Management of Nitrogen Fertilizer to Reduce Nitrous Oxide (N2 O)

Total Page:16

File Type:pdf, Size:1020Kb

Management of Nitrogen Fertilizer to Reduce Nitrous Oxide (N2 O) Climate Change and Agriculture Fact Sheet Series—MSU Extension Bulletin E3152 November 2014 MANAGEMENT OF NITROGEN FERTILIZER TO REDUCE NITROUS OXIDE (N2O) EMISSIONS FROM FIELD CROPS Neville Millar1, Julie E. Doll1 and G. Philip Robertson1,2 1W.K. Kellogg Biological Station, Michigan State University 2Dept. of Plant, Soil and Microbial Sciences, Michigan State University Improving the management of nitrogen fertilizer for field crops can improve nitrogen use efficiency (saving farmers money) and reduce nitrous oxide emissions (helping the climate). What is nitrous oxide and why is it important? before its N is available for uptake. When not taken up Nitrous oxide (N2O) is an important greenhouse gas by plants, most fertilizer N is mobile, hard to contain in that contributes to climate change. Because it has a long the field and susceptible to loss. Nitrogen from fertilizer atmospheric lifetime (over 100 years) and is about 300 can be lost as nitrate to groundwater or as the gases 1 times better at trapping heat than is carbon dioxide , N2O, dinitrogen (N2) or ammonia. Typically only about even small emissions of N2O half of the fertilizer N applied affect the climate. to a crop is taken up by the crop during that growing Nitrous oxide is produced by season4 (Figure 1). microbes in almost all soils. In agriculture, N2O is emitted Nitrogen applied in excess mainly from fertilized soils of crop needs is particularly and animal wastes—wherever susceptible to loss. Though nitrogen (N) is readily available. the amounts of carbon and In the United States, oxygen available in soil also agriculture accounts for affect microbial 2N O approximately 8 percent of Automated greenhouse gas sampling chambers in a wheat field on the production, the presence all greenhouse gas emissions KBS Long-term Ecological Research site. These chambers measure nitrous of inorganic N usually oxide, carbon dioxide and methane emissions multiple times every day but contributes about 75 throughout the year, allowing researchers to accurately estimate matters most. greenhouse gas emissions. Photo: J.E.Doll, Michigan State University. percent of all N2O emissions linked to human activity2. Of How can nitrogen fertilizer the three major greenhouse gases emitted naturally— management decrease nitrous oxide emissions? carbon dioxide, methane and N O—N O is the most Because of the strong link between inorganic N in 2 2 the soil and N O production, some emissions are important in all field crops but rice3. 2 unavoidable. But management that prevents the This fact sheet explains how better management of buildup of inorganic N reduces N2O emissions. N fertilizer can reduce N2O emissions from crop fields. Numerous management strategies can keep soil N in check and minimize N O emissions5. Many of these How does nitrogen fertilizer increase nitrous oxide 2 emissions? strategies also help to keep other forms of N from Farmers add new N to fields either as synthetic fertilizers being lost, including nitrate and ammonia. In general, practices that reduce N O emissions increase N use such as urea or anhydrous ammonia, or as organic 2 fertilizers such as manure. Most synthetic fertilizer N is efficiency (NUE), which keeps more of the added N in readily available for uptake by plants; most of the N in the crop. organic fertilizer must be converted to inorganic N level to which crops respond) by a margin that depends on the price of fertilizer vs. the price of grain11. Typically, using the MRTN approach rather than the older yield-goal approach allows farmers to realize N fertilizer 12 savings. Because both N2O emissions and nitrate leaching13 increase exponentially when N fertilizer exceeds crop N demand, these N savings also can result in substantially lower losses of N2O and nitrate. Better estimating the amount of fertilizer N needed by a crop is an effective way to reduce 2N O emitted from cropped fields. Improving nitrogen fertilizer formulation Fertilizer formulations also can alter N2O emissions in some cropping systems. For example, in corn-soybean rotations, emissions can be two to four times greater following anhydrous ammonia than following urea ammonium nitrate or broadcast urea14. The trend Figure 1: This simplified nitrogen (N) cycle shows the typical fate of 100 pounds of N fertilizer applied to a corn field. The exact amounts vary with soil toward using more urea in corn in the United States type, weather and crop. (Source: Ecologically Based Farming Systems, 20076.) may help reduce N2O emissions. Fertilizer additives can also reduce N O emissions. The four main management factors that help reduce 2 Nitrification inhibitors such as nitrapyrin15, which delay N O emissions from applied N fertilizer are commonly 2 the microbial transformation of soil ammonium to known as the 4R’s: nitrate, can delay the formation of nitrate until closer • Right N application rate; to the time that plants can use it. Likewise, urease • Right formulation (fertilizer type); inhibitors can delay urea fertilizer’s dissolving in soil • Right timing of application; and, water. Slow-release formulations such as polymer • Right placement. coatings can have the same effect. For example, in Matching nitrogen fertilizer application rate to irrigated no-till corn, N2O emissions can be reduced by crop requirement using polymer-coated urea or a combined nitrification Nitrogen availability — the amount of inorganic N in soil at any given time — is the single best predictor 7,8 of N2O fluxes in cropped ecosystems . Michigan State University researchers have shown that N2O emissions are especially high when N fertilizer is applied at rates greater than crop need. The emission rate grows exponentially with increases in fertilizer rate (see Figure 2), so at higher rates of fertilizer application N2O emissions increase disproportionately, particularly after crop N demands are met9. Recent fertilizer recommendations for Michigan corn crops provide farmers an improved capacity to predict crop N needs10. These recommendations are based on dozens of field fertilizer response trials that define the maximum return to N rate (MRTN), which is the rate at which adding any additional N is not repaid by higher Figure 2: Data from Michigan corn fields12 showing how nitrous oxide (N2O) emissions increase exponentially with increasing yields. This rate is typically a bit lower than the fertilizer N rate. By more precisely estimating crop fertilizer N needs, farmers can greatly reduce N O emissions from their fields. agronomically optimum N rate (AONR: the maximum 2 and urease inhibitor with urea ammonium nitrate, How can we best reduce nitrous oxide emissions compared with using either urea or urea ammonium from field crop agriculture? 16 nitrate alone . As yet, however, there have been too An integrated approach is best suited to reduce N2O few field studies to fully judge the benefit of additives emissions from field crop agriculture. The same principles or fertilizer formulations for N2O emissions. of N fertilizer best management practices for increased NUE hold true for reducing emissions: Improving nitrogen fertilizer timing • Apply fertilizer at the economically Applying N fertilizer when it is most needed by plants optimum rate; can also help reduce N O emissions. Applying the 2 • Use an appropriate fertilizer formulation; majority of fertilizer a few weeks after planting rather • Apply as close to the time of crop need than at or before planting increases the likelihood that as possible; and, the N will end up in the crop rather than be lost to • Apply as close to the crop’s root zone groundwater or the atmosphere. Sidedressing N fertilizer as possible. at the V-6 stage in corn, for example, can increase N use efficiency17— especially if application is preceded by a Following these practices will, in general, result in more pre-sidedress-nitrate test (PSNT) to allow residual N to N in the crop and less lost to the environment. These 18 and further potential N O mitigation strategies for be taken into account . 2 croplands are summarized in Table 124. Adding N fertilizer in the fall or spreading manure on frozen fields often leads to especially large nitrate19 and Earning Carbon Credits for Nitrous Oxide N O20 losses. In such cases, fertilizer applications are way Reductions 2 As previously mentioned, even small amounts of N O in out of sync with the timing of crop needs. 2 the atmosphere can greatly affect the climate. Because Improving nitrogen fertilizer placement of this, there is great interest in reducing emissions of Placing N fertilizer close to plant roots also can reduce N2O from various economic sectors, including field crop N2O emissions. For example, applying urea in narrow agriculture. By using the N management practices bands next to the plants rather than broadcasting across described in this bulletin, farmers can reduce N2O the field can reduce 2N O emissions. Likewise, emissions emissions from their fields without reducing crop yield are lower when canola and wheat are side-banded rather or economic return. This is the basis for programs than banded midrow21. In offered through carbon credit corn, shallow rather than deep organizations in the United placement of ammonium States that use the nitrate or anhydrous ammonia marketplace to pay farmers has led to reduced N2O for these reductions. emissions22. Most straightforward and Precision fertilizer application accessible programs use a can also improve NUE by methodology that estimates tailoring N application to soil N2O emissions reductions on spatial variability. Adding less the basis of the reduction of N to those parts of a field Aerial view of the KBS Long-term Ecological Research experiment showing N fertilizer rate. This corn’s response to varying levels of nitrogen fertilizer rates. Data from this with low yield potential, as and other experiments across Michigan showed how nitrogen rates can be methodology is based on measured by yield monitoring, reduced, resulting in lower nitrous oxide emissions without harming crop data collected on commercial will avoid wasting N on yield.
Recommended publications
  • Prebiological Evolution and the Metabolic Origins of Life
    Prebiological Evolution and the Andrew J. Pratt* Metabolic Origins of Life University of Canterbury Keywords Abiogenesis, origin of life, metabolism, hydrothermal, iron Abstract The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution. 1 Introduction: Chemoton Subsystems and Evolutionary Pathways Living cells are autocatalytic entities that harness redox energy via the selective catalysis of biochemical transformations.
    [Show full text]
  • Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture
    Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture Stephen Lucas 05/11/10 Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture Stephen Lucas With laboratory partner: Christopher Richards University College London 5th November 2010 Abstract: The ratio of specific heats, γ, at constant pressure, Cp and constant volume, Cv, have been determined by measuring the oscillation frequency when a ball bearing undergoes simple harmonic motion due to the gravitational and pressure forces acting upon it. The γ value is an important gas property as it relates the microscopic properties of the molecules on a macroscopic scale. In this experiment values of γ were determined for input gases: CO2, Ar, N2, and an Ar + N2 mixture in the ratio 0.51:0.49. These were found to be: 1.1652 ± 0.0003, 1.4353 ± 0.0003, 1.2377 ± 0.0001and 1.3587 ± 0.0002 respectively. The small uncertainties in γ suggest a precise procedure while the discrepancy between experimental and accepted values indicates inaccuracy. Systematic errors are suggested; however it was noted that an average discrepancy of 0.18 between accepted and experimental values occurred. If this difference is accounted for, it can be seen that we measure lower vibrational contributions to γ at room temperature than those predicted by the equipartition principle. It can be therefore deduced that the classical idea of all modes contributing to γ is incorrect and there is actually a „freezing out‟ of vibrational modes at lower temperatures. I. Introduction II. Method The primary objective of this experiment was to determine the ratio of specific heats, γ, for gaseous Ar, N2, CO2 and an Ar + N2 mixture.
    [Show full text]
  • Inhibition of Premixed Carbon Monoxide-Hydrogen-Oxygen-Nitrogen Flames by Iron Pentacarbonylt
    Inhibition of Premixed Carbon Monoxide-Hydrogen-Oxygen-Nitrogen Flames by Iron Pentacarbonylt MARC D. RUMMINGER+ AND GREGORY T. LINTERIS* Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA This paper presents measurements of the burning velocity of premixed CO-HrOrNz flames with and without the inhibitor Fe(CO)s over a range of initial Hz and Oz mole fractions. A numerical model is used to simulate the flame inhibition using a gas-phase chemical mechanism. For the uninhibited flames, predictions of burning velocity are excellent and for the inhibited flames, the qualitative agreement is good. The agreement depends strongly on the rate of the CO + OH <-> COz + H reaction and the rates of several key iron reactions in catalytic H- and O-atom scavenging cycles. Most of the chemical inhibition occurs through a catalytic cycle that converts o atoms into Oz molecules. This O-atom cycle is not important in methane flames. The H-atom cycle that causes most of the radical scavenging in the methane flames is also active in CO-Hz flames, but is of secondary importance. To vary the role of the H- and O-atom radical pools, the experiments and calculations are performed over a range of oxygen and hydrogen mole fraction. The degree of inhibition is shown to be related to the fraction of the net H- and O-atom destruction through the iron species catalytic cycles. The O-atom cycle saturates at a relatively low inhibitor mole fraction (-100 ppm), whereas the H-atom cycle saturates at a much higher inhibitor mole fraction (-400 ppm).
    [Show full text]
  • Nitrogen Oxide Concentrations in Natural Waters on Early Earth
    The First Billion Years: Habitability 2019 (LPI Contrib. No. 2134) 1042.pdf NITROGEN OXIDE CONCENTRATIONS IN NATURAL WATERS ON EARLY EARTH. Sukrit Ran- jan1,*, Zoe R. Todd2, Paul B. Rimmer3,4, Dimitar D. Sasselov2 and Andrew R. Babbin1, 1MIT, 77 Massachusetts Avenue, CamBridge, MA 02139; [email protected], 2Harvard University, 60 Garden Street, Cambridge, MA 02138, 3MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK, 4University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, *SCOL Postdoctoral Fellow. Introduction: A key challenge in origin-of-life the fact that UV photolysis would not have occurred studies is determining the environmental conditions below the photic depths of these molecules. on early Earth under which abiogenesis occurred [1]. Results: We find that the sinks due to Fe2+ and While some constraints do exist (e.g. zircon evidence UV are orders of magnitude stronger than the sink due for surface liquid water), relatively few constraints to vents. Inclusion of the effects of these sinks sup- - exist on the abundances of trace chemical species, presses [NOX ]<1 µM in the bulk ocean over the vast which are relevant to assessing the plausibility and majority of the plausible parameter space. Oceanic - guiding the development of postulated prebiotic NOX -dependent prebiotic chemistries must identify - chemical pathways which depend on these molecules. mechanisms to concentrate local [NOX ] above the - - - - Nitrogen oxide anions (NOX ; NO2 , NO3 ) are oceanic mean. However, [NOX ] could have reached - chemical species of special importance. NOX are in- prebiotically-relevant concentrations (³1 µM) in fa- voked in diverse prebiotic chemistries, from the origin vorable surficial aqueous environments, i.e.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • Hydrogen, Nitrogen and Argon Chemistry
    Hydrogen, Nitrogen and Argon Chemistry Author: Brittland K. DeKorver Institute for Chemical Education and Nanoscale Science and Engineering Center University of Wisconsin-Madison Purpose: To learn about 3 of the gases that are in Earth’s atmosphere. Learning Objectives: 1. Understand that the atmosphere is made up of many gases. 2. Learn about the differences in flammability of nitrogen and hydrogen. 3. Learn what is produced during electrolysis. Next Generation Science Standards (est. 2013): PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions PS3.D: Energy in Chemical Processes and Everyday Life (partial) ETS1.A: Defining Engineering Problems ETS1.B: Designing Solutions to Engineering Problems ETS1.C: Optimizing the Design Solution National Science Education Standards (valid 1996-2013): Physical Science Standards: Properties and changes of properties in matter Earth and Space Science Standards: Structure of the earth system Suggested Previous Activities: Oxygen Investigation and Carbon Dioxide Chemistry Grade Level: 2-8 Time: 1 hour Materials: Safety glasses Manganese dioxide Work gloves (for handling Tea-light candles steel wool) Matches Test tubes Spatulas Beakers Wooden splints 100mL graduated cylinders Waste bucket for burnt 15mL graduated cylinders materials 3% hydrogen peroxide Vinegar Baking soda Safety: 1. Students should wear safety glasses during all activities. 2. Students should not be allowed to use matches or candle. 3. Students should be cautioned to only mix the chemicals as directed. Introduction: Air refers to the mixture of gases that make up the Earth’s atmosphere. In this lesson, students will learn about hydrogen (present in very, very small amounts in our atmosphere), nitrogen (the most prevalent gas), and argon (third behind nitrogen and oxygen.) Procedures: 1.
    [Show full text]
  • Benzene Matter Emissions from Stationary Sources (EMTIC M-110)
    W4444444444444444444444444444444444444444444444444444444444444444 444444444444U EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER CONDITIONAL TEST METHOD W4444444444444444444444444444444444444444444444444444444444444444 444444444444U Prepared by Emission Measurement Branch EMTIC CTM-014.WPF Technical Support Division, OAQPS, EPA 12/2/92 Determination of Benzene Matter Emissions from Stationary Sources (EMTIC M-110) INTRODUCTION Performance of this method should not be attempted by persons unfamiliar with the operation of a gas chromatograph, nor by those who are unfamiliar with source sampling, as there are many details that are beyond the scope of this presentation. Care must be exercised to prevent exposure of sampling personnel to benzene, a carcinogen. 1. PRINCIPLE AND APPLICABILITY 1.1 Principle. An integrated bag sample of stack gas containing benzene and other organics is subjected to gas chromatographic (GC) analysis, using a flame ionization detector (FID). 1.2 Applicability. The method is applicable to the measurement of benzene in stack gases only from specified processes. It is not applicable where the benzene is contained in particulate matter. 2. RANGE AND SENSITIVITY The procedure described herein is applicable to the measurement of benzene in the 0.1 to 70 ppm range. The upper limit may be extended by extending the calibration range or by dilution of the sample. 3. INTERFERENCES The chromatograph columns and the corresponding operating parameters herein described have been represented as being useful for producing an adequate resolution of benzene. However, resolution interferences may be encountered on some sources. Also, the chromatograph operator may know of a column that will produce a superior resolution of benzene without reducing the response to benzene as specified in section 4.3.1.
    [Show full text]
  • A Complex Life Habitable Zone Based on Lipid Solubility Theory Ramses M
    www.nature.com/scientificreports OPEN A Complex Life Habitable Zone Based On Lipid Solubility Theory Ramses M. Ramirez1,2 To fnd potentially habitable exoplanets, space missions employ the habitable zone (HZ), which is the region around a star (or multiple stars) where standing bodies of water could exist on the surface of a rocky planet. Follow-up atmospheric characterization could yield biosignatures signifying life. Although most iterations of the HZ are agnostic regarding the nature of such life, a recent study argues that a complex life HZ would be considerably smaller than that used in classical defnitions. Here, I use an advanced energy balance model to show that such an HZ would be considerably wider than originally predicted given revised CO2 limits and (for the frst time) N2 respiration limits for complex life. The width of this complex life HZ (CLHZ) increases by ~35% from ~0.95–1.2 AU to 0.95–1.31 AU in our solar system. Similar extensions are shown for stars with stellar efective temperatures between 2,600– 9,000 K. I defne this CLHZ using lipid solubility theory, diving data, and results from animal laboratory experiments. I also discuss implications for biosignatures and technosignatures. Finally, I discuss the applicability of the CLHZ and other HZ variants to the search for both simple and complex life. Te habitable zone (HZ) is the region around a star (or multiple stars) where standing bodies of liquid water could exist on the surface of a rocky planet1–3. To date, the HZ remains the principle means by which potentially habitable planets are targeted for follow up spectroscopic observations2.
    [Show full text]
  • Effect of Argon-Nitrogen Mixing Gas During Magnetron Sputtering on Titanium Interlayer
    Rev.Adv.Mater.Sci.80 16(2007) 80-87N. Panich, P. Wangyao, S. Hannongbua, P. Sricharoenchai and Y. Sun EFFECT OF ARGON-NITROGEN MIXING GAS DURING MAGNETRON SPUTTERING ON TITANIUM INTERLAYER DEPOSITION WITH TiB2 COATINGS ON HIGH SPEED STEEL N. Panich1, P. Wangyao1, S. Hannongbua1, P. Sricharoenchai2 and Y. Sun3 1 Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phrayathai Rd., Pathumwan, Bangkok, 10330, Thailand 2Dept. of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Phrayathai Rd., Pathumwan, Bangkok, 10330, Thailand 3 School of Engineering & Technology, De Montfort University, Leicester LE1 9BH, UK Received: July 14, 2007 Abstract. It has been a common practice that in the deposition of a ceramic coating onto a sub- strate, a thin titanium interlayer is used to improve the adhesion between the coating and the substrate. But the structure and strength of the interlayer play an important role in determining the adhesion strength of the coating. This work involves the deposition of titanium diboride (TiB2) based nanostructured coatings on high speed steel substrates. A titanium interlayer was applied by sputtering a titanium target in pure argon atmosphere and in argon-nitrogen gas mixtures to affect nitrogen doping of the interlayer. Structural and properties analysis revealed that various contents of nitrogen gas in argon-nitrogen gas mixture during deposition by magnetron sputtering has significant effect on the adhesion between the TiB2 coating and the high speed steel substrate. There exists an optimum degree of nitrogen incorporation in the interlayer that results in the maxi- mum enhancement in adhesion. The beneficial effect of nitrogen gas mixing is discussed in terms of the modified structure and increased hardness of the interlayer, which provides stronger sup- port for mechanical loading.
    [Show full text]
  • SDS # : 012824 Supplier's Details : Airgas USA, LLC and Its Affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253
    SAFETY DATA SHEET Nonflammable Gas Mixture: Carbon Monoxide / Nitric Oxide / Nitrogen Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: Carbon Monoxide / Nitric Oxide / Nitrogen Other means of : Not available. identification Product type : Gas. Product use : Synthetic/Analytical chemistry. SDS # : 012824 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Not applicable. Response : Not applicable. Storage : Protect from sunlight. Store in a well-ventilated place. Disposal : Not applicable. Hazards not otherwise : In addition to any other important health or physical hazards, this product may displace classified oxygen and cause rapid suffocation. Section 3. Composition/information on ingredients Substance/mixture : Mixture Other means of : Not available.
    [Show full text]
  • 16 Nitrogen Contamination in Private Drinking Water Wells
    PRIVATE DRINKING WATER IN CONNECTICUT Publication Date: April 2009 Publication No. 16: Nitrogen Contamination in Private Drinking Water Wells The U.S. Environmental Protection Agency (EPA) currently does not regulate Private wells. Private well owners are responsible for the quality of their drinking water. Homeowners with private wells are generally not required to test their drinking water. However, they can use the public drinking standards as guidelines to ensure drinking water quality. Refer to Publication #23 Drinking Water Standards for more information. The Maximum Contaminant Level (MCL) for nitrate measured as nitrogen in drinking water is 10 milligrams per liter (mg/l)) or parts per million (ppm) as established by the EPA. In addition, EPA has set an MCL for nitrite-nitrogen in drinking water at 1 mg/l. Introduction Nitrogen, a component of protein, is essential to all living things. Nitrogen exists in the environment in many forms. It can change its form as it moves through the nitrogen cycle; organic nitrogen ↔ammonia ↔nitrite↔nitrate. Nitrate and nitrite are two forms of nitrogen of most concern in drinking water. Nitrite-nitrogen is indicative of recent pollution and is usually accompanied by highly elevated fecal coliform bacteria counts. Nitrate-nitrogen is indicative of older pollution and is the result of organic or nitrite nitrogen being “weathered or aged” as it passes through the soil overburden on its way to lower aquifers. • Both the nitrate and nitrite forms of nitrogen in drinking water are a health concern, especially for infants, pregnant women, and the elderly. • A water test is the only way to determine the presence and amount of these contaminants in well water.
    [Show full text]
  • And Nitro- Oxy-Polycyclic Aromatic Hydrocarbons
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization or the World Health Organization. Environmental Health Criteria 229 SELECTED NITRO- AND NITRO- OXY-POLYCYCLIC AROMATIC HYDROCARBONS First draft prepared by Drs J. Kielhorn, U. Wahnschaffe and I. Mangelsdorf, Fraunhofer Institute of Toxicology and Aerosol Research, Hanover, Germany Please note that the pagination and layout of this web version are not identical to the printed EHC Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO) and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research and the Organisation for Economic Co- operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]