Supplemental Table 1: Expression of the Probe Set Ids That Characterize MUC1-CD

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Table 1: Expression of the Probe Set Ids That Characterize MUC1-CD Supplemental Table 1: Expression of the probe set IDs that characterize MUC1-CD- induced tumorigenesis and designation of a 93-gene subset prognostic in breast and lung cancers. Ratio = in vivo / in vitro. PS = 93-gene prognostic subset. Probe Set ID Gene Symbol Ratio PS Description 1383355_at ABCA1 0.429 ATP-binding cassette, sub-family A (ABC1), member 1 1379402_at ABCC4 0.473 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 1382137_at ABHD3 0.075 abhydrolase domain containing 3 1372462_at ACAT2 0.155 * acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl Coenzyme A thiolase) 1367854_at ACLY 0.47 ATP citrate lyase 1370939_at ACSL1 0.201 acyl-CoA synthetase long-chain family member 1 1368177_at ACSL3 0.275 acyl-CoA synthetase long-chain family member 3 1369928_at ACTA1 1230.193 actin, alpha 1, skeletal muscle 1398836_s_at ACTB 2.378 * actin, beta 1389785_at ACY3 19.369 aspartoacylase (aminocyclase) 3 1370071_at ADA 2.259 * adenosine deaminase 1368021_at ADH1C 0.274 alcohol dehydrogenase 1C (class I), gamma polypeptide 1369711_at AGTR2 4.292 angiotensin II receptor, type 2 1398288_at AGTR2 7.511 angiotensin II receptor, type 2 1368558_s_at AIF1 1036.083 * allograft inflammatory factor 1 1388924_at ANGPTL4 2.191 angiopoietin-like 4 1386344_at ANKH 2.936 * ankylosis, progressive homolog (mouse) 1393439_a_at ANKH 3.117 * ankylosis, progressive homolog (mouse) 1369249_at ANKH 3.194 * ankylosis, progressive homolog (mouse) 1385709_x_at ANKH 3.615 * ankylosis, progressive homolog (mouse) 1367664_at ANKRD1 0.096 ankyrin repeat domain 1 (cardiac muscle) 1367665_at ANKRD1 0.241 ankyrin repeat domain 1 (cardiac muscle) 1395552_s_at ANKRD13C 0.483 ankyrin repeat domain 13C 1367974_at ANXA3 0.338 annexin A3 1368587_at APOC1 62.15 * apolipoprotein C-I 1370862_at APOE 113.465 apolipoprotein E 1369625_at AQP1 61.367 aquaporin 1 (Colton blood group) 1368266_at ARG1 4.735 arginase, liver 1393345_at ASPH 0.374 aspartate beta-hydroxylase 1393581_at ASPM 0.407 * asp (abnormal spindle) homolog, microcephaly associated (Drosophila) 1380726_at ASPN 18.803 * asporin 1381504_at ASPN 22.117 * asporin 1367945_at ATOX1 2.068 ATX1 antioxidant protein 1 homolog (yeast) 1387184_at AXIN2 12.576 axin 2 (conductin, axil) BAIAP1 1381871_at PREDICTED 0.408 BAI1-associated protein 1 (predicted) 1375941_at BAIAP2L1 6.253 * BAI1-associated protein 2-like 1 1370823_at BAMBI 0.222 BMP and activin membrane-bound inhibitor homolog (Xenopus laevis) 1389095_at BOC 0.377 Boc homolog (mouse) 1371833_at BRI3 2.064 brain protein I3 1383926_at BUB1B 0.428 * BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) 1392938_s_at C11ORF17 0.491 chromosome 11 open reading frame 17 1376645_at C13ORF33 5.143 chromosome 13 open reading frame 33 1392547_at C15ORF48 4.758 chromosome 15 open reading frame 48 1376652_at C1QA 22.574 * complement component 1, q subcomponent, A chain 1372202_at C2ORF49 0.497 chromosome 2 open reading frame 49 1398387_at C4ORF18 13.167 chromosome 4 open reading frame 18 1371412_a_at C5ORF13 31.172 * chromosome 5 open reading frame 13 1380872_at C6ORF168 0.498 chromosome 6 open reading frame 168 1393452_at CA9 0.255 * carbonic anhydrase IX 1388460_at CAPG 2.226 capping protein (actin filament), gelsolin-like caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, 1369186_at CASP1 3.525 * convertase) 1387818_at CASP4 2.542 caspase 4, apoptosis-related cysteine peptidase 1367995_at CAT 0.476 catalase 1374280_at CBLN2 2.379 cerebellin 2 precursor 1372493_at CCDC23 2.296 coiled-coil domain containing 23 1389490_at CD248 175.045 CD248 molecule, endosialin 1367929_at CD59 5.888 CD59 molecule, complement regulatory protein 1367679_at CD74 84.03 * CD74 molecule, major histocompatibility complex, class II invariant chain 1394113_at CDC20 9.104 * cell division cycle 20 homolog (S. cerevisiae) 1368642_at CDH2 0.448 cadherin 2, type 1, N-cadherin (neuronal) 1368642_at CDH2 0.448 cadherin 2, type 1, N-cadherin (neuronal) 1368623_at CEACAM9 23.097 CEA-related cell adhesion molecule 9 1389542_at CENPE 0.406 * centromere protein E, 312kDa 1382613_at CEP152 0.341 centrosomal protein 152kDa Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal 1367602_at CITED2 0.319 domain, 2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal 1367601_at CITED2 0.406 domain, 2 1370719_a_at CLCC1 0.459 chloride channel CLIC-like 1 1388939_at COL15A1 6.409 * collagen, type XV, alpha 1 1379345_at COL15A1 8.411 * collagen, type XV, alpha 1 1388143_at COL18A1 2.882 * collagen, type XVIII, alpha 1 collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal 1370959_at COL3A1 2.856 * dominant) 1368347_at COL5A3 93.714 * collagen, type V, alpha 3 1371349_at COL6A1 377.152 * collagen, type VI, alpha 1 1371369_at COL6A2 741.288 collagen, type VI, alpha 2 1389966_at COL6A3 48.366 collagen, type VI, alpha 3 1368418_a_at CP 9.699 * ceruloplasmin (ferroxidase) 1368419_at CP 10.325 * ceruloplasmin (ferroxidase) 1386921_at CPE 2.567 * carboxypeptidase E 1367604_at CRIP2 3.915 cysteine-rich protein 2 1398286_at CSAD 2.094 cysteine sulfinic acid decarboxylase 1370169_at CSDE1 2.105 cold shock domain containing E1, RNA-binding 1370855_at CST3 2.693 * cystatin C (amyloid angiopathy and cerebral hemorrhage) 1367838_at CTH 0.085 cystathionase (cystathionine gamma-lyase) catenin (cadherin-associated protein), delta 2 (neural plakophilin-related 1383575_at CTNND2 0.225 * arm-repeat protein) 1397808_at CTSC 2.245 * cathepsin C 1368280_at CTSC 5.157 * cathepsin C 1386899_at CTSH 3.191 * cathepsin H 1387005_at CTSS 10.002 * cathepsin S 1367979_s_at CYP51A1 0.342 cytochrome P450, family 51, subfamily A, polypeptide 1 1370956_at DCN 18.931 * decorin 1387111_at DDAH1 0.092 dimethylarginine dimethylaminohydrolase 1 1372012_at DHCR24 0.415 24-dehydrocholesterol reductase 1368189_at DHCR7 0.163 * 7-dehydrocholesterol reductase 1373407_at DIP 3.857 death-inducing-protein 1372658_at DMN 0.288 desmuslin 1387905_at DNAJC12 0.458 * DnaJ (Hsp40) homolog, subfamily C, member 12 1387905_at DNAJC12 0.458 * DnaJ (Hsp40) homolog, subfamily C, member 12 1374585_at ECHDC1 0.47 * enoyl Coenzyme A hydratase domain containing 1 1383747_at ECT2 0.485 * epithelial cell transforming sequence 2 oncogene 1388600_at EFHC1 0.371 EF-hand domain (C-terminal) containing 1 1398063_x_at EG209324 310.182 predicted gene, EG209324 1368321_at EGR1 4.258 early growth response 1 1387306_a_at EGR2 6.265 early growth response 2 (Krox-20 homolog, Drosophila) 1374224_at EIF2AK4 0.472 eukaryotic translation initiation factor 2 alpha kinase 4 ELOVL family member 6, elongation of long chain fatty acids (FEN1/Elo2, 1394401_at ELOVL6 0.278 SUR4/Elo3-like, yeast) ELOVL family member 6, elongation of long chain fatty acids (FEN1/Elo2, 1388108_at ELOVL6 0.401 SUR4/Elo3-like, yeast) 1397449_at ENAH 0.393 enabled homolog (Drosophila) 1370047_at ENPP1 4.026 * ectonucleotide pyrophosphatase/phosphodiesterase 1 1367905_at ENPP3 3.054 ectonucleotide pyrophosphatase/phosphodiesterase 3 1392607_at EPB41 0.245 erythrocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked) 1388889_at ERMP1 0.236 endoplasmic reticulum metallopeptidase 1 1368078_at ESM1 0.416 endothelial cell-specific molecule 1 1369182_at F3 2.109 * coagulation factor III (thromboplastin, tissue factor) 1374320_at F5 4.42 coagulation factor V (proaccelerin, labile factor) 1367857_at FADS1 0.374 * fatty acid desaturase 1 1376177_at FAM117A 2.936 family with sequence similarity 117, member A 1376831_at FAM64A 0.203 * family with sequence similarity 64, member A 1367708_a_at FASN 0.352 fatty acid synthase 1368829_at FBN1 6.52 * fibrillin 1 1367839_at FDFT1 0.451 farnesyl-diphosphate farnesyltransferase 1 1367667_at FDPS 0.229 * farnesyl diphosphate synthase 1368114_at FGF13 17.214 fibroblast growth factor 13 1372107_at FHL1 0.463 * four and a half LIM domains 1 1373175_at FLJ22662 113.837 hypothetical protein FLJ22662 1375043_at FOS 19.346 * v-fos FBJ murine osteosarcoma viral oncogene homolog 1368947_at GADD45A 2.889 growth arrest and DNA-damage-inducible, alpha 1368332_at GBP2 5.709 * guanylate nucleotide binding protein 2 guanine nucleotide binding protein (G protein), alpha inhibiting activity 1387505_at GNAI1 0.479 polypeptide 1 1387039_at GPC1 2.091 * glypican 1 1368618_at GRB14 0.106 growth factor receptor-bound protein 14 1369113_at GREM1 0.379 gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis) 1370952_at GSTM1 0.399 glutathione S-transferase M1 1370813_at GSTM3 0.355 * glutathione S-transferase M3 (brain) 1367553_x_at HBB 252.236 hemoglobin, beta 1393096_at HCG 21078 0.365 hCG21078 1369204_at HCK 12.989 * hemopoietic cell kinase 1387036_at HES1 2.48 hairy and enhancer of split 1, (Drosophila) 1381428_a_at HFE 3.23 hemochromatosis 1390021_at HIST1H2BG 3.275 histone cluster 1, H2bg 1371332_at HIST1H3J 2.763 histone cluster 1, H3j 1371332_at HIST1H3J 2.763 histone cluster 1, H3j 1369728_at HIST1H4I 4.772 histone cluster 1, H4i 1369728_at HIST1H4I 4.772 histone cluster 1, H4i 1369728_at HIST1H4I 4.772 histone cluster 1, H4i 1369728_at HIST1H4I 4.772 histone cluster 1, H4i 1370383_s_at HLA-DRB1 17.34 * major histocompatibility complex, class II, DR beta 1 1388164_at HLA-E 5.56 * major histocompatibility complex, class I, E 1388213_a_at HLA-E 11.664 * major histocompatibility complex, class I, E 1393629_at HLX 0.378 H2.0-like homeobox 1367932_at HMGCS1 0.363 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) 1371989_at HMGN3 0.489 high mobility group nucleosomal binding domain 3 1370202_at HRASLS3 6.665 HRAS-like
Recommended publications
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Impairments in Contractility and Cytoskeletal Organisation Cause Nuclear Defects in Nemaline Myopathy
    bioRxiv preprint doi: https://doi.org/10.1101/518522; this version posted January 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy Jacob A Ross1, Yotam Levy1, Michela Ripolone2, Justin S Kolb3, Mark Turmaine4, Mark Holt5, Maurizio Moggio2, Chiara Fiorillo6, Johan Lindqvist3, Nicolas Figeac5, Peter S Zammit5, Heinz Jungbluth5,7,8, John Vissing9, Nanna Witting9, Henk Granzier3, Edmar Zanoteli10, Edna C Hardeman11, Carina Wallgren- Pettersson12, Julien Ochala1,5. 1. Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, SE1 1UL, UK 2. Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy 3. Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, 85721, USA 4. Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK 5. Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, SE1 1UL, UK 6. Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy 7. Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's and St Thomas' Hospital National Health Service Foundation Trust, London, SE1 9RT, UK 8. Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, SE1 1UL, UK 9.
    [Show full text]
  • Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases
    International Journal of Molecular Sciences Review Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases Kendal Prill and John F. Dawson * Centre for Cardiovascular Investigations, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected] * Correspondence: [email protected] Received: 17 December 2019; Accepted: 12 January 2020; Published: 15 January 2020 Abstract: Sarcomere assembly and maintenance are essential physiological processes required for cardiac and skeletal muscle function and organism mobility. Over decades of research, components of the sarcomere and factors involved in the formation and maintenance of this contractile unit have been identified. Although we have a general understanding of sarcomere assembly and maintenance, much less is known about the development of the thin filaments and associated factors within the sarcomere. In the last decade, advancements in medical intervention and genome sequencing have uncovered patients with novel mutations in sarcomere thin filaments. Pairing this sequencing with reverse genetics and the ability to generate patient avatars in model organisms has begun to deepen our understanding of sarcomere thin filament development. In this review, we provide a summary of recent findings regarding sarcomere assembly, maintenance, and disease with respect to thin filaments, building on the previous knowledge in the field. We highlight debated and unknown areas within these processes to clearly define open research questions. Keywords: sarcomere assembly; sarcomere maintenance; sarcomere thin filaments; thin filament assembly; thin filament maintenance; thin filament turnover; actin turnover; chaperone; sarcomere; myopathy 1. Introduction Striated muscle requires the coordination of hundreds of proteins not only for cellular function but also for assembly of the contractile sarcomere units within the myofibril.
    [Show full text]
  • Universidad Autónoma De Madrid Regulatory Mechanisms of Germinal Centers
    Universidad Autónoma de Madrid Departamento de Biología Molecular Regulatory mechanisms of Germinal Centers PhD Thesis Arantxa Pérez García Madrid, 2016 Regulatory mechanisms of Germinal Centers Memoria presentada por la licenciada en Biología Arantxa Pérez García para optar al título de doctor por la Universidad Autónoma de Madrid Directora de tesis: Almudena R. Ramiro Este trabajo ha sido realizado en el laboratorio de Biología de linfocitos B, en el Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid, 2016 Memoria presentada por Arantxa Pérez García, licenciada en Biología, para optar al grado de doctor por la Universidad Autónoma de Madrid. Esta tesis ha sido realizada en el laboratorio de Biología de Linfocitos B del Centro Nacional de Investigaciones Cardiovasculares (CNIC), bajo la dirección de la Doctora Almudena R. Ramiro, y para que así conste y a los efectos oportunos, firma el siguiente certificado; En Madrid, a 21 de Abril de 2016 Almudena R. Ramiro RESUMEN Tras el reconocimiento del antígeno, los linfocitos B pueden iniciar la reacción de centro germinal (GC), en la cual diversifican sus genes de inmunoglobulinas, mediante las reacciones de hipermutación somática (SHM) y cambio de isotipo (CSR), dando lugar a células plasmáticas o B memoria. La transición a través de los diferentes estadios de esta reacción implica la expresión coordinada de redes de genes que permiten una correcta diversificación de los linfocitos B. A nivel molecular, las reacciones de SHM y CSR se desencadenan por la desaminación de citosinas en los genes de las inmunoglobulinas, mediada por AID. La actividad de AID en linfocitos B no está restringida a los genes de las inmunoglobulinas, pudiendo introducir mutaciones en otros genes y mediar translocaciones cromosómicas con potencial linfomagénico.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Cellular/Molecular Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation Omotola F. Omotade1,3, Yanfang Rui1,3, Wenliang Lei1,3, Kuai Yu1, H. Criss Hartzell1, Velia M. Fowler4 and James Q. Zheng1,2,3 1Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322. 2Department of Neurology 3Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322. 4Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037 DOI: 10.1523/JNEUROSCI.3325-17.2018 Received: 22 November 2017 Revised: 25 September 2018 Accepted: 2 October 2018 Published: 9 October 2018 Author contributions: O.F.O. and J.Q.Z. designed research; O.F.O., Y.R., W.L., and K.Y. performed research; O.F.O. and J.Q.Z. analyzed data; O.F.O. and J.Q.Z. wrote the paper; Y.R., H.C.H., V.M.F., and J.Q.Z. edited the paper; V.M.F. contributed unpublished reagents/analytic tools. Conflict of Interest: The authors declare no competing financial interests. This research project was supported in part by research grants from National Institutes of Health to JQZ (GM083889, MH104632, and MH108025), OFO (5F31NS092437-03), VMF (EY017724) and HCH (EY014852, AR067786), as well as by the Emory University Integrated Cellular Imaging Microscopy Core of the Emory Neuroscience NINDS Core Facilities grant (5P30NS055077). We would like to thank Dr. Kenneth Myers for his technical expertise and help throughout the project. We also thank Drs.
    [Show full text]
  • Looking for New Classes of Bronchodilators
    REVIEW BRONCHODILATORS The future of bronchodilation: looking for new classes of bronchodilators Mario Cazzola1, Paola Rogliani 1 and Maria Gabriella Matera2 Affiliations: 1Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy. 2Dept of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy. Correspondence: Mario Cazzola, Dept of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy. E-mail: [email protected] @ERSpublications There is a real interest among researchers and the pharmaceutical industry in developing novel bronchodilators. There are several new opportunities; however, they are mostly in a preclinical phase. They could better optimise bronchodilation. http://bit.ly/2lW1q39 Cite this article as: Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28: 190095 [https://doi.org/10.1183/16000617.0095-2019]. ABSTRACT Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes. At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Human Erythrocyte Acetylcholinesterase in Health and Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade de Lisboa: Repositório.UL molecules Review Human Erythrocyte Acetylcholinesterase in Health and Disease Carlota Saldanha Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal; [email protected] Received: 10 August 2017; Accepted: 4 September 2017; Published: 8 September 2017 Abstract: The biochemical properties of erythrocyte or human red blood cell (RBC) membrane acetylcholinesterase (AChE) and its applications on laboratory class and on research are reviewed. Evidence of the biochemical and the pathophysiological properties like the association between the RBC AChE enzyme activity and the clinical and biophysical parameters implicated in several diseases are overviewed, and the achievement of RBC AChE as a biomarker and as a prognostic factor are presented. Beyond its function as an enzyme, a special focus is highlighted in this review for a new function of the RBC AChE, namely a component of the signal transduction pathway of nitric oxide. Keywords: acetylcholinesterase; red blood cells; nitric oxide 1. Introduction Erythrocytes or red blood cells (RBC) are more than sacks of oxyhemoglobin or deoxyhemoglobin during the semi-life of 120 days in blood circulation [1]. Erythrocytes comport different signaling pathways which includes the final stage of apoptosis, also called eryptosis [2,3]. Exovesicules enriched with acetylcholinesterase (AChE) originated from membranes of aged erythrocytes appear in plasma [4]. Kinetic changes of the AChE enzyme have been observed in old erythrocytes [5]. Previously, AChE in erythrocytes was evidenced as a biomarker of membrane integrity [6].
    [Show full text]
  • Cyclic Nucleotide Phosphodiesterases in Heart and Vessels
    Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, Véronique Leblais, Rodolphe Fischmeister, Grégoire Vandecasteele To cite this version: Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, et al.. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Archives of cardiovascular diseases, Elsevier/French Society of Cardiology, 2016, 109 (6-7), pp.431-443. 10.1016/j.acvd.2016.02.004. hal-02482730 HAL Id: hal-02482730 https://hal.archives-ouvertes.fr/hal-02482730 Submitted on 23 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective Abbreviated title: Cyclic nucleotide phosphodiesterases in heart and vessels French title: Phosphodiestérases des nucléotides cycliques dans le cœur et les vaisseaux : une perspective thérapeutique. Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, Véronique Leblais, Rodolphe Fischmeister*, Grégoire Vandecasteele* UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France * Corresponding authors. UMR-S1180, Faculté de Pharmacie, Université Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Material
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Page 1 / 45 SUPPLEMENTARY MATERIAL Appendix A1: Neuropsychological protocol. Appendix A2: Description of the four cases at the transitional stage. Table A1: Clinical status and center proportion in each batch. Table A2: Complete output from EdgeR. Table A3: List of the putative target genes. Table A4: Complete output from DIANA-miRPath v.3. Table A5: Comparison of studies investigating miRNAs from brain samples. Figure A1: Stratified nested cross-validation. Figure A2: Expression heatmap of miRNA signature. Figure A3: Bootstrapped ROC AUC scores. Figure A4: ROC AUC scores with 100 different fold splits. Figure A5: Presymptomatic subjects probability scores. Figure A6: Heatmap of the level of enrichment in KEGG pathways. Kmetzsch V, et al. J Neurol Neurosurg Psychiatry 2021; 92:485–493. doi: 10.1136/jnnp-2020-324647 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Appendix A1. Neuropsychological protocol The PREV-DEMALS cognitive evaluation included standardized neuropsychological tests to investigate all cognitive domains, and in particular frontal lobe functions. The scores were provided previously (Bertrand et al., 2018). Briefly, global cognitive efficiency was evaluated by means of Mini-Mental State Examination (MMSE) and Mattis Dementia Rating Scale (MDRS). Frontal executive functions were assessed with Frontal Assessment Battery (FAB), forward and backward digit spans, Trail Making Test part A and B (TMT-A and TMT-B), Wisconsin Card Sorting Test (WCST), and Symbol-Digit Modalities test.
    [Show full text]