT GAS-FIRED BOILER 2500 - 3000 C.S.A. Design-Certified Complies with ANSI Z21.13/CSA 4.9 Gas-Fired Low Pressure Steam and Hot Water Boilers ASME Code, Section IV Certified by Harsco Industrial, Patterson-Kelley C.S.A. Design-Certified Complies with ANSI Z21.13/CSA 4.9 Gas-Fired Low Pressure Steam and Hot Water Boilers Model #:_______ Serial #______________________ Start-Up Date: _______________________ Harsco Industrial, Patterson-Kelley 100 Burson Street East Stroudsburg, PA 18301 Telephone: (877) 728-5351 Facsimile: (570) 476-7247 www.harscopk.com ©2010 Harsco Industrial, Patterson Kelley Printed : 6/27/2012 MODU-FIRE® Forced Draft Boiler 1 INTRODUCTION ...................................................................................................... 4 2 SAFETY .................................................................................................................... 4 2.1 General ............................................................................................................................ 4 2.2 Training ............................................................................................................................ 4 2.3 Safety Features ................................................................................................................ 5 2.4 Safety Labels ................................................................................................................... 5 2.5 Safety Precautions ..........................................................................................................
    [Show full text]
  • Comparing Exchangers for Boiler Water/High Temperature Indirect Water Heaters HUBBELL Case Study 1
    HUBBELLHEATERS.COM Comparing Exchangers for Boiler Water/High Temperature Indirect Water Heaters HUBBELL Case Study 1 There are a few different options available if you are looking for a hydronic water heater that uses boiler water or high temperature hot water to heat potable water. One of the biggest decisions regarding boiler water heater types is determining which heat exchanger the system should utilize. Some models use a tube bundle heat exchanger while others use a plate and frame or brazed plate system. Tube bundle heat exchangers and plate and frame/brazed plate systems vary greatly in the way that they heat water and maintain a certain temperature. Both produce hot water, but in different ways. Hubbell offers a wide range of hydronic water heating systems for water to water applications, which can be customized to meet your needs. Let’s take a look at the heat exchangers for hydronic water heaters that should be considered by end users. Tube Bundle Tube bundles are designed to transfer heat from a, boiler water, solar water or high temperature hot water (HTHW) system to the domestic potable hot water system. The primary heat source, in this case boiler water or HTHW, travels through the tubing in the bundle within the shell, and transfers heat to the secondary system (potable water) without allowing either liquid to come into direct contact with the other. Tube bundle heat exchangers are ideal for older non-condensing water heating systems, specifically ones that use oil to produce heat. Older boilers are more suitable for the tube bundle type heat exchanger as they deal with higher non-condensing water temperatures.
    [Show full text]
  • Boiler & Cooling Tower Control Basics
    Boiler & Cooling Tower Control Basics By James McDonald, PE, CWT Originally Published: CSTR – May 2006 For those of us who have been around boilers and cooling towers for years now, it can be easy to forget how we may have struggled when we first learned about controlling the chemistry of boilers and cooling towers. After running all the chemical tests, where do you start when the phosphate is too high, conductivity too low, sulfite nonexistent, and molybdate off the charts? Even better, how would you explain this decision process to a new operator? Cycles of Concentration The first place you always start is cycles of concentration (cycles). You may measure cycles by measuring conductivity or chlorides. If everything else is running normally, when the cycles are too high, everything else should be proportionally too high. When the cycles are too low, everything else should be proportionally too low. When the cycles are brought back under control, the other parameters should come back within range too. Example We wish to run a boiler at 2,000 µmhos, 45 ppm phosphate, and 40 ppm sulfite; however, the latest tests show 1,300 µmhos, 29 ppm phosphate, and 26 ppm sulfite. The conductivity is 35% lower than what it should be. Doing the math ((45- 29)/45=35%), we see that the phosphate and sulfite are also 35% too low. By reducing boiler blowdown and bringing the conductivity back within control, the phosphate and sulfite should be within their control range too. Boilers 100 Beyond Cycles Whether we’re talking about boilers or cooling towers, we know if we reduce blowdown, cycles will increase, and if we increase blowdown, cycles will decrease.
    [Show full text]
  • An Overview of the State of Microgeneration Technologies in the UK
    An overview of the state of microgeneration technologies in the UK Nick Kelly Energy Systems Research Unit Mechanical Engineering University of Strathclyde Glasgow Drivers for Deployment • the UK is a signatory to the Kyoto protocol committing the country to 12.5% cuts in GHG emissions • EU 20-20-20 – reduction in EU greenhouse gas emissions of at least 20% below 1990 levels; 20% of all energy consumption to come from renewable resources; 20% reduction in primary energy use compared with projected levels, to be achieved by improving energy efficiency. • UK Climate Change Act 2008 – self-imposed target “to ensure that the net UK carbon account for the year 2050 is at least 80% lower than the 1990 baseline.” – 5-year ‘carbon budgets’ and caps, carbon trading scheme, renewable transport fuel obligation • Energy Act 2008 – enabling legislation for CCS investment, smart metering, offshore transmission, renewables obligation extended to 2037, renewable heat incentive, feed-in-tariff • Energy Act 2010 – further CCS legislation • plus more legislation in the pipeline .. Where we are in 2010 • in the UK there is very significant growth in large-scale renewable generation – 8GW of capacity in 2009 (up 18% from 2008) – Scotland 31% of electricity from renewable sources 2010 • Microgeneration lags far behind – 120,000 solar thermal installations [600 GWh production] – 25,000 PV installations [26.5 Mwe capacity] – 28 MWe capacity of CHP (<100kWe) – 14,000 SWECS installations 28.7 MWe capacity of small wind systems – 8000 GSHP systems Enabling Microgeneration
    [Show full text]
  • Why Does the Wisconsin Boiler and Pressure Vessel Code, 636 41
    Why does the Wisconsin Boiler and Pressure Vessel Code, SPS 341, regulate air compressors? By Industry Services Division Boiler and Pressure Vessels Program Almost everyone forms a definite picture in their mind when they hear the term “air compressor.” They probably think of a steel tank of some shape and dimension, with an electric motor, and an air pump mounted on top of the tank. To better understand the requirements of the Wisconsin Boiler Code, SPS 341, pertaining to air compressors, we need to have some common terminology. If a person wanted to purchase an “air compressor” at a hardware or home supply store, they would certainly be offered the equipment described above, consisting of three separate mechanical devices; the motor, the pump, and the storage tank. First, there is an electric motor, used to provide power to the device that pumps air to high pressure. This pumping device is the only part of the unit that is properly called an "air compressor." The compressor delivers high-pressure air to the third and final part of the mechanical assembly, the air storage tank; commonly called a pressure vessel. Because the pressure vessel receives pressurized air, this is the only part of the device described above that is regulated SPS 341. SPS 341 regulates pressure vessels when the pressure vessel's volume capacity is 90 gallons (12 cubic feet) or larger, and the air pressure is 15 pounds per square inch or higher. A typical pressure vessel of this size would be 24 inches in diameter and 48 inches long. In industrial settings, it is common practice to mount very large air compressors in a separate location from the pressure vessels.
    [Show full text]
  • Use Feedwater Economizers for Waste Heat Recovery, Energy Tips
    ADVANCED MANUFACTURING PROGRAM Energy Tips: STEAM Steam Tip Sheet #3 Use Feedwater Economizers for Waste Heat Recovery Suggested Actions ■■ Determine the stack temperature A feedwater economizer reduces steam boiler fuel requirements by transferring after the boiler has been tuned heat from the flue gas to incoming feedwater. Boiler flue gases are often to manufacturer’s specifications. rejected to the stack at temperatures more than 100°F to 150°F higher than The boiler should be operating the temperature of the generated steam. Generally, boiler efficiency can at close-to-optimum excess be increased by 1% for every 40°F reduction in flue gas temperature. By air levels with all heat transfer recovering waste heat, an economizer can often reduce fuel requirements by 5% surfaces clean. to 10% and pay for itself in less than 2 years. The table provides examples of ■■ Determine the minimum the potential for heat recovery. temperature to which stack gases Recoverable Heat from Boiler Flue Gases can be cooled subject to criteria such as dew point, cold-end Recoverable Heat, MMBtu/hr corrosion, and economic heat Initial Stack Gas transfer surface. (See Exhaust Temperature, °F Boiler Thermal Output, MMBtu/hr Gas Temperature Limits.) 25 50 100 200 ■■ Study the cost-effectiveness of installing a feedwater economizer 400 1.3 2.6 5.3 10.6 or air preheater in your boiler. 500 2.3 4.6 9.2 18.4 600 3.3 6.5 13.0 26.1 Based on natural gas fuel, 15% excess air, and a final stack temperature of 250˚F. Example An 80% efficient boiler generates 45,000 pounds per hour (lb/hr) of 150-pounds-per-square-inch-gauge (psig) steam by burning natural gas.
    [Show full text]
  • Seton Wood Boilers Installation and Operation Instructions for W-90E
    Seton Wood Boilers There is no substitute for doing it right. SETON WOOD BURNING PRODUCTS 406-295-9902 24 RIVERVIEW DR. TROY MT 59935 Installation and Operation Instructions for W-90E W-130E W-180E Because of the very high efficiency of the Seton boiler the flue gas exhaust temperatures can be low enough to cause condensation in the chimney. This condensation may, over time, damage a masonry chimney. If you have condensation in your chimney, a insulated stainless steel chimney liner should be installed inside the flue SAFETY INSTRUCTIONS Safety Notice: If this is not properly installed, a house/building fire may result. For your safety, contact local building or fire officials about permits, restrictions, and installation requirements for your area. NEVER BLOCK DRAFT IN OPEN POSITION NEVER OPERATE WITH THE FEED DOOR OPEN!! THE SETON BOILER MUST BE INSTALLED IN A ENCLOSED, INSULATED ROOM. IT SHOULD BE REMOTE FROM THE LIVING SPACE. PLUMB BOTH RELIEF VALVES TO A SAFE LOCATION PIPE MUST RUN DOWN HILL ITS FULL LENGTH. PLUMB TO AN OUTSIDE AREA., DO NOT ALLOW THE PIPE TO EXTEND OUTSIDE FAR ENOUGH TO FREEZE. O NOT REDUCE THE PIPE SIZE. DO NOT PUT THREADS ON THE OPEN END OF THE DRAIN PIPE DO NOT JOIN THE TWO DRAINS TOGETHER WARNING!! ATOMIZED POLYPROPYLENE GLYCOL AT HIGH TEMPERATURES CAN CAUSE AN EXPLOSION!! Do not open the feed door until the wood has burned down some. Avoid trying to see how the fire is burning shortly after you fill it. All wood burning appliances will smoke if you open the feed door when it is full of wood.
    [Show full text]
  • District Heating System, Which Is More Efficient Than
    Supported by ECOHEATCOOL Work package 3 Guidelines for assessing the efficiency of district heating and district cooling systems This report is published by Euroheat & Power whose aim is to inform about district heating and cooling as efficient and environmentally benign energy solutions that make use of resources that otherwise would be wasted, delivering reliable and comfortable heating and cooling in return. The present guidelines have been developed with a view to benchmarking individual systems and enabling comparison with alternative heating/cooling options. This report is the report of Ecoheatcool Work Package 3 The project is co-financed by EU Intelligent Energy Europe Programme. The project time schedule is January 2005-December 2006. The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein. Up-to-date information about Euroheat & Power can be found on the internet at www.euroheat.org More information on Ecoheatcool project is available at www.ecoheatcool.org © Ecoheatcool and Euroheat & Power 2005-2006 Euroheat & Power Avenue de Tervuren 300, 1150 Brussels Belgium Tel. +32 (0)2 740 21 10 Fax. +32 (0)2 740 21 19 Produced in the European Union ECOHEATCOOL The ECOHEATCOOL project structure Target area of EU28 + EFTA3 for heating and cooling Information resources: Output: IEA EB & ES Database Heating and cooling Housing statistics
    [Show full text]
  • Mechanical Systems Water Efficiency Management Guide
    Water Efficiency Management Guide Mechanical Systems EPA 832-F-17-016c November 2017 Mechanical Systems The U.S. Environmental Protection Agency (EPA) WaterSense® program encourages property managers and owners to regularly input their buildings’ water use data in ENERGY STAR® Portfolio Manager®, an online tool for tracking energy and water consumption. Tracking water use is an important first step in managing and reducing property water use. WaterSense has worked with ENERGY STAR to develop the EPA Water Score for multifamily housing. This 0-100 score, based on an entire property’s water use relative to the average national water use of similar properties, will allow owners and managers to assess their properties’ water performance and complements the ENERGY STAR score for multifamily housing energy use. This series of Water Efficiency Management Guides was developed to help multifamily housing property owners and managers improve their water management, reduce property water use, and subsequently improve their EPA Water Score. However, many of the best practices in this guide can be used by facility managers for non-residential properties. More information about the Water Score and additional Water Efficiency Management Guides are available at www.epa.gov/watersense/commercial-buildings. Mechanical Systems Table of Contents Background.................................................................................................................................. 1 Single-Pass Cooling ..........................................................................................................................
    [Show full text]
  • Small Air to Water Heat Pump Chiller | Resdiential Hydronic Heat Pump
    The World’s Most Efficient Chiller Heat Pump Ultra-Efficient Multiple IDUs - Up to 8 Indoor Units Per CX34 CX34 Air-To-Water Heat Pump 2 Tons Cooling / 3 Tons heating IPLV Cooling 26,615 BTU COP 6.75 EER 23.02 Heating 33,813 BTU COP 3.92 Save More w/ DC Inverter Fan Motors All of the thin-line (5.1" thin) wall, floor and ceiling fan coil units use high efficiency and nearly silent DC Inverter fan motors, designed for 115v 50/60Hz power. 220v 50/60Hz standard FCUs are available for export customers. Geothermal Performance There is no Energy Star program for air to water heat pumps. However, the Chiltrix air-cooled chiller exceeds the Energy Star EER requirements for geothermal water-to-water systems. Server Room Cooling Ultra High Efficiency Heat Pump Chiller Chiltrix offers an optional Free Cooling add-on which allows up The CX34 obtains its ultra high efficiency using existing technologies in to EER 141+ & COP 41+ cooling performance during winter at a new way. For example, we use a DC Inverter compressor and a DC low ambient temperatures. Chiltrix chillers are also available Inverter water pump (both are variable speed) controlled together with in a N+1 redundant configuration. a DC inverter fan motor to achieve the best possible balance of water flow rate, compressor speed, and energy use. Solar Ready Perfect for solar PV operation with super low power draw and A special control algorithm looks at the temperature delta between the a 2 amp soft start that’s easy on inverters and batteries.
    [Show full text]