Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles

Total Page:16

File Type:pdf, Size:1020Kb

Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles A red seaweed (Ahnfeltia plicata) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Will Rayment 2004-09-20 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1656]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Rayment, W.J. 2004. Ahnfeltia plicata A red seaweed. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1656.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2004-09-20 A red seaweed (Ahnfeltia plicata) - Marine Life Information Network See online review for distribution map Bushy specimen of Ahnfeltia plicata in shallow sandy lower shore pool. Distribution data supplied by the Ocean Photographer: Francis Bunker Biogeographic Information System (OBIS). To Copyright: Francis Bunker interrogate UK data visit the NBN Atlas. Researched by Will Rayment Refereed by Dr Fabio Rindi Authority (Hudson) E.M.Fries, 1836 Other common - Synonyms - names Summary Description A perennial red seaweed which forms dense, tangled tufts. The fronds are very fine, tough and wiry with irregular or dichotomous branching and up to 21 cm in length. The holdfast is disc-like or encrusting, 0.5 to 2 cm in diameter. The fronds are dark brown when moist and appear almost black when dry. The uppermost branches are often green. Recorded distribution in Britain and Ireland Occurs on all coasts of Britain and Ireland. There is a paucity of records from south east England, reflecting a lack of suitable substrata. Global distribution Occurs in Europe from northern Russia to southern Portugal and in the Baltic Sea. Occurs in the Americas from arctic Canada to Mexico and is widely distributed in the Indian and Pacific Oceans. Habitat Ahnfeltia plicata forms turfs on shallow sublittoral bedrock and in rockpools on the lower shore, often partly buried by sand. It may form part of the turf on soft or friable rocks which are too https://www.marlin.ac.uk/habitats/detail/1656 3 Date: 2004-09-20 A red seaweed (Ahnfeltia plicata) - Marine Life Information Network unstable for large fucoids. The tetrasporophyte phase is common on pebbles, whereas the mature gametophytes only occur on more stable substrata. Depth range lower shore to 22 m Identifying features Gametangial thallus consists of discoid holdfast up to 10 mm in diameter, producing erect fronds. Fronds are terete, of horn-like consistency, uniformly 0.5 mm in diameter. Apices very blunt, axils usually rounded. Branching highly variable, from dichotomous to completely irregular. Male plants form spermatangial sori, visible as thickenings of mature axes, but absent from basal and apical regions of plant. Female plants form gametangial sori, up to 5 mm long and 70 µm high, usually on one side of the mature axes. Individual mature carposporophytes are hemispherical and about 300 µm wide. They may be discrete but are usually coalesced into elongate clusters up to 5 mm long. Tetrasporangial plants are crustose. Tetrasporangia occur in mucilaginous superficial sori with zonately arranged tetraspores. Additional information -none- Listed by Further information sources Search on: NBN WoRMS https://www.marlin.ac.uk/habitats/detail/1656 4 Date: 2004-09-20 A red seaweed (Ahnfeltia plicata) - Marine Life Information Network Biology review Taxonomy Phylum Rhodophyta Red seaweeds Class Florideophyceae Order Ahnfeltiales Family Ahnfeltiaceae Genus Ahnfeltia Authority (Hudson) E.M.Fries, 1836 Recent Synonyms - Biology Typical abundance High density Male size range 3 - 21cm Male size at maturity 3cm Female size range 3cm Female size at maturity Growth form Foliose Growth rate See additional information Body flexibility High (greater than 45 degrees) Mobility Characteristic feeding method Autotroph Diet/food source Typically feeds on Sociability Environmental position Epilithic Dependency No information found. Supports Independent Is the species harmful? No Biology information Growth rate Maggs & Pueschel (1989) recorded observations on growth of Ahnfeltia plicata from Nova Scotia. 4 months after germination of carpospores, tetrasporophyte crusts had grown up to 2.6 mm in diameter. 2 months after germination of tetraspores, the basal holdfast had reached 1.1 mm in diameter, with numerous hair like fronds emerging. After 14 months the axes had grown up to 50 mm in length. In a continuous spray culture with water at 8-11°C and light intensities of 40-60 µE/m²/s, mean apical growth of Ahnfeltia plicata was 17.2 µm/day over 19 days (Indergaard et al., 1986). Permanently immersed plants under the same conditions grew at approximately 7 µm/day. Conversely, percentage biomass increase was greater under the permanent immersion regime; 0.57% increase in mass/day vs. 0.20% for the plants in spray culture (Indergaard et al., 1986). https://www.marlin.ac.uk/habitats/detail/1656 5 Date: 2004-09-20 A red seaweed (Ahnfeltia plicata) - Marine Life Information Network Habitat preferences Physiographic preferences Open coast, Strait / sound, Enclosed coast / Embayment Lower eulittoral, Lower infralittoral, Sublittoral fringe, Upper Biological zone preferences infralittoral Substratum / habitat preferences Bedrock, Coarse clean sand, Cobbles, Pebbles Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Weak < 1 Tidal strength preferences knot (<0.5 m/sec.) Wave exposure preferences Exposed, Moderately exposed, Sheltered Salinity preferences Full (30-40 psu), Reduced (18-30 psu), Variable (18-40 psu) Depth range lower shore to 22 m Other preferences Migration Pattern Non-migratory / resident Habitat Information Lüning (1990) suggested that Ahnfeltia plicata typically occurs as an understory algae beneath Laminaria sp. at depths of 1.5 to 4 m. Life history Adult characteristics Reproductive type See additional information Reproductive frequency Annual protracted Fecundity (number of eggs) No information Generation time Insufficient information Age at maturity see additional information Season July - January Life span See additional information Larval characteristics Larval/propagule type - Larval/juvenile development Spores (sexual / asexual) Duration of larval stage No information Larval dispersal potential No information Larval settlement period Life history information Lifespan No information was found concerning the longevity of Ahnfeltia plicata. However, it is a slow maturing perennial (Dickinson, 1963) and the thallus survives several years without considerable losses (Lüning, 1990). It likely to have a lifespan of 5-10 years, similar to other red seaweeds, such as Furcellaria lumbricalis. https://www.marlin.ac.uk/habitats/detail/1656 6 Date: 2004-09-20 A red seaweed (Ahnfeltia plicata) - Marine Life Information Network Age at maturity No definitive information was found concerning age at maturity. However, Maggs & Pueschel (1989) made observations of Ahnfeltia plicata from Nova Scotia. Tetrasporophyte crusts matured and released tetraspores after 15 months. Gametangial plants had produced abundant monosporangia after 14 months but no other reproductive structures were formed during this time. Reproductive type Ahnfeltia plicata has a heteromorphic life history (Maggs & Pueschel, 1989). Carpospores formed on the female thallus as a result of sexual reproduction give rise to the tetrasporophyte encrusting form. In turn, the tetraspores formed on the tetrasporophyte phase give rise to the erect, gametophyte plants. However, male gametophytes also give rise to monosporangia, producing monospores which also develop into gametophytes. Maggs & Pueschel (1989) suggest that the recycling of erect male gametophytes may be important in habitats which are unsuitable for the encrusting phase. Timing of reproduction Maggs & Pueschel (1989) recorded observations of reproduction by Ahnfeltia plicata in Nova Scotia. Spermatangia were present on male gametophytes between July and January. Carpogonia were present on female gametophytes between July and November, carposporophytes began development between September and November, and were mature between October and July. Monosporangia, which were only found on male plants in the intertidal, were present from November to January. https://www.marlin.ac.uk/habitats/detail/1656 7 Date: 2004-09-20 A red seaweed (Ahnfeltia plicata) - Marine Life Information Network Sensitivity review This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated
Recommended publications
  • US 2019 / 0029266 A1 SAWANT ( 43 ) Pub
    US 20190029266A1 ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 / 0029266 A1 SAWANT ( 43 ) Pub . Date : Jan . 31 , 2019 ( 54 ) NOVEL CROP FORTIFICATION , (52 ) U .S . CI. NUTRITION AND CROP PROTECTION CPC .. .. .. A01N 63/ 04 ( 2013 .01 ) ; AOIN 25 / 12 COMPOSITION ( 2013 .01 ) ; A01N 63/ 00 ( 2013 .01 ) ; C05G 3 / 02 (2013 .01 ) ; C050 9 / 00 (2013 .01 ) ; C05C 9 / 00 (71 ) Applicant: Arun Vitthal SAWANT, Mumbai ( IN ) ( 2013. 01 ) ; C05F 11/ 00 ( 2013 .01 ) ( 72 ) Inventor: Arun Vitthal SAWANT, Mumbai ( IN ) (57 ) ABSTRACT (21 ) Appl. No. : 16 /047 ,834 The invention relates to an algal granular composition . More (22 ) Filed : Jul. 27 , 2018 particularly , the invention relates to an algal granular com position comprising at least one alga, and at least one (30 ) Foreign Application Priority Data agrochemically acceptable excipients selected from one or more of surfactants , binders or disintegrant having weight Jul. 27, 2017 (IN ) .. .. .. .. 201721026745 ratio of algae to at least one of surfactant, binder or disin tegrant in the range of 99 : 1 to 1 : 99 . The algae comprise Publication Classification 0 . 1 % to 90 % by weight of the total composition . The (51 ) Int . Cl. composition has a particle size in the range of 0 . 1 microns AOIN 63 / 04 ( 2006 .01 ) to 60 microns . Furthermore , the invention relates to a AOIN 25 / 12 ( 2006 . 01 ) process of preparing the algal granular composition com A01N 63 / 00 ( 2006 . 01 ) prising at least one alga and at least one agrochemically C05F 11/ 00 ( 2006 . 01 ) acceptable excipient. The invention further relates to a C05D 9 / 00 ( 2006 .01 ) method of treating the plants , seeds, crops , plantpropagation C05C 9 /00 ( 2006 .01 ) material, locus , parts thereof or the soil with the algal C05G 3 / 02 ( 2006 .01 ) granular composition .
    [Show full text]
  • Sulfation of Agarose from Subantarctic Ahnfeltia Plicata (Ahnfeltiales, Rhodophyta): Studies of Its Antioxidant and Anticoagulan
    J Appl Phycol DOI 10.1007/s10811-014-0297-3 IV LATIN AMERICAN CONGRESS OF ALGAE BIOTECHNOLOGY (CLABA) AND IV REDEALGAS WORKSHOP Sulfation of agarose from subantarctic Ahnfeltia plicata (Ahnfeltiales, Rhodophyta): studies of its antioxidant and anticoagulant properties in vitro and its copolymerization with acrylamide Betty Matsuhiro & Ta m a r a B a r a h o n a & María V. Encinas & Andrés Mansilla & Jonathan A. Ortiz Received: 19 December 2013 /Revised and accepted: 17 March 2014 # Springer Science+Business Media Dordrecht 2014 Abstract Aqueous extraction of Ahnfeltia plicata collected in Introduction the Magellan ecoregion afforded agarose devoid of sulfate groups. This neutral agarose was subjected to sulfation with Agarans are a family of polysaccharides extracted with hot SO3-pyridine complex, giving an aqueous soluble derivative water from several species of red algae. They are composed of with 35.5 % sulfate groups. Analysis by Fourier transform alternating 3-linked β-D-galactopyranosyl and 4-linked α-L- 1 13 infrared spectroscopy (FT-IR) and by Hand C NMR spec- galactopyranosyl or 3,6-anhydro-α-L-galactopyranosyl resi- troscopy indicated that this derivative was sulfated at positions dues, substituted with sulfate, methyl, and/or pyruvate groups C-6 of the β-galactopyranosyl residue and C-2 of the α-3,6- (Duckworth and Yaphe 1971;Izumi1971;Usov2011). anhydrogalactopyranosyl residue and partially sulfated at po- Agarose, a →3-β-D-galactopyranosy-1→4-3,6-anhydro-α- sition C-2 of the β residue. The antioxidant capacity of sulfated L-galactopyranosyl-1→ polymer is the most important mem- agarose was evaluated by the oxygen radical absorbance ca- ber of this family due to its application in many biochemical pacity (ORAC) method, ABTS radical cation, hydroxyl radi- separation processes (Guiseley 1987; Matsuhashi 1998).
    [Show full text]
  • Chemical Composition and Potential Practical Application of 15 Red Algal Species from the White Sea Coast (The Arctic Ocean)
    molecules Article Chemical Composition and Potential Practical Application of 15 Red Algal Species from the White Sea Coast (the Arctic Ocean) Nikolay Yanshin 1, Aleksandra Kushnareva 2, Valeriia Lemesheva 1, Claudia Birkemeyer 3 and Elena Tarakhovskaya 1,4,* 1 Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; [email protected] (N.Y.); [email protected] (V.L.) 2 N. I. Vavilov Research Institute of Plant Industry, 190000 St. Petersburg, Russia; [email protected] 3 Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany; [email protected] 4 Vavilov Institute of General Genetics RAS, St. Petersburg Branch, 199034 St. Petersburg, Russia * Correspondence: [email protected] Abstract: Though numerous valuable compounds from red algae already experience high demand in medicine, nutrition, and different branches of industry, these organisms are still recognized as an underexploited resource. This study provides a comprehensive characterization of the chemical composition of 15 Arctic red algal species from the perspective of their practical relevance in medicine and the food industry. We show that several virtually unstudied species may be regarded as promis- ing sources of different valuable metabolites and minerals. Thus, several filamentous ceramialean algae (Ceramium virgatum, Polysiphonia stricta, Savoiea arctica) had total protein content of 20–32% of dry weight, which is comparable to or higher than that of already commercially exploited species Citation: Yanshin, N.; Kushnareva, (Palmaria palmata, Porphyra sp.). Moreover, ceramialean algae contained high amounts of pigments, A.; Lemesheva, V.; Birkemeyer, C.; macronutrients, and ascorbic acid. Euthora cristata (Gigartinales) accumulated free essential amino Tarakhovskaya, E.
    [Show full text]
  • Growth Responses to Temperature, Salinity and Nutrient Variations, and Biomass Variation and Phenology of Ahnfeltia Plicata (Rho
    Growth responses to temperature, salinity and nutrient variations, and biomass variation and phenology of Ahnfeltia plicata (Rhodophyta, Ahnfeltiales): a commercially interesting agarophyte from the Magellanic Region, Chile Andres Mansilla, Juan Pablo Rodriguez, Jonatas M. C. Souza, Sebastián Rosenfeld, et al. Journal of Applied Phycology ISSN 0921-8971 J Appl Phycol DOI 10.1007/s10811-013-0150-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Appl Phycol DOI 10.1007/s10811-013-0150-0 Growth responses to temperature, salinity and nutrient variations, and biomass variation and phenology of Ahnfeltia plicata (Rhodophyta, Ahnfeltiales): a commercially interesting agarophyte from the Magellanic Region, Chile Andres Mansilla & Juan Pablo Rodriguez & Jonatas M. C. Souza & Sebastián Rosenfeld & Jaime Ojeda & Nair S. Yokoya Received: 27 May 2013 /Revised and accepted: 5 September 2013 # Springer Science+Business Media Dordrecht 2013 Abstract Ahnfeltia plicata (Hudson) E.M.
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Growth Responses to Temperature, Salinity and Nutrient Variations, And
    Author's personal copy J Appl Phycol DOI 10.1007/s10811-013-0150-0 Growth responses to temperature, salinity and nutrient variations, and biomass variation and phenology of Ahnfeltia plicata (Rhodophyta, Ahnfeltiales): a commercially interesting agarophyte from the Magellanic Region, Chile Andres Mansilla & Juan Pablo Rodriguez & Jonatas M. C. Souza & Sebastián Rosenfeld & Jaime Ojeda & Nair S. Yokoya Received: 27 May 2013 /Revised and accepted: 5 September 2013 # Springer Science+Business Media Dordrecht 2013 Abstract Ahnfeltia plicata (Hudson) E.M. Fries (Rhodophyta, variation, from 5 to 23 °C, and the optimum temperature for Ahnfeltiales) is one of the most commercially important growth was 15 °C. The highest growth rate was observed in agarophytes in the world for its production of agar that is high salinity of 35 psu with half strength of von Stosch culture quality and low in sulfate content. In the Magellanic Region, A. medium. Red and yellow gametophytes showed different re- plicata forms extensive beds with high biomass production, sponses to plant growth regulators, and red gametophytes were which could be commercially exploited for agar production. more sensitive than yellow ones to the addition of IAA and high The purposes of this study were to determine the optimal concentration of iP. However, growth of red gametophytes of A. conditions of temperature, salinity, and culture medium; to plicata was stimulated by 2,4-D. The differential sensitivity of evaluate the effects of different types and concentrations of red and yellow gametophytes to plant growth regulators sug- auxinsandcytokininsongrowthofredandyellowgameto- gests the need to test other types and concentrations of auxins phytes; and to provide background information on ecological and cytokinins.
    [Show full text]
  • Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution.
    [Show full text]
  • Parallel Evolution of Highly Conserved Plastid Genome Architecture in Red Seaweeds and Seed Plants
    Lee et al. BMC Biology (2016) 14:75 DOI 10.1186/s12915-016-0299-5 RESEARCH ARTICLE Open Access Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants JunMo Lee1, Chung Hyun Cho1, Seung In Park1, Ji Won Choi1, Hyun Suk Song1, John A. West2, Debashish Bhattacharya3† and Hwan Su Yoon1*† Abstract Background: The red algae (Rhodophyta) diverged from the green algae and plants (Viridiplantae) over one billion years ago within the kingdom Archaeplastida. These photosynthetic lineages provide an ideal model to study plastid genome reduction in deep time. To this end, we assembled a large dataset of the plastid genomes that were available, including 48 from the red algae (17 complete and three partial genomes produced for this analysis) to elucidate the evolutionary history of these organelles. Results: We found extreme conservation of plastid genome architecture in the major lineages of the multicellular Florideophyceae red algae. Only three minor structural types were detected in this group, which are explained by recombination events of the duplicated rDNA operons. A similar high level of structural conservation (although with different gene content) was found in seed plants. Three major plastid genome architectures were identified in representatives of 46 orders of angiosperms and three orders of gymnosperms. Conclusions: Our results provide a comprehensive account of plastid gene loss and rearrangement events involving genome architecture within Archaeplastida and lead to one over-arching conclusion: from an ancestral pool of highly rearranged plastid genomes in red and green algae, the aquatic (Florideophyceae) and terrestrial (seed plants) multicellular lineages display high conservation in plastid genome architecture.
    [Show full text]
  • I a FLORISTIC ANALYSIS of the MARINE ALGAE and SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA and CAPE BLANCO, OREGON by Simona A
    A FLORISTIC ANALYSIS OF THE MARINE ALGAE AND SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA AND CAPE BLANCO, OREGON By Simona Augytė A Thesis Presented to the Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Arts In Biology December, 2011 [Type a quote from the [Type a quotedocument from theor the document or the summarysummary ofi ofan aninteresting point. Youinteresting can position point. the text box anywhereYou can in theposition document. Use the Textthe textBox Toolsbox tab to change theanywhere formatting in the of the pull quote textdocument. box.] Use the Text Box A FLORISTIC ANALYSIS OF THE MARINE ALGAE AND SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA AND CAPE BLANCO, OREGON By Simona Augytė We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts. ________________________________________________________________________ Dr. Frank J. Shaughnessy, Major Professor Date ________________________________________________________________________ Dr. Erik S. Jules, Committee Member Date ________________________________________________________________________ Dr. Sarah Goldthwait, Committee Member Date ________________________________________________________________________ Dr. Michael R. Mesler, Committee Member Date ________________________________________________________________________ Dr. Michael R. Mesler, Graduate Coordinator Date
    [Show full text]
  • A Chronology of Middle Missouri Plains Village Sites
    Smithsonian Institution Scholarly Press smithsonian contributions to botany • number 106 Smithsonian Institution Scholarly Press ConspectusA Chronology of the Benthic of MiddleMarine AlgaeMissouri of the Plains Gulf of California:Village Rhodophyta, Sites Phaeophyceae, and ChlorophytaBy Craig M. Johnson with contributions by StanleyJames A. N. Ahler, Norris, Herbert Luis Haas, E. and Aguilar-Rosas, Georges Bonani and Francisco F. Pedroche SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Smithsonian Institution Scholarly Press (SISP) publishes small papers and
    [Show full text]
  • New Record of an Economic Marine Alga, Ahnfeltiopsis Concinna, in Korea Pil Joon Kang and Ki Wan Nam*
    Kang and Nam Fisheries and Aquatic Sciences (2017) 20:25 DOI 10.1186/s41240-017-0070-z RESEARCHARTICLE Open Access New record of an economic marine alga, Ahnfeltiopsis concinna, in Korea Pil Joon Kang and Ki Wan Nam* Abstract An economic marine alga, which is considered to be an important source of carrageenan, was collected from Jindo of the southern coast of Korea. This species shares the vegetative and female reproductive features of Ahnfeltiopsis and is characterized mostly by its small size (up to 8 cm), terete to subterete thalli at the lower portion, cartilaginous in texture, dichotomous branches, rarely produced proliferations, and an absence of hypha-like filaments in the medulla. It is distinguished from other Korean species within the genus by the thallus feature. In a phylogenetic tree based on the molecular data, this alga nests in the same clade with A. concinna from Japan but forms a sister clade to A. concinna from Mexico and Hawaii (type locality). However, the genetic distance among those sequences was calculated as 0.1–1. 3% for rbcL and 1.1% for COI sequences, considered to be intraspecific variation within the genus. Based on the morphology and molecular analysis, this alga is identified as A. concinna originally described from Hawaii. This is the first record of the species in the Korean marine algal flora. Keywords: Ahnfeltiopsis concinna, Korea, Economic marine alga, Molecular analysis, rbcL, COI, Morphology, First record Background Ahnfeltiopsis involves 33 species distributed from Ahnfeltiopsis P.C. Silva et DeCew belongs to Gigartinales temperate to tropical waters (Dawson 1954; Masuda F.
    [Show full text]
  • Updates to the Marine Algal Flora of the Boulder Patch in the Beaufort Sea Off Northern Alaska As Revealed by DNA Barcoding Trevor T
    ARCTIC VOL. 70, NO. 4 (DECEMBER 2017) P. 343 – 348 https://doi.org/10.14430/arctic4679 Updates to the Marine Algal Flora of the Boulder Patch in the Beaufort Sea off Northern Alaska as Revealed by DNA Barcoding Trevor T. Bringloe,1,2 Kenneth H. Dunton3 and Gary W. Saunders1 (Received 8 May 2017; accepted in revised form 19 July 2017) ABSTRACT. Since its discovery four decades ago, the Boulder Patch kelp bed community in the Beaufort Sea has been an important site for long-term ecological studies in northern Arctic Alaska. Given the difficulties associated with identifying species of marine algae on the basis of morphology, we sought to DNA barcode a portion of the flora from the area and update a recently published species list. Genetic data were generated for 20 species in the area. Fifty-five percent of the barcoded flora confirmed the morphological species identifications. Five barcoded species revealed what are likely misapplied names to the Boulder Patch flora; the updated names include Ahnfeltia borealis, Phycodrys fimbriata, Pylaiella washingtoniensis, Rhodomela lycopodioides f. flagellaris, and Ulva prolifera. The remaining four species require taxonomic work and possibly represent new records for the Boulder Patch. Our observations indicate that we need considerably more research to understand marine macroalgal biodiversity in the Arctic. Supplementing Arctic species lists using genetic data will be essential in establishing an accurate and reliable baseline for monitoring changes in ecosystem biodiversity driven by long-term changes in regional climate. Key words: Arctic benthic algae; Alaskan Beaufort Sea; DNA barcoding; Boulder Patch RÉSUMÉ. Depuis sa découverte il y a quatre décennies, le peuplement d’algues brunes de la Boulder Patch dans la mer de Beaufort représente un site important pour les études écologiques à long terme dans l’Extrême-Arctique, en Alaska.
    [Show full text]