Kiwifruit, a Botany, Chemical and Sensory Approach a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species of Saurauia (Actinidiaceae) from Jharkhand State, India
J. Jpn. Bot. 84: 233–236 (2009) A New Species of Saurauia (Actinidiaceae) from Jharkhand State, India Vinay ranjan and S. C. srivastava Central National Herbarium, Botanical Survey of India Howrah–711103, INDIA E-mail: [email protected] (Received on November 25, 2008) Saurauia parasnathensis V. Ranjan & S. C. Srivastava is described from India as new to science. This species is characterized by having cymose inflorescence with many- flowered fascicles, yellow flowers and 27–35 stamens in two rows. Key words: Actinidiaceae, India, new species, Saurauia. Saurauia Willd., comprising of 300 27–35 stamens in two rows. species (Mabberley 2005), is distributed in tropical Asia and America (Cuong et al. 2007, Saurauia parasnathensis V. Ranjan & Dressler and Bayer 2004, Soejarto 2004). S. C. Srivastava, sp. nov. [Figs. 1, 2] Hooker (1874) and Paul (1993) described Specibus differt aliis Saurauia cerea eight species from British India and India, Dyer petalis flavis, inflorescentiae cymosae respectively. While collecting the materials for multifloris fasciculis et staminibus 27–35 flora of Parasnath Wildlife Sanctuary, Giridih bistratus ornata. District, Jharkhand State, India between Type: INDIA: Jharkhand State, Giridih 2004 and 2006, the first author collected District, Parasnath Wildlife Sanctuary, alt. an interesting tree species of ca.10 m high, ca.1200 m, 21 March 2005, Vinay Ranjan leafless in flowering during the month of 37947A (holotype–CAL), 37947B (isotype– March, on the hill top. A search of Indian CAL). herbaria and literature revealed that it belongs Trees up to 10 m high, branchlets to the genus Saurauia Willd. (Actinidiaceae), brownish-black with ruptured bark and scars but the characters do not match with any of inflorescence. -
Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi
J. Microbiol. Biotechnol. (2016), 26(8), 1367–1374 http://dx.doi.org/10.4014/jmb.1603.03009 Research Article Review jmb Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells Xiangxue An1,2, Sang Gil Lee3, Hee Kang4, Ho Jin Heo5, Youn-Sup Cho6, and Dae-Ok Kim1,2* 1Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea 2Skin Biotechnology Center, Kyung Hee University, Suwon 16229, Republic of Korea 3Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA 4Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea 5Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea 6Fruit Research Institute, Jeollanam-do Agricultural Research and Extension Services, Wando 59104, Republic of Korea Received: March 4, 2016 Revised: April 15, 2016 The present study evaluated the total phenolic and flavonoid contents as well as total Accepted: May 9, 2016 antioxidant capacity (TAC) of three cultivars of Actinidia arguta Planch. kiwi berries; cv. Mansoo (Mansoo), cv. Chiak (Chiak), and cv. Haeyeon (Haeyeon). In addition, the anti- inflammatory effects of the three cultivars of kiwi berries were investigated using a First published online lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cell line. Mansoo had the May 9, 2016 highest total phenolic content and TAC among the three cultivars, whereas Chiak had the *Corresponding author highest total flavonoid content. The total antioxidant capacities of the kiwi berry extracts were Phone: +82-31-201-3796; more strongly correlated with total phenolic content than with total flavonoid content. -
A High-Quality Actinidia Chinensis (Kiwifruit) Genome Haolin Wu1,Taoma1,Minghuikang1,Fandiai1, Junlin Zhang1, Guanyong Dong2 and Jianquan Liu1,3
Wu et al. Horticulture Research (2019) 6:117 Horticulture Research https://doi.org/10.1038/s41438-019-0202-y www.nature.com/hortres ARTICLE Open Access A high-quality Actinidia chinensis (kiwifruit) genome Haolin Wu1,TaoMa1,MinghuiKang1,FandiAi1, Junlin Zhang1, Guanyong Dong2 and Jianquan Liu1,3 Abstract Actinidia chinensis (kiwifruit) is a perennial horticultural crop species of the Actinidiaceae family with high nutritional and economic value. Two versions of the A. chinensis genomes have been previously assembled, based mainly on relatively short reads. Here, we report an improved chromosome-level reference genome of A. chinensis (v3.0), based mainly on PacBio long reads and Hi-C data. The high-quality assembled genome is 653 Mb long, with 0.76% heterozygosity. At least 43% of the genome consists of repetitive sequences, and the most abundant long terminal repeats were further identified and account for 23.38% of our novel genome. It has clear improvements in contiguity, accuracy, and gene annotation over the two previous versions and contains 40,464 annotated protein-coding genes, of which 94.41% are functionally annotated. Moreover, further analyses of genetic collinearity revealed that the kiwifruit genome has undergone two whole-genome duplications: one affecting all Ericales families near the K-T extinction event and a recent genus-specific duplication. The reference genome presented here will be highly useful for further molecular elucidation of diverse traits and for the breeding of this horticultural crop, as well as evolutionary studies with related taxa. Introduction require improvement because of difficulties in assembling “ ” 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Kiwifruit (known as the king of fruits because of its the short reads into long contigs and scaffolds. -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
ACTINIDIACEAE 1. ACTINIDIA Lindley, Nat. Syst. Bot., Ed. 2, 439
ACTINIDIACEAE 猕猴桃科 mi hou tao ke Li Jianqiang (李建强)1, Li Xinwei (李新伟)1; Djaja Djendoel Soejarto2 Trees, shrubs, or woody vines. Leaves alternate, simple, shortly or long petiolate, not stipulate. Flowers bisexual or unisexual or plants polygamous or functionally dioecious, usually fascicled, cymose, or paniculate. Sepals (2 or 3 or)5, imbricate, rarely valvate. Petals (4 or)5, sometimes more, imbricate. Stamens 10 to numerous, distinct or adnate to base of petals, hypogynous; anthers 2- celled, versatile, dehiscing by apical pores or longitudinally. Ovary superior, disk absent, locules and carpels 3–5 or more; placentation axile; ovules anatropous with a single integument, 10 or more per locule; styles as many as carpels, distinct or connate (then only one style), generally persistent. Fruit a berry or leathery capsule. Seeds not arillate, with usually large embryos and abundant endosperm. Three genera and ca. 357 species: Asia and the Americas; three genera (one endemic) and 66 species (52 endemic) in China. Economically, kiwifruit (Actinidia chinensis var. deliciosa) is an important fruit, which originated in central China and is especially common along the Yangtze River (well known as yang-tao). Now, it is widely cultivated throughout the world. For additional information see the paper by X. W. Li, J. Q. Li, and D. D. Soejarto (Acta Phytotax. Sin. 45: 633–660. 2007). Liang Chou-fen, Chen Yong-chang & Wang Yu-sheng. 1984. Actinidiaceae (excluding Sladenia). In: Feng Kuo-mei, ed., Fl. Reipubl. Popularis Sin. 49(2): 195–301, 309–334. 1a. Trees or shrubs; flowers bisexual or plants functionally dioecious .................................................................................. 3. Saurauia 1b. -
No Slide Title
Birds Netting is an effective Sunburn of Clusters way to protect against bird damage Usually caused by clusters suddenly Early sunburn becoming exposed to sun due to loss (or Late sunburn removal) of leaves during hot weather Kiwiberries & kiwifruit Kiwiberries Actinidia arguta • Adapted to most regions of Oregon • Cold hardy; does need protection from frost in spring • Fruit vine ripen • Small fruit with tropical flavor notes • Skin is edible • Separate male and female plants (except some self- fertility for ‘Issai’) • Prune using same methods as kiwifruit Kiwiberry cultivars “Fuzzy” Kiwifruit Actinidia deliciosa Hayward Issai Ananasnaya • Adapted to warmer regions of western Oregon • Vine needs 225 to 240 frost-free days • Only hardy to 10o F • Very late (doesn’t vine ripen) • Pick just before heavy fall frost Ken’s Red • Large fruit. Skin covered with brown “fuzz” • Good, sweet flavor when ripened • Prune using same methods as kiwiberries Unripe vine ripe Dr. Bernadine Strik, Oregon State University 31 Cordons and Canes Cane Trunk & head of vine • Cordons are permanent parts of the vine • Plants are naturally supporting spurs or vining and are ideally fruiting canes trained to a single • Two cordons per vine trunk Cordon common in all training Head • Kiwifruit vines live for a systems long time so the trunk • Canes are “one-year-old” can get very large in – shoots that grew last diameter Trunk year • The “head” of the vine • Buds will be evident on is at the top of the these one-year-old canes trunk • Canes are selected and Dormant -
Differential Regulation of the Anthocyanin Profile in Purple Kiwifruit
Peng et al. Horticulture Research (2019) 6:3 Horticulture Research DOI 10.1038/s41438-018-0076-4 www.nature.com/hortres ARTICLE Open Access Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species) Yongyan Peng1,2,KuiLin-Wang2, Janine M. Cooney3, Tianchi Wang2, Richard V. Espley2 and Andrew C. Allan 1,2 Abstract Anthocyanins are a group of secondary metabolites that colour fruit and flowers orange, red, purple or blue depending on a number of factors, such as the basic structure, co-pigmentation, metal ion complexation and vacuolar pH. The biosynthesis of anthocyanin is regulated at the transcriptional level by a group of transcription factors, the MYB–bHLH–WD40 (MBW) complex. In this study, the purple colouration in several kiwifruit (Actinidia) species was identified and characterised as red cyanidin-based and blue delphinidin-based anthocyanins. The differential pigmentation in the skin and flesh can be attributed to the differential ratio of cyanidin and delphinidin derivatives accumulated in the total anthocyanin profile. The expression of anthocyanin biosynthetic genes chalcone synthase (CHS), flavonoid 3-O-glucosyltransferase (F3GT), flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′5′-hydroxylase (F3′5′H) is crucial for anthocyanin accumulation. However, the balance of expression of the F3′H and F3′5′H genes appears responsible for the ratio of cyanidin and delphinidin derivatives, while a lack of CHS, F3GT and MYB110 expression is responsible for a lack of total anthocyanins. The transcriptional regulation of the F3′H and F3′5′H promoters by the R2R3 MYB transcription factor MYB110 is markedly different in tobacco transient assays. -
Techniques for Detecting Actinidia Resistance to Leafrollers
Horticultural Insects 51 TECHNIQUES FOR DETECTING ACTINIDIA RESISTANCE TO LEAFROLLERS C.E. MCKENNA1, S.J. DOBSON1 and P.G. CONNOLLY2 1HortResearch, No. 1 Rd., RD2, Te Puke, New Zealand 2HortResearch, Private Bag 92169, Auckland, New Zealand Corresponding author: [email protected] ABSTRACT Hayward and Hort16A kiwifruit are susceptible to attack by the brownheaded leafroller (BHLR), Ctenopseustis obliquana, but the incidence and severity of damage to Hayward can be twice that of Hort16A. Three bioassay techniques were tested for their ability to detect differences in the relative susceptibility of the two kiwifruit cultivars to BHLR larvae. No differences were detected when larvae were reared on artificial diets containing Hayward or Hort16A plant material. Signifi cantly more larvae survived when reared on Hayward versus Hort16A leaf discs. Caging larvae onto leaves and fruit resulted in significantly more damage to Hayward compared with Hort16A. Measuring larval survival after 21 days on leaf discs, or the incidence and severity of damage caused by larvae caged on leaves or fruit, are both potential techniques for screening Actinidia plant material for resistance to leafrollers. Keywords: leafrollers, kiwifruit, host plant resistance, selection tools. INTRODUCTION Leafroller caterpillars (Lepidoptera: Tortricidae) are the most damaging pests of kiwifruit in New Zealand. At least six species of leafroller can be found on kiwifruit vines including the brownheaded leafrollers (BHLR), Ctenopseustis obliquana (Walker) and C. herana (Felder and Rogenhofer); the greenheaded leafrollers (GHLR), Planotortrix excessana (Walker) and P. octo Dugdale; the blacklyre leafroller (BLLR), Cnephasia jactatana (Walker); and the lightbrown apple moth (LBAM), Epiphyas postvittana (Walker). All species are endemic with the exception of LBAM. -
Hardy Kiwi (Actinidia Arguta, Actinidia Kolomikta) by Gary Micsky
Hardy kiwi (Actinidia arguta, Actinidia kolomikta) By Gary Micsky Hardy kiwi is a cousin of the brown fuzzy kiwi seen in most supermarkets today. Although not nearly as large as its relative, it does have some potential as a crop in the northeast. While there are concerns over cold hardiness of the shoots, experimentation by those willing to invest the time may yield promise. Athough the kiwi fruit, once referred to as the “Chinese gooseberry,” has been grown and collected from the wild for centuries in Asia, it only recently has become commonly available in the Western world. This hen’s-egg-sized fruit is covered with a brown fuzzy skin and has a melting green and very tasty pulp. This type of kiwi, which we can purchase readily from our grocery stores, can not be grown in Pennsylvania because of its cold tenderness and long growing season. A cousin of this kiwi, though, the hardy kiwi (Actinidia arguta, Actinidia kolomikta), is much more cold hardy than the plant of the commercially available fruit. It is the subject of considerable interest in our region due to its lovely flavor, relatively smooth (and edible) skin, “out of hand” eating size (about the size of a large grape), and its good shelf life. Although commercial plantings have been established in several locations in Pennsylvania, the growing of hardy kiwi remains an experiment. Hardy kiwis have some horticultural limitations that need to be addressed by the prospective grower. 1. Male and female flowers are born on different plants, so both males and females must be planted in roughly a 1:6 ratio of males to females. -
Collections Policy
Chicago Botanic Garden COLLECTIONS POLICY 1 Collections Policy July 2018 2 COLLECTIONS POLICY TABLE OF CONTENTS Mission Statement ................................................................................................................... 1 Intent of Collections Policy Document ..................................................................................... 1 Purpose of Collections .............................................................................................................. 1 Scope of Collections ................................................................................................................. 1 1) Display Plant Collections .......................................................................................... 2 Seasonal Display Collections ........................................................................... 2 Permanent Display Gardens ............................................................................ 2 Aquatic Garden ................................................................................... 2 Bonsai Collection ................................................................................. 3 Graham Bulb Garden .......................................................................... 3 Grunsfeld Children’s Growing Garden ................................................. 3 Circle Garden ....................................................................................... 3 Kleinman Family Cove ........................................................................ -
Saurauia (Actinidiaceae) of New Guinea: Current Status, Future Plans
Gardens’ Bulletin Singapore 63(1 & 2): 77–82. 2011 77 Saurauia (Actinidiaceae) of New Guinea: current status, future plans Marie Briggs Herbarium, Library, Art and Archives, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, U.K. [email protected] ABSTRACT. Saurauia, with approximately 300 species, is the largest of three genera within the family Actinidiaceae and is found in the tropical and sub-tropical regions of Asia, Central and South America. The family placement of the genus has changed several times, at times being placed in Ternstroemiaceae, Dilleniaceae and its own family, Saurauiaceae. The island of New Guinea may be a centre of diversity for Saurauia in South East Asia with more than 50 species. No comprehensive treatment of New Guinean Saurauia has been attempted since the work of Diels in 1922, despite complaints by later researchers that this publication is out of date and the subdivisions of the genus proposed therein are unsatisfactory. A full account of the family, including Saurauia, has yet to be covered in Flora Malesiana. This paper presents an introduction to the genus Saurauia in New Guinea and communicates plans for future research. Keywords. Actinidiaceae, New Guinea, Saurauia The family Actinidiaceae The family Actinidiaceae Gilg & Werdermann contains c. 355 species within three genera—Actinidia Lindl. (which includes the kiwi-fruit, c. 30 species), Saurauia Willd. (c. 300 species) and Clematoclethra (Franch.) Maxim. (c. 25 species). The family occurs in tropical and subtropical Central America, South America and South East Asia and also in temperate Asia and northern Australia (Heywood 2007). According to the Angiosperm Phylogeny Group (APG) 3 (Stevens 2001 onwards), Actinidiaceae sits in the order Ericales as a sister group to the families Roridulaceae and Sarraceniaceae. -
Actinidin Levels in Fruit of Actinidia Species and Some Actinidia Arguta Rootstock-Scion Combinations Stewart Boyes, Peter Striibi and Hinga Marsh
Lebensm.-Wiss_ u -Techno!., JO, 379-389 (1997) Actinidin Levels in Fruit of Actinidia Species and Some Actinidia arguta Rootstock-Scion Combinations Stewart Boyes, Peter Striibi and Hinga Marsh S. Boyes, P. Striibi: Food Science and Technology, The Horticulture and Food Research Institute of New Zealand Ltd., Mt. Albert Research Centre, Private Bag 92169, Auckland (New Zealand) H. Marsh: Te Puke Research Centre, The Horticulture and Food Research Institute of New Zealand Ltd., No. 1 Road, RD2, Te Puke (New Zealand) (Received May 20, 1996; accepted August I, 1996} Actinidin, the kiwifruit protease, was measured in the fruit of a number ofActinidia species during their growth, at harvest and during subsequent storage. Actlr::ldla deliciosa cv. Hayward (kiwifruit) fruit actinidin levels were compared to fmit levels measured in cutting-grown plants of species to be used as rootstocks, A arguta selections and some rootstock-scion combinations. The fruit showed a wide range of actin/din activities, which were influenced by the scion and rootstock genotype. Some trends were seen in rootstock-sdon combinations; rootstocks whose fruit had low actinfdin levels conferred low levels in the fruit of grafted scion species. Simllariy, high levels were seen in sdon fruit whose rootstock had high levels. There was a significant sdon influence in som1! combinations. The correlation between actinidin and protein levels suggested control at transcription. An SDS-PAGE gel showed that the density of the actin/din band correlated w/th the measured actin/din levels. The data suggested that variation in actfnidin activity was not due to endogenous inhibitor contTo/ or the presence of an inactive zymogen.