Status of Forest Pests in Nova Scotia

Total Page:16

File Type:pdf, Size:1020Kb

Status of Forest Pests in Nova Scotia STATUS OF FOREST PESTS IN NOVA SCOTIA 2011 Annual Report Nova Scotia Department of Natural Resources Fleet and Forest Protection Division Risk Services Section Report FOR 2013-002 1 Forest Health Conditions in Nova Scotia 2011 Annual Report Compiled by: Gina Penny With data from Forest Health Staff Forest Protection Division Renewable Resources Branch Nova Scotia Department of Natural Resources PO Box 130 23 Creighton Road Shubenacadie, NS B0N 2H0 Telephone: (902)-758-7226 Fax: (902)-758-3210 http://www.gov.ns.ca/natr/forest/foresthealth/default.asp Publication Number: Report FOR 2013-002 2 Forest Health Staff Tanya Borgal Matthew O’Connor Matthew Campbell Jeff Ogden Jacqui Gordon Jim Rudderham Mike LeBlanc Andrew Young Editing and Administrative Support Wanda Dahr John Ross Walter Fanning Suzette Thibodeau Regional Services Pest Detection Officers Eastern Region Central Region Western Region Derek Hart Allan Bland Jamie Brown Michael Hill Mike Kew Brian Comeau Greg Keizer Eric Leighton Bill DesChamp Dolores MacDonald Scott MacEwan William Grover Greg Murphy Matthew McFetridge Kim Huskins Tom Murray Matthew O’Connor Ross Pentz John Ongo Adrian Samson Kevin Totten Figure 1: Administrative regions of the Nova Scotia Department of Natural Resources. 3 Table of Contents Forest Health Staff…………………………………………………………………………………….….3 Editing and Administrative Support………………………………………………………………….….3 Regional Services Pest Detection Officers……………………………………………………….…....3 Acknowledgements………………………………………………………………………………….……6 List of Abbreviations and Acronyms Used in This Report…………………………………….………6 Executive Summary………………………………………………………………………………………7 List of Tables………………………………………………………………………………………………9 List of Figures…………………………………………………………………………………………….11 Introduction………………………………………………………………………………………………13 Status of Forest Pests…………………………………………………………………………………..14 Insect Pests of Softwoods……………………………………………………………………………...14 Eastern Spruce Budworm – Choristoneura fumiferana (Clem.)………………………………..14 Pheromone Trap Survey……………………………………………………………………….14 Overwintering Larval (L2) Survey……………………………………………………………..16 Jack Pine Budworm – Choristoneura pinus pinus (Free.)………………………………………16 Pheromone Trap Survey……………………………………………………………………….17 Overwintering larval (L2) Survey………………………………………………………………18 Hemlock Looper - Lambdina fiscellaria fiscellaria (Gn.)…………………………………………19 Pheromone Trap Survey……………………………………………………………………….19 Overwintering Egg Survey……………………………………………………………………..21 Spruce Beetle – Dendroctonus rufipennis (Kirby)………………………………………………..22 Permanent Research Plots…………………………………………………………………….22 Whitemarked Tussock Moth – Orgyia leucostigma (J.E. Smith)……………………………….24 Overwintering egg mass Survey………………………………………………………………24 4 Eastern Blackheaded Budworm - Acleris variana (Fernald)…………………………………….26 Overwintering Egg Survey……………………………………………………………………..26 Balsam Fir sawfly – Neodiprion abietis (Harr.)……………………………………………………27 Overwintering Egg Survey……………………………………………………………………..27 Risk and Predicted Defoliation Maps………………………………………………………….29 Balsam Woolly adelgid – Adelges picea (Ratz.)………………………………………………….30 Overwintering Nymph and Damage Surveys………………………………………………...30 Permanent Monitoring Plots…………………………………………………………………...32 Balsam Twig Aphid – Mindarus abietinus (Koch)………………………………………………..34 Balsam Gall Midge – Pardiplosis tumifex (Gagné)………………………………………………36 Insect Pests of Hardwoods……………………………………………………………………………..38 Gypsy Moth – Lymantria dispar (L.)……………………………………………………………….38 Pheromone Trap Survey……………………………………………………………………….38 Invasive Pests……………………………………………………………………………………………42 Brown Spruce Longhorned Beetle – Tetropium fuscum (Fabr.)………………………………..42 Pheromone Trap Survey……………………………………………………………………….42 Arthropods of Importance to Human Health…………………………………………………………..45 West Nile Virus………………………………………………………………………………………45 Tick Surveys…………………………………………………………………………………………45 Pest Identification Service………………………………………………………………………………46 Communications………………………………………………………………………………………...46 Newsletter: Insectary Notes………………………………………………………………………. 46 Website………………………………………………………………………………………………47 Extension and Outreach……………………………………………………………………………47 APPENDIX I – GLOSSARY…………………………………………………………………………….48 5 Acknowledgements To assemble, analyze, and present the information contained within this report requires a great deal of effort from many individuals. Without their efforts to gather information and data, this report would not be possible. Thanks to the Nova Scotia Department of Natural Resources (NSDNR) regional staff, especially the Pest Detection Officers (PDO’s), who are the backbone of many provincial surveys. These surveys would be impossible without the support of the PDO’s and their Area Supervisors. Appreciation is extended to the staff of the Canadian Forest Service (CFS) for their cooperation. Their research in Nova Scotia as well as the information and expertise they share relating to forest pests and forest conditions continues to be a valuable resource. Thanks are also given to the Canadian Food Inspection Agency (CFIA) for their assistance and information exchange during the invasive insect surveys. List of Abbreviations and Acronyms Used in This Report CFIA Canadian Food Inspection Agency CFS Canadian Forest Service ha Hectares NSDNR Nova Scotia Department of Natural Resources PDO Pest Detection Officer 6 Executive Summary This annual report contains information on forest insects and diseases monitored by Forest Health staff and PDO’s for the period up to and including 2011. It also contains information concerning our combined efforts to assist in research conducted by the CFS and monitor invasive pests with the CFIA. Eastern Spruce Budworm (Choristoneura fumiferana): The percentage of positive pheromone traps was 35%, down from 57% in 2010. The maximum trap catch was 16 moths, down from 33 in 2010. No overwintering second instar larvae (L2’s) were detected. Jack Pine Budworm (Choristoneura pinus pinus): The percentage of positive pheromone traps was 48%, up from 36% in 2010. No overwintering L2’s were detected. Hemlock Looper (Lambdina fiscellaria fiscellaria): The percentage of positive pheromone traps was 94.9%, up slightly from 93.9% in 2010. The maximum trap catch was 682 moths, up from 286 in 2010 Overwintering eggs were detected at 28.3% of sites sampled, up from 10% in 2010 and 0% in 2009. Spruce Beetle (Dendroctonus rufipennis): Widespread spruce beetle induced mortality of mature and over-mature white spruce is occurring throughout the province. In the fixed radius plots, the percentage of white and red spruce infested with or killed by the spruce beetle was 2.6% and 5.4%, respectively, down from 33.8% and 9.0% in 2010 for white and red spruce, respectively. Whitemarked Tussock Moth (Orgyia leucostigma): Overwintering egg masses were detected in 10.8% of sites surveyed, up from 7.7% in 2010. Eastern Blackheaded Budworm (Acleris variana): Overwintering eggs were detected at 83.9% of the sites surveyed, up from 74.1% in 2010. Balsam Fir Sawfly (Neodiprion abietis): Overwintering eggs were detected at 59% of sites surveyed, up from 51% in 2010 and the highest recorded since 1998. Balsam Woolly Adelgid (Adelges picea): The percentage of sites with overwintering nymphs was 5.7%, down from 8.7% in 2010. The percentage of sites with gouted branches was 1.6%, unchanged from 2010. Overwintering surveys in 11 of the 14 permanent plots detected populations had increased in 1 plot, decreased in 3, and no change was detected in the remaining 7 plots. Balsam Twig Aphid (Mindarus abietinus) and Balsam Gall Midge (Paradiplosis tumifex): No sites surveyed had balsam twig aphid damage and only one site had balsam gall midge damage. 7 Gypsy Moth (Lymantria dispar): The percentage of positive multipher traps was 68%, up from 58% in 2010. The total number of moths captured was 3188, up from 3093 in 2010. Overall, the percentage of positive delta traps was 19.2% consistent with 20% in 2010. Brown Spruce Longhorn Beetle (Tetropium fuscum): Extensive pheromone trapping was conducted in the Atlantic Provinces. There were 20 positive sites outside the beetle regulated area. In Nova Scotia, five new sites were detected in the counties of Halifax, Hants, and Luneburg. There was one positive location in New Brunswick located near a campground in Kouchibouguac National Park. This is the first time BSLB has been detected outside of Nova Scotia. All other traps deployed in Prince Edward Island, New Brunswick and Newfoundland and Labrador, were negative. The total number of positive sites outside of the BSLB regulated area is now 65. West Nile Virus: There were no human cases of West Nile virus reported in Nova Scotia. As of 2010, dead birds in Nova Scotia are no longer tested for West Nile virus. No birds have tested positive since 2003. Tick Surveys: In 2011, 1500 ticks were submitted to Forest Health for identification, of which 850 were black legged ticks (Ixodes scapularis). Currently, there are five established populations of Blacklegged ticks in Nova Scotia: • Pictou County - areas around Melmerby Beach, Egerton, Kings Head, and Pine Tree; • Lunenburg County - (Blue Rocks, Garden Lots, Heckmans Island, First Peninsula as well as the areas immediately surrounding them; • Halifax County - Admirals Cove in Bedford; • Shelburne Count - Gunning Cove and; • Yarmouth County: Gavelton area. Pest Identification Service: Since 1995, Forest Health has coordinated the identification of pests affecting Nova Scotia’s forests. In 2011, 101 inquiries were answered. Of these inquiries, 25 (24.8%) dealt
Recommended publications
  • Impact of an Invasive Insect and Plant Defense on a Native Forest Defoliator
    insects Communication Impact of an Invasive Insect and Plant Defense on a Native Forest Defoliator Claire M. Wilson 1, Justin F. Vendettuoli 1, David A. Orwig 2 and Evan L. Preisser 1,* 1 Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA; [email protected] (C.M.W.); [email protected] (J.F.V.) 2 Harvard Forest, Harvard University, Petersham, MA 01366, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-401-874-2120 Academic Editor: Mary L. Cornelius Received: 4 August 2016; Accepted: 7 September 2016; Published: 13 September 2016 Abstract: Eastern hemlock (Tsuga canadensis [L.] Carriére) in the United States is threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). The native hemlock looper (Lambdina fiscellaria Guenée) also appears to have played a role in previous population declines of this conifer. Although these two insects co-occur in much of the adelgid’s invaded range, their interactions remain unstudied. We assessed looper performance and preference on both uninfested and adelgid-infested foliage from adelgid-susceptible hemlocks, as well as on uninfested foliage from an eastern hemlock that is naturally adelgid-resistant. Larvae reared on uninfested foliage from adelgid-susceptible hemlocks experienced 60% mortality within the first two weeks of the experiment, and pupated at a lower weight than larvae fed adelgid-infested foliage. Despite differences in foliage source, this first look and strong pattern suggests that the hemlock looper performs better (pupates earlier, weighs more) on adelgid-infested foliage. In addition, trends suggested that larvae reared on foliage from the adelgid-resistant tree survived better, pupated earlier, and weighed more than in the other treatments.
    [Show full text]
  • Rapid Pest Risk Analysis (PRA) for Lambdina Fiscellaria
    Rapid Pest Risk Analysis (PRA) for Lambdina fiscellaria July 2018 Larva of the eastern hemlock looper, Lambdina fiscellaria fiscellaria . Image courtesy Connecticut Agricultural Experiment Station, Bugwood.org PRA for Lambdina fiscellaria © M G Tuffen Rapid Pest Risk Analysis (PRA) for Lambdina fiscellaria 4th November 2018 Author: M G Tuffen Address: Teagasc, Ashtown Research Centre, Dublin 15, D15 KN3K, Ireland [email protected] This document was produced as part of the Department of Agriculture, Food and the Marine (DAFM) funded Forestry Management Research (FORM) project as a collaboration between Teagasc and DAFM. Please treat this document and its associated appendices as confidential and as a working document that may be subject to change in response to new information. Teagasc Contact Dr Helen Grogan Address: Teagasc, Ashtown Research Centre, Dublin 15, D15 KN3K, Ireland [email protected] DAFM Contact Dr Sheila Nolan Address: DAFM Laboratories, Backweston, Celbridge, Co. Kildare, W23 VW2C, Ireland [email protected] 2 PRA for Lambdina fiscellaria © M G Tuffen Executive Summary The hemlock looper, Lambdina fiscellaria, is a North American forest pest of coniferous and broadleaved trees. The pest has a complicated taxonomy. It is widely reported as having three subspecies on the basis of differences in feeding preferences of the larval stages, but there are no morphological differences and some authors argue the pest should be treated as a single species. All three subspecies are considered in this PRA, which examines the risk of this pest to the island of Ireland (the PRA area), consisting of Ireland and Northern Ireland. Lambdina fiscellaria fiscellaria, also known as the eastern hemlock looper, is distributed in eastern North America and larvae show a preference for Abies balsamea (balsam fir) but will also feed on Picea glauca (white spruce), Tsuga canadensis (eastern hemlock) and a number of broadleaved trees.
    [Show full text]
  • Choristoneura Fumiferana) Group on an Isolated Forest Island Lisa M
    Life-history traits maintain the genomic integrity of sympatric species of the spruce budworm (Choristoneura fumiferana) group on an isolated forest island Lisa M. Lumley & Felix A. H. Sperling Department of Biological Sciences, CW 405 Biological Sciences Centre, University of Alberta, Edmonton, AB T6G 2E9, Canada Keywords Abstract Cypress Hills, Choristoneura lambertiana, Choristoneura occidentalis, hybridization, Identification of widespread species collected from islands can be challenging due to integrative taxonomy, phenology, the potential for local ecological and phenotypic divergence in isolated populations. pheromones, speciation, species delimitation. We sought to determine how many species of the spruce budworm (Choristoneura fumiferana) complex reside in Cypress Hills, an isolated remnant coniferous forest Correspondence in western Canada. We integrated data on behavior, ecology, morphology, mito- Lisa M. Lumley, Laurentian Forestry Centre, chondrial DNA, and simple sequence repeats, comparing Cypress Hills populations Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Stn. to those from other regions of North America to determine which species they Ste. Foy, Quebec, QC G1V 4C7, Canada. resembled most. We identified C. fumiferana, C. occidentalis, C. lambertiana,and Tel: +01 (418) 648-7149; hybrid forms in Cypress Hills. Adult flight phenology and pheromone attraction Fax: +01 (418) 648-5849; were identified as key life-history traits involved in maintaining the genomic in- E-mail: [email protected] tegrity of species. Our study highlights the importance of extensive sampling of both specimens and a variety of characters for understanding species boundaries in Received: 12 May 2011; Revised: 27 June biodiversity research. 2011; Accepted: 28 June 2011.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • Proceedings of the 61St Annual Meeting of The
    May 2020 ISSN 0071-0709 PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE Entomological Society of Alberta October 10 – 11, 2013 Olds College, Olds, Alberta Entomological Society of Alberta Board of Directors 2013 ……….……..….….3 Annual Meeting Committees 2013……………………..…………….……….…3 President’s Address……..……………………………………………….….…....4 Program of the 61st Annual Meeting of the Entomological Society of Alberta.....5 Oral and Poster Presentation Abstracts …………………………………..….…11 Index to Authors…………………………………………………….…….….…20 Minutes of the Entomological Society of Alberta Fall Board Meeting ……..…22 Treasurer’s Report ……………………………………………………….….….25 Secretary’s Report ……………………………………………………….….….27 ESC Regional Director’s Report for Presentation to Entomological Society of Alberta Executive and Annual General Meeting………………………….…28 ESC Regional Director for Entomological Society of Alberta Report to the Entomological Society of Canada ……………………………………….……..29 Webmaster’s Report ………………………………………………….….….….30 Southern Director’s Report ……………………………………………….……31 Northern Director’s Report ………………………………………………..…...34 Minutes of the Entomological Society of Alberta 61st Annual General Meeting …………….…………………………………………………….…….36 Photos…………………………………………………………………….…..…40 Entomological Society of Alberta’s Membership List ………………….……..45 Proceedings of the 61st Entomological Society of Alberta Annual Meeting 1 The Entomological Society of Alberta The Entomological Society of Alberta (ESA) was organized November 27, 1952, at a meeting held in Lethbridge, Alberta, as an affiliate of the Entomological Society of Canada. A certificate of incorporation was obtained under the Societies Act on February 19, 1953. The membership of about 70 paid-up members at that time consisted mainly of Dominion (Federal) entomologists at the Science Service Laboratories in Lethbridge (now Lethbridge Research and Development Centre of Agriculture and Agri-food Canada), Suffield Research Station, the Forest Zoology Laboratory in Calgary, and students and staff from the University of Alberta.
    [Show full text]
  • Forest Insect and Disease Conditions in the Rocky Mountain Region 1997-1999
    Forest Insect and Disease Conditions in the Rocky Mountain Region 1997-1999 United States Renewable Rocky Department of Resources Mountain Agriculture Forest Health Region Management 2 FOREST INSECT AND DISEASE CONDITIONS IN THE ROCKY MOUNTAIN REGION 1997-1999 by The Forest Health Management Staff Edited by Jeri Lyn Harris, Michelle Frank, and Susan Johnson December 2001 USDA Forest Service Rocky Mountain Region Renewable Resources, Forest Health Management P.O. Box 25127 Lakewood, Colorado 80225-5127 Cover: Aerial photograph taken by Robert D. Averill on October 29, 1997, just days after a blowdown event occurred on the Routt National Forest. The picture was taken looking east toward a blowdown area that straddles both the Mt. Zirkel Wilderness and the Routt National Forest. “The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternate means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity employer.” Maps in this product are reproduced from geospatial information prepared by the U.S. Department of Agriculture, Forest Service. GIS data and product accuracy may vary.
    [Show full text]
  • Identification of Dioryctria
    SYSTEMATICS Identification of Dioryctria (Lepidoptera: Pyralidae) in a Seed Orchard at Chico, California 1 2 3 1 AMANDA D. ROE, JOHN D. STEIN, NANCY E. GILLETTE, AND FELIX A. H. SPERLING Ann. Entomol. Soc. Am. 99(3): 433Ð448 (2006) ABSTRACT Species of Dioryctria Zeller (Lepidoptera: Pyralidae) are important pests of conifers, particularly in seed orchards, and accurate species identiÞcation is needed for effective monitoring and control. Variable forewing morphology and lack of species-speciÞc genitalic features hinder identiÞcation, prompting the search for additional diagnostic characters. Mitochondrial DNA (mtDNA) sequences from the cytochrome c oxidase I and II genes (COI and COII) were obtained from specimens collected at lights, pheromone traps, and host plants in the PaciÞc Northwest, focusing on a U.S. Forest Service seed orchard in Chico, CA. A 475-bp fragment of COI was used to identify eight distinct genetic lineages from 180 Dioryctria specimens, and these were identiÞed as eight described species. Comparisons among mtDNA variation, adult morphology, larval host association, and pheromone attraction were used to assign individuals to species groups and to identify diagnostic characters for species identiÞcation. A 2.3-kb fragment of COI-COII was sequenced for 14 specimens to increase resolution of phylogenetic relationships. Species groups were well resolved using both the 475-bp and “DNA barcode” subsets of the 2.3-kb sequences, with the 475-bp fragment generally showing lower divergences. The zimmermani and ponderosae species groups were sister groups and had similar male genitalic morphology and larval feeding habits. The pentictonella group was sister to the zimmermani ϩ ponderosae group clade, and all species have raised scales and a Pinus sp.
    [Show full text]
  • Choristoneura Fumiferana Clem.) Louis-Etienne Robert Universite De Montreal
    Natural Resource Ecology and Management Natural Resource Ecology and Management Publications 2017 Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm (Choristoneura fumiferana Clem.) Louis-Etienne Robert Universite de Montreal Brian R. Sturtevant U.S. Department of Agriculture Barry J. Cooke Ontario Ministry of Natural Resources and Forestry Patrick M. A. James Universite de Montreal MFoallorie-Jw othisees a Fndor taindditional works at: http://lib.dr.iastate.edu/nrem_pubs UnivPerasitrty ofof TtheoronEtonvironmental Indicators and Impact Assessment Commons, Forest Management Commons, Natural Resources and Conservation Commons, and the Natural Resources See next page for additional authors Management and Policy Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ nrem_pubs/248. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Natural Resource Ecology and Management at Iowa State University Digital Repository. It has been accepted for inclusion in Natural Resource Ecology and Management Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm (Choristoneura fumiferana Clem.) Abstract Landscape-level forest management has long been hypothesized to affect forest insect outbreak dynamics, but empirical evidence remains elusive. We hypothesized that the combination of increased hardwood relative to host tree species, prevalence of younger forests, and fragmentation of those forests due to forest harvesting legacies would reduce outbreak intensity, increase outbreak frequency, and decrease spatial synchrony in spruce budworm (Choristoneura fumiferana Clem.) outbreaks.
    [Show full text]
  • The Effects of Biotic Disturbances on Carbon Budgets of North American Forests
    The Effects of Biotic Disturbances on Carbon Budgets of North American Forests Jeffrey A. Hicke Daniel M. Kashian University of Idaho Wayne State University Moscow, ID Detroit, MI Craig D. Allen David Moore U.S. Geological Survey King's College London Los Alamos, NM United Kingdom Ankur R. Desai Kenneth Raffa University of Wisconsin University of Wisconsin Madison, WI Madison, WI Michael C. Dietze Rona Sturrock University of Illinois at Urbana- Canadian Forest Service, Natural Champaign Resources Canada Urbana, IL Victoria, BC Ronald J. Hall James Vogelmann Canadian Forest Service, Natural U.S. Geological Survey Resources Canada Sioux Falls, SD Edmonton, Alberta E. Ted Hogg Canadian Forest Service, Natural Resources Canada Edmonton, Alberta September 30, 2010 Submitted to Journal of Geophysical Research-Biogeosciences RUNNING HEAD: BIOTIC DISTURBANCES AND CARBON CYCLING Index words: 0400 BIOGEOSCIENCES, 0428 Carbon cycling, 0439 Ecosystems, structure and dynamics, 1615 Biogeochemical cycles, processes, and modeling, 1631 Land/atmosphere interactions 1 1 Abstract 2 3 Forest insects and pathogens are major disturbance agents that have affected millions of hectares 4 in North America in recent decades. The extensive area of outbreaks and large number of trees 5 affected suggest significant impacts to the carbon (C) cycle. Here we present a review and 6 synthesis of published studies of biotic forest disturbances in North America and their effects on 7 C budgets. Substantial variability exists among major disturbance agents in terms of area 8 affected, life history and drivers, and effects on trees. Insects and pathogens can greatly affect 9 carbon budgets. Primary productivity can be reduced considerably following insect or pathogen 10 attack.
    [Show full text]
  • Impacts of Native and Non-Native Plants on Urban Insect Communities: Are Native Plants Better Than Non-Natives?
    Impacts of Native and Non-native plants on Urban Insect Communities: Are Native Plants Better than Non-natives? by Carl Scott Clem A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 12, 2015 Key Words: native plants, non-native plants, caterpillars, natural enemies, associational interactions, congeneric plants Copyright 2015 by Carl Scott Clem Approved by David Held, Chair, Associate Professor: Department of Entomology and Plant Pathology Charles Ray, Research Fellow: Department of Entomology and Plant Pathology Debbie Folkerts, Assistant Professor: Department of Biological Sciences Robert Boyd, Professor: Department of Biological Sciences Abstract With continued suburban expansion in the southeastern United States, it is increasingly important to understand urbanization and its impacts on sustainability and natural ecosystems. Expansion of suburbia is often coupled with replacement of native plants by alien ornamental plants such as crepe myrtle, Bradford pear, and Japanese maple. Two projects were conducted for this thesis. The purpose of the first project (Chapter 2) was to conduct an analysis of existing larval Lepidoptera and Symphyta hostplant records in the southeastern United States, comparing their species richness on common native and alien woody plants. We found that, in most cases, native plants support more species of eruciform larvae compared to aliens. Alien congener plant species (those in the same genus as native species) supported more species of larvae than alien, non-congeners. Most of the larvae that feed on alien plants are generalist species. However, most of the specialist species feeding on alien plants use congeners of native plants, providing evidence of a spillover, or false spillover, effect.
    [Show full text]
  • Treemediated Interactions Between the Jack Pine
    Ecological Entomology (2011), 36, 425–434 DOI: 10.1111/j.1365-2311.2011.01283.x Tree-mediated interactions between the jack pine budworm and a mountain pine beetle fungal associate LINDSAY J. COLGAN andNADIR ERBILGIN Department of Renewable Resources, University of Alberta, Edmonton, Canada Abstract. 1. Coniferous trees deploy a combination of constitutive (pre-existing) and induced (post-invasion), structural and biochemical defences against invaders. Induced responses can also alter host suitability for other organisms sharing the same host, which may result in indirect, plant-mediated interactions between different species of attacking organisms. 2. Current range and host expansion of the mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) from lodgepole pine-dominated forests to the jack pine- dominated boreal forests provides a unique opportunity to investigate whether the colonisation of jack pine (Pinus banksiana Lamb.) by MPB will be affected by induced responses of jack pine to a native herbaceous insect species: the jack pine budworm (Choristoneura pinus pinus Freeman; JPBW). 3. We simulated MPB attacks with one of its fungal associates, Grosmannia clavigera Robinson-Jeffrey & Davidson, and tested induction of either herbivory by JPBW or inoculation with the fungus followed by a challenge treatment with the other organism on jack pine seedlings and measured and compared monoterpene responses in needles. 4. There was clear evidence of an increase in jack pine resistance to G. clavigera with previous herbivory, indicated by smaller lesions in response to fungal inoculations. In contrast, although needle monoterpenes greatly increased after G. clavigera inoculation and continued to increase during the herbivory challenge, JPBW growth was not affected, but JPBW increased the feeding rate to possibly compensate for altered host quality.
    [Show full text]
  • Climate Change Impacts on the Island Forests of the Great Plains and the Implications for Nature Conservation Policy
    CLIMATE CHANGE IMPACTS ON THE ISLAND FORESTS OF THE GREAT PLAINS AND THE IMPLICATIONS FOR NATURE CONSERVATION POLICY: THE OUTLOOK FOR SWEET GRASS HILLS (MONTANA), CYPRESS HILLS (ALBERTA – SASKATCHEWAN), MOOSE MOUNTAIN (SASKATCHEWAN), SPRUCE WOODS (MANITOBA) AND TURTLE MOUNTAIN (MANITOBA – NORTH DAKOTA) Norman Henderson (Prairie Adaptation and Research Collaborative) Edward Hogg (Canadian Forestry Service, Edmonton) Elaine Barrow (Adjunct Professor, University of Regina) Brett Dolter (Prairie Adaptation and Research Collaborative) Contact for comments and queries: [email protected] December, 2002 Final Revised Report 1 This study is funded and managed by the Prairie Adaptation Research Collaborative (PARC). Established in 2000 from the Government of Canada’s Climate Change Action Fund, PARC is an interdisciplinary research network established to research the potential impacts of climate change on the Canadian Prairie Provinces and develop appropriate adaptation strategies. PARC also funds and coordinates the training of personnel in climate change adaptation research. PARC is housed at the Information Technology Centre at the University of Regina, Saskatchewan, Canada. The Government of Saskatchewan has also contributed funding for this study. Email: [email protected] Telephone: (306) 337-2300 Fax: (306) 337-2301 Website: www.parc.ca The recommendations and policy analysis presented in this study represent the views of the authors only and does not necessarily reflect the views of their employing agencies. Comments and queries on the study should be directed to the Island Forest Project: [email protected] 2 SUMMARY This study investigates future climate change impacts on ecosystems, with a focus on trees, in 5 island forest sites in the northern Great Plains ecoregion: Sweet Grass Hills (Montana), Cypress Hills (Alberta-Saskatchewan), Moose Mountain (Saskatchewan), Spruce Woods (Manitoba) and Turtle Mountain (Manitoba-North Dakota).
    [Show full text]