Synthesis and Application of Hydroxyapatite and Fluoroapatite to Scorodite Encapsulation
Total Page:16
File Type:pdf, Size:1020Kb
Synthesis and application of hydroxyapatite and fluoroapatite to scorodite encapsulation Lydia Katsarou Department of Mining and Materials Engineering McGill University Montreal Canada August 2011 A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Master of Engineering © Lydia Katsarou Abstract Recent research has investigated the precipitation of crystalline scorodite (FeAsO4·2H2O) as a method to stabilise arsenic for disposal due to its good stability performance according to EPA’s TCLP test. It has been determined, however, that scorodite releases arsenic in significant concentrations under alkaline pH or under anoxic conditions. With the objective of enhancing the stability of scorodite, its encapsulation with minerals inert to pH and redox potential variations is considered in this work. Such encapsulation materials are hydroxyapatite (HAP-Ca5(PO4)3OH) and fluoroapatite (FAP-Ca5(PO4)3F), the two most stable of the calcium phosphates. The work described in this thesis includes: 1) the preparation of hydroxyapatite and fluoroapatite powders and their characterisation, 2) the synthesis of crystalline scorodite under atmospheric conditions and its characterisation, 3) the encapsulation of scorodite with hydroxyapatite and fluoroapatite, and 4) the long term stability testing of the encapsulated solids. Hydroxyapatite and fluoroapatite were prepared first by homogeneous precipitation from a metastable solution, to which “Ca” and “PO4” source reagents of different concentrations were added at variable rates. The crystallinity of the produced materials was found to increase with temperature. Crystalline scorodite was produced by seeded crystallisation in ambient pressure. For the encapsulation of the scorodite particles various methods of direct precipitation by controlled supersaturation were attempted, by adjusting the pH and adding/mixing feed solutions of individual calcium and phosphate source reagents. Heterogeneous deposition of HAP on scorodite proved rather difficult. Optimum results were obtained via prior conditioning of the scorodite substrate in a calcium solution and employment of low agitation regime and high (37 ºC rather than 22 ºC) temperature. The stability tests were done in oxic and anoxic environments and their results demonstrated that the encapsulated solids had enhanced stability, since the release of arsenic was lower than it was for naked scorodite. The presence of gypsum was found to help reduce the release of arsenic further as well as phosphorus under oxic, but not anoxic conditions due to possible interaction with the sulphite ions used as reducing agent. i Résumé Des recherches récentes ont caractérisé la précipitation de la scorodite (FeAsO4·2H2O) comme méthode de stabilisation de l’arsenic à cause de la bonne stabilité de ce composé lorsque mesuré par le test TCLP de l’EPA. Par contre, ces travaux ont montré que la scorodite relâche plus d’arsenic dans des solutions basiques ou dans des conditions anoxiques. Ce projet se concentre donc sur la stabilisation de la scorodite par son encapsulation par des minéraux inertes aux variations de pH et d’ORP. Les deux matériaux considérés pour l’encapsulation sont hydroxyapatite (HAP- Ca5(PO4)3OH) et fluorapatite (FAP-Ca5(PO4)3F), les deux phosphates de calcium les plus stables. Les résultats décrits dans cette thèse incluent : 1) la préparation de poudre d’ hydroxyapatite, de fluorapatite et leurs caractérisations; 2) la synthèse de scorodite cristalline sous air et sa caractérisation; 3) l’encapsulation de scorodite avec l’hydroxyapatite et la fluorapatite; 4) l’évaluation de la stabilité à long terme des solides encapsulés. L’hydroxyapatite et la fluorapatite ont été préparées à partir d’une solution métastable dans laquelle des réactifs contenant du calcium et des phosphates ont été ajoutés à différents rythmes. Les résultats ont montrés que la cristallinité des composés produits augmente avec la température. La scorodite cristalline fut produite par cristallisation amorcée à pression ambiante. L’encapsulation par différentes techniques de précipitation directes fut investiguée en variant le pH et le taux d’addition des réactifs. La déposition hétérogène d’hydroxyapatite sur la scorodite fut difficile à réaliser. Les meilleurs résultats furent obtenus par l’addition de scorodite dans une solution de calcium, une faible agitation et une haute température (37 ºC au lieu de 22 ºC). Les tests de stabilité effectués en présence et en absence d’oxygène ont montré que les solides encapsulés avaient une plus grande stabilité (moins de rejet d’arsenic que ceux non encapsulés). La présence de gypse avait aussi comme effet de diminuer le rejet d’arsenic et de phosphore en présence d’oxygène seulement, probablement à cause d’une interaction avec les sulfites utilisés comme agents réducteurs. ii Acknowledgments I would like to thank Professor George Demopoulos for his enthusiasm when I decided to apply and his help and support throughout my studies as my supervisor. Thank you for your time and your understanding. I am also thankful to all the members of the McGill hydrometallurgy group. Especially Sonia, Jessica, Levente, Renaud, Derek, Cecile, Cesar, Nicolas, Guobin. I am grateful to Ranjan Roy and Andrew Golsztajn for their help with the ICP, Monique Riendeau for the help on different characterisation techniques, Mario Gomez for the help on Raman, Benedetto Marelli for the help with the FTIR, Petr Fiurasek for the TGA, Line Mongeon for helping me with the SEM. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Teck Metals, for which I am deeply thankful. The support and help from my family is highly acknowledged, and I would also like to thank my friends and the McGill International Student Network for making my stay in Montreal interesting and pleasant. iii Table of Contents Abstract ...................................................................................................................................... i Résumé ..................................................................................................................................... ii Acknowledgments .................................................................................................................... iii Table of Contents ..................................................................................................................... iv List of figures ........................................................................................................................... vii List of tables ............................................................................................................................. xi Chapter 1. Introduction .............................................................................................................. 1 Chapter 2. Literature Review .................................................................................................... 4 2.1 The arsenic problem ....................................................................................................... 4 2.2 Arsenic removal and fixation .......................................................................................... 5 2.2.1 Scorodite Synthesis ............................................................................................................... 6 2.2.2 Stability of Scorodite ............................................................................................................. 6 2.2.2.1 Oxic environment .............................................................................................................. 6 2.2.2.2 Anoxic environment .......................................................................................................... 8 2.3 Crystallisation theory ...................................................................................................... 8 2.3.1 Nucleation ........................................................................................................................... 10 2.3.1.1 Primary homogeneous nucleation .................................................................................. 11 2.3.1.2 Primary heterogeneous nucleation ................................................................................ 12 2.3.1.3 Supersaturation control .................................................................................................. 12 2.3.2 Crystal growth ..................................................................................................................... 13 2.4 Encapsulation ............................................................................................................... 14 2.5 Calcium Phosphates-Apatites ...................................................................................... 14 2.5.1 Solubility and stability ......................................................................................................... 15 2.5.2 Synthesis of hydroxyapatite and fluoroapatite ................................................................... 19 2.5.3 Substitution of OH- with F- and the effect on solubility ...................................................... 22 2.6 Previous use of calcium phosphates for coating purposes .......................................... 23 2.6.1 Scorodite encapsulation studies ......................................................................................... 24 Chapter 3. Experimental ........................................................................................................