Hemimelia and Absence of the Peroneal Artery

Total Page:16

File Type:pdf, Size:1020Kb

Hemimelia and Absence of the Peroneal Artery Journal of Perinatology (2014) 34, 156–158 & 2014 Nature America, Inc. All rights reserved 0743-8346/14 www.nature.com/jp PERINATAL/NEONATAL CASE PRESENTATION Hemimelia and absence of the peroneal artery S Huda1, G Sangster2, A Pramanik3, S Sankararaman4, H Tice5 and H Ibrahim3 The arterial patterns of the lower extremities of three patients with congenital absence fibulae (hemimelia) were evaluated to determine whether the relationship existed between the absence of peroneal artery and hemimelia. Computerized tomograph angiography revealed the absence of peroneal artery in all the patients with dysplastic limbs and absent fibula. Journal of Perinatology (2014) 34, 156–158; doi:10.1038/jp.2013.137 Keywords: hemimelia; peroneal artery; angiogensis INTRODUCTION spontaneously in the first year and she received prosthesis for the Hemimelia is the commonest long bone deformity with and right lower extremity deformity. estimated prevalence of 5.7 to 20 cases per 1 million live births.1,2 A range of clinical and radiographic abnormalities has been described in patients with congenital fibular deficiency. These are CASE 2 often associated with limb anomalies in both upper and lower M.J. was a female infant born at 37 weeks to a 29-year-old extremities.3–5 Vascularization of tibia, proximal part of the femur multigravida. There was no history of exposure to teratogens or and the fibula occurs between 4 and 7 weeks of embryogenesis. viral illness during pregnancy. Mother had two prior spontaneous The peroneal artery arises from the posterior tibial artery below abortions, and no family history of congenital anomalies. Prenatal the knee, supplying perforating branches to the lateral and ultrasound showed lumbosacral meningocele and hydrocephalus. anterior compartments of the leg and a nutrient artery to the Amniotic fluid analysis for quad screening test and acetyl fibula. We report three newborn infants with hemimelia with cholinesterase were negative. Fluorescent in situ hybridization absent fibula and peroneal artery. analysis of the amniotic fluid was unremarkable. Routine prenatal serologies were negative. Apgar scores were 6 and 9 at 1 and 5 min, respectively. At birth, CASE 1 multiple abnormalities were noted, which included a shorter left J.M. a female infant was a monochorionic-diamniotic twin born to lower extremity, bilateral club feet along with lumbosacral a 19-year-old primigravida with class A1 diabetes and polyhy- meningomyelocele and large head (head circumference 38 cm dramnios at 34 weeks gestation and weighed 1910 g. The prenatal 497th percentile). Echocardiogram was unremarkable. Cranial diagnostic workup was unremarkable with 46XX on amniocent- ultrasound showed dilatation of lateral and third ventricles. Renal esis. There was no exposure to: teratogenic drugs, alcohol, ultrasound showed bilateral hydronephrosis with normal voiding irradiation, viral illness, nicotine during pregnancy. The family cystourethrogram. Skeletal survey of the lower extremities history was unremarkable. Apgar scores were 8 and 9 at 1 and confirmed the limb length discrepancy and showed deformed, 5 min, respectively. The baby was admitted to the neonatal bowed distal tibiae with bilateral club feet. The left fibula was intensive care unit. absent; hence, CTA was done, which revealed three vessels in the At birth, multiple abnormalities were noted, which included a right leg, namely the peroneal artery, anterior and posterior tibial single umbilical artery, right sided shorter leg, absent foot (Figures arteries, but only two vessels on the left side, that is, the anterior 1a and b) and absent thumb and clinodactyly with a longer fourth and posterior tibial arteries (Figures 2a–c) with absence of finger. The face was asymmetrical possibly due to absent peroneal artery. Her newborn screening including hearing depressor anguli oris. She also had sub-aortic perimembranous assessment was normal. She was discharged home at 2 weeks ventricular septal defect found on echocardiography. Cranial of age with follow-up by her pediatrician and orthopedic surgeon. ultrasound and magnetic resonance imaging of the brain were normal. Skeletal survey showed an absence of right fibula along with hypoplastic right first rib, partial fusion of the right radius and CASE 3 ulna, shorter right radius and absent right thumb with a W.C. a male infant, born at 41 weeks gestation to a 17-year-old corresponding absence of the first metacarpal bone. A computer- primigravida, weighing 3450 g. Apgar scores were 7 and 8 at 1 and ized tomograph angiography (CTA) of the lower extremities 5 min, respectively. Prenatal serologies were normal. Pregnancy revealed normal popliteal arteries on both sides, but an absent was complicated by hypertension and oligohydramnios. There peroneal artery on the right side. The patient was discharged at 12 was no family history of congenital anomalies. days of age with follow-up in cardiology and orthopedic clinics in At birth, multiple deformities of the extremities as described addition to her pediatrician. The ventricular septal defect closed below were noted including claw hand and claw foot. Skeletal 1Department of Neonatal-Perinatal Medicine, LSU-Health, Shreveport, LA, USA; 2Department of Radiology, LSU-Health, Shreveport, LA, USA; 3Department of Pediatric Neonatal- Perinatal Medicine, LSU-Health, Shreveport, LA, USA; 4Department of Pediatrics, LSU-Health, Shreveport, LA, USA and 5Department of Pediatric Pharmacy, LSU-Health, Shreveport, LA, USA. Correspondence: Dr H Ibrahim, Department of Pediatric Neonatal-Perinatal Medicine, LSU-Health, 1501 Kings HWY, PO Box 33932, Shreveport, LA 71103, USA. E-mail: [email protected] Received 9 September 2013; accepted 25 September 2013 Hemimelia and absence of the peroneal artery S Huda et al 157 Figure 1. (a) Frontal skeletal radiograph showing absent fibula and foot. (b) Frontal three-dimensional Volume Rendering Reconstruction of both lower extremities demonstrates the absence of the right fibula and foot. RA, right side. Figure 2. (a) Three-dimensional Volume Rendering Reconstruction of the left lower extremity showing absence of fibula with normal foot. (b) Axial computerized tomograph angiography of the left lower extremity shows a two vessels run-off with absence of the peroneal artery and fibula. Long arrow indicates anterior tibialis artery. Short arrow depicts posterior tibialis artery. (c) Curve Maximum Intensity Projection reconstruction of the left leg demonstrates patent anterior (short arrow) and posterior (long arrows) tibialis arteries. The peroneal artery is absent. surveys confirmed numerous abnormalities. The right hand had aspect of the right leg, three vessels were seen but on the left side three digits with clinodactyly of the second and third digits. The only two vessels were noted. right foot had four metacarpal bones with fusion of the second Newborn screening was normal and the patient was discharged and third metacarpal bones distally. On the left hand, there were on the 4 day with outpatient orthopedic follow-up. five metacarpals with five digits. The third and fourth fingers were fused involving the soft tissues. There was partial absence of the medial aspect of the distal phalanx of the third finger and partial fusion of the middle phalanges of these two fingers in the DISCUSSION proximal aspect. An accessory bone oriented transversely Fibular aplasia (also known as fibular hemimelia, fibular deficiency) between the bases of the second and third fingers, distal to the is a rare disorder, often associated with long bone anomalies. In second and third metacarpals and clinodactyly of second–fourth the less severe malformations (10% of the total), partial unilateral fingers. These digital abnormalities formed split claw deformity. deficiency of the fibula has been noted, with a less than 15% Radiographs of the lower extremities showed bilateral absent decrease in leg length.6 Three types of congenital fibular fibulae and bilateral subluxation of the knees. The distal right tibia deficiency has been described, which include type I with was curved. The talus was superiorly positioned with respect to hypoplastic fibula, type II with rudimentary or absent fibula and distal tibiae on both sides. Two metatarsal bones were seen on the type III with bilateral fibular deficiency.6 In majority of patients left side with two toes and only one metatarsal seen on the right with fibular hemimelia, fibula is either aplastic or almost with one toe. Calcanael bones were absent on both sides. completely absent. Most infants have associated deformities of Cranial, renal ultrasound and an echocardiogram were normal. extremities, such as femoral shortening, anteromedial tibial CTA of the extremities confirmed bilateral absence of fibula. The bowing, marked talipes equinovalgus and absence of one or common iliac arteries and its branches were normal. Femoral more lateral rays of the foot.7 Fibular hemimelia is often associated and popliteal arteries were normal on both sides. In the proximal with abnormalities of lower extremity and pelvic bones.3–5,8,9 & 2014 Nature America, Inc. Journal of Perinatology (2014), 156 – 158 Hemimelia and absence of the peroneal artery S Huda et al 158 The extent of fibular deficiency is variable, hence, varying hypoplasia. Our hypothesis is that the absent peroneal artery is classification have been proposed.4,6,10 Achterman and Kalamchi secondary to absent fibular bud. Fibular bud will send mechan- suggested a classification using fibula length deficiency.10 ical,14 hormonal or secret enzymes to Ischaidic
Recommended publications
  • FROGLOG Newsletter of the Declining Amphibian Populations Task Force
    Salamandra salamandra by Franco Andreone ISSN 1026-0269 FROGLOG Newsletter of the Declining Amphibian Populations Task Force August 2004, Number 64. Meteyer et al. (2000) and Ouellet very low number of abnormalities. We (2000). only found one L. kuhlii, which may We examined a total of 4,331 have strayed from a nearby stream. frogs of 23 species and found 20 A third of abnormalities were types of deformities in 9 species of due to trauma; these included digit frogs. We divided deformities into two amputations (16% of all general types: developmental abnormalities), limb amputations (2%), abnormalities and trauma (injuries). fractured limbs (7%) and skin wounds Morphological Abnormalities in We distinguished trauma (4%). The most common Frogs of West Java, Indonesia abnormalities based on the developmental abnormalities were appearance of old scars or, if they digital (43%) and, of these, By Mirza D. Kusrini, Ross A. Alford, involved digits, the occurrence of brachydactyly (16.3%), syndactyly Anisa Fitri, Dede M. Nasir, Sumantri digital re-growth. Developmental (14.6%) and ectrodactyly (11.4%) Rahardyansah abnormalities occurred in limbs were the three most common. In recent decades, amphibian (amelia, micromelia, brachymelia, The oldest specimen of F. deformities have generated public hemimelia, ectromelia, taumelia, cuta- limnocharis stored in the MZB that interest as high incidences have been neous fusions), digits (ectrodactyly, exhibited abnormalities was a juvenile found in several locations, notably in brachydactyly, syndactyly, polydactyly, frog captured on 16 November 1921 North America (Helgen et al., 1998; clinodactyly), the back-bone (scoli- from Bogor without one leg (amelia) Ouellet, 2000). The only report on the osis), the eyes (anophthalmy) and the (ID057.10).
    [Show full text]
  • Genetics of Congenital Hand Anomalies
    G. C. Schwabe1 S. Mundlos2 Genetics of Congenital Hand Anomalies Die Genetik angeborener Handfehlbildungen Original Article Abstract Zusammenfassung Congenital limb malformations exhibit a wide spectrum of phe- Angeborene Handfehlbildungen sind durch ein breites Spektrum notypic manifestations and may occur as an isolated malforma- an phänotypischen Manifestationen gekennzeichnet. Sie treten tion and as part of a syndrome. They are individually rare, but als isolierte Malformation oder als Teil verschiedener Syndrome due to their overall frequency and severity they are of clinical auf. Die einzelnen Formen kongenitaler Handfehlbildungen sind relevance. In recent years, increasing knowledge of the molecu- selten, besitzen aber aufgrund ihrer Häufigkeit insgesamt und lar basis of embryonic development has significantly enhanced der hohen Belastung für Betroffene erhebliche klinische Rele- our understanding of congenital limb malformations. In addi- vanz. Die fortschreitende Erkenntnis über die molekularen Me- tion, genetic studies have revealed the molecular basis of an in- chanismen der Embryonalentwicklung haben in den letzten Jah- creasing number of conditions with primary or secondary limb ren wesentlich dazu beigetragen, die genetischen Ursachen kon- involvement. The molecular findings have led to a regrouping of genitaler Malformationen besser zu verstehen. Der hohe Grad an malformations in genetic terms. However, the establishment of phänotypischer Variabilität kongenitaler Handfehlbildungen er- precise genotype-phenotype correlations for limb malforma- schwert jedoch eine Etablierung präziser Genotyp-Phänotyp- tions is difficult due to the high degree of phenotypic variability. Korrelationen. In diesem Übersichtsartikel präsentieren wir das We present an overview of congenital limb malformations based Spektrum kongenitaler Malformationen, basierend auf einer ent- 85 on an anatomic and genetic concept reflecting recent molecular wicklungsbiologischen, anatomischen und genetischen Klassifi- and developmental insights.
    [Show full text]
  • CASE REPORT Radiographic Diagnosis of a Rare Case Of
    CASE REPORT Radiographic diagnosis of a rare case of oculodentodigital dysplasia Umesh Chandra Parashari, M.D. Sachin Khanduri, M.D. Samarjit Bhadury, M.D. Fareena Akbar Qayyum, M.B.B.S. Department of Radiodiagnosis, Lucknow Medical College, Lucknow, Uttar Pradesh, India Corresponding author: U Parashari ([email protected]) Abstract Oculodentodigital dysplasia (ODDD), also known as oculodento- osseous dysplasia, is an extremely rare autosomal dominant disorder with high penetrance, intra- and interfamilial phenotypic variability, and advanced paternal age in sporadic cases. The incidence of this disease is not precisely known, with only 243 cases reported in the scientific literature, suggesting an incidence of around 1 in 10 million people. It is marked mainly by eye abnormalities, craniofacial dysmorphism, dental anomalies, hand and foot malformations, various skeletal defects, and mildly Fig. 1. Photograph of the patient at age one year (1A) and 16 years (1B and 1C) showing hypotrichosis and pili annulati. The face is small with narrow delayed mental development. Neurological changes may appear eyes, thin nose, prominent columella and wide mandible. The fingers are earlier in each subsequent generation. This case report describes underdeveloped and deformed. a radiological diagnosis of ODDD based on physical appearance, clinical features and radiographic findings in a 16-year-old girl. Case report A 16-year-old girl presented to the hospital with complaints of weakness Introduction in her lower limbs, abnormal dentition and bladder incontinence. On Oculodentodigital dysplasia (ODDD) is a condition that affects many general examination, her gait was ataxic with moderate spasticity in parts of the body, particularly the eyes, teeth and fingers, as the both legs.
    [Show full text]
  • Unilateral Proximal Focal Femoral Deficiency, Fibular Aplasia, Tibial
    The Egyptian Journal of Medical Human Genetics (2014) 15, 299–303 Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Unilateral proximal focal femoral deficiency, fibular aplasia, tibial campomelia and oligosyndactyly in an Egyptian child – Probable FFU syndrome Rabah M. Shawky a,*, Heba Salah Abd Elkhalek a, Shaimaa Gad a, Shaimaa Abdelsattar Mohammad b a Pediatric Department, Genetics Unit, Ain Shams University, Egypt b Radio Diagnosis Department, Ain Shams University, Egypt Received 2 March 2014; accepted 18 March 2014 Available online 30 April 2014 KEYWORDS Abstract We report a fifteen month old Egyptian male child, the third in order of birth of healthy Short femur; non consanguineous parents, who has normal mentality, normal upper limbs and left lower limb. Limb anomaly; The right lower limb has short femur, and tibia with anterior bowing, and an overlying skin dimple. FFU syndrome; The right foot has also oligosyndactyly (three toes), and the foot is in vulgus position. There is lim- Proximal focal femoral ited abduction at the hip joint, full flexion and extension at the knee, limited dorsiflexion and plan- deficiency; tar flexion at the ankle joint. The X-ray of the lower limb and pelvis shows proximal focal femoral Fibular aplasia; deficiency, absent right fibula with shortening of the right tibia and anterior bowing of its distal Tibial campomelia; third. The acetabulum is shallow. He has a family history of congenital cyanotic heart disease. Oligosyndactyly Our patient represents most probably the first case of femur fibula ulna syndrome (FFU) in Egypt with unilateral right leg affection.
    [Show full text]
  • Multiple Hereditary Exostoses
    Multiple Hereditary Exostoses Dror Paley MD, FRCSC Medical Director, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL David Feldman, MD Director, Spinal deformity center, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL Multiple hereditary exostoses (MHE), also known as multiple osteochondromas (MO), is an autosomal dominant skeletal disorder. Approximately 10–20% of individuals are a result of a spontaneous mutation while the rest are familial. The prevalence of MHE/MO is 1/50 000. There are two known genes found to cause MHE/MO, EXT1 located on chromosome 8q23-q24 and EXT2 located on chromosome 11p11-p12. In 10–15% of the patients, no mutation can be located by current methods of genetic testing.1–7 These mutations are scattered across both genes. EXT1/EXT2 is essential for the biosynthesis of heparan sulfate (HS). HS production in patients’ cells is reduced by 50% or more.8–19 MHE/MO is associated with characteristic progressive skeletal deformities of the extremities and shortening of one or both the sides, leading to limb length discrepancy (LLD) and short stature.20–28 Two bone segments, such as the lower leg or forearm, are at greater risk of problems due to either osteochondromas (OCs) from one or both bones impinging on or deforming the other bone or a primary issue of altered growth causing one bone to grow at a faster or slower rate. OCs can also affect joint motion due to impingement of an OC with the opposite side of the joint or subluxation/dislocation related to deformity, impingement, and incongruity.20,24,26,29,30 OCs can also cause nerve or vessel entrapment and/or compression, including the spinal cord and nerve roots.
    [Show full text]
  • Everything Within Reach! Myoelectric-Controlled Arm Prostheses
    Everything within Reach! Myoelectric-controlled Arm Prostheses Information for user Table of Contents Myoelectric-controlled Arm Prostheses ������������������������������������������ 4 Cable-controlled Arm Prostheses ����������������������������������������������������� 6 Passive Arm Prostheses ����������������������������������������������������������������������� 8 Technology for People ���������������������������������������������������������������������������� 9 Prosthetic Fitting ����������������������������������������������������������������������������������� 10 System Electric Hands ����������������������������������������������������������������������� 12 SensorHand Speed ����������������������������������������������������������������������������� 14 System Electric Greifers �������������������������������������������������������������������� 16 Individual Combination and Adaptation ����������������������������������������� 18 Upper Arm Prostheses – DynamicArm ������������������������������������������� 20 Making Exploration Fun ��������������������������������������������������������������������� 24 Children’s Hand 2000 ������������������������������������������������������������������������� 26 Post-operative Therapy ����������������������������������������������������������������������� 28 Residual Limb Pain and Phantom Pain ������������������������������������������ 30 The Socket Decides ���������������������������������������������������������������������������� 32 Pay Attention to Yourself! �������������������������������������������������������������������
    [Show full text]
  • Management of Fibular Hemimelia (Congenital Absence of Fibula) Using Ilizarov Method in Sulaimani
    European Scientific Journal October 2015 edition vol.11, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 MANAGEMENT OF FIBULAR HEMIMELIA (CONGENITAL ABSENCE OF FIBULA) USING ILIZAROV METHOD IN SULAIMANI Ass. Prof. Dr. Omer Ali Rafiq Barawi, Ass. Lecturer Zmnako J. Amen School of Medicine, University of Sulaimani, Kurdistan Region, Iraq Abstract Background: Fibular hemimelia is the most common congenital deficiency of long bones. Therefore, it is characterized by a wide spectrum of manifestations ranging from mild limb length inequality to sever shortening with foot and ankle deformities and associated anomalies. Objectives: To evaluate the results of ankle and foot reconstruction and limb length equalization in patients with Fibular Hemimelia. Patients and Methods: A prospective study was carried out on 40 limbs in 32 patients with fibular hemimelia during the periods of March 2010 to January 2014. Male to female ratio was 24:8. Their age ranged at an average between 2-16 years (9 years). The reconstruction of ankle and foot was done. Also, the equalization of the limb was done also using Ilizarov frame. Results: The result of this study was assessed using the Association for the Study of Applications of Methods of Ilizarov (ASAMI) scoring system. Therefore, the final results were: Failure rate with 2 limbs 5%, Poor with 2 limbs 5%, Fair with 2 limbs 5%, Good with 8 limbs 20%, and Excellent with 26 limbs 65%. Conclusion: In conclusion, the Ilizarov method is an attractive alternative method used for the management of selected fibular hemimelic patients having three or more toes who are refusing amputation.
    [Show full text]
  • A Progressive and Complex Clinical Course in Two Family Members With
    Körberg et al. BMC Medical Genetics (2020) 21:90 https://doi.org/10.1186/s12881-020-01015-z CASE REPORT Open Access A progressive and complex clinical course in two family members with ERF-related craniosynostosis: a case report Izabella Körberg1*, Daniel Nowinski2, Marie-Louise Bondeson1, Malin Melin1, Lars Kölby3 and Eva-Lena Stattin1 Abstract Background: ERF-related craniosynostosis are a rare, complex, premature trisutural fusion associated with a broad spectrum of clinical features and heterogeneous aetiology. Here we describe two cases with the same pathogenic variant and a detailed description of their clinical course. Case presentation: Two subjects; a boy with a BLSS requiring repeated skull expansions and his mother who had been operated once for sagittal synostosis. Both developed intracranial hypertension at some point during the course, which was for both verified by formal invasive intracranial pressure monitoring. Exome sequencing revealed a pathogenic truncating frame shift variant in the ERF gene. Conclusions: Here we describe a boy and his mother with different craniosynostosis patterns, but both with verified intracranial hypertension and heterozygosity for a truncating variant of ERF c.1201_1202delAA (p.Lys401Glufs*10). Our work provides supplementary evidence in support of previous phenotypic descriptions of ERF-related craniosynostosis, particularly late presentation, an evolving synostotic pattern and variable expressivity even among affected family members. Keywords: ERF, Craniosynostosis, Intracranial hypertension Background pressure and intellectual disability. It is usually classified Craniosynostosis (CS) is clinically and genetically a based on suture fusion type: sagittal, metopic, bi−/unicor- heterogenous congenital anomaly with an incidence of 1 onal, bi−/unilambdoid and complex, or multisutural.
    [Show full text]
  • Current Advances in Holt-Oram Syndrome Taosheng Huang, MD, Phd
    Current advances in Holt-Oram syndrome Taosheng Huang, MD, PhD Holt-Oram syndrome is an autosomal-dominant condition Clinical features characterized by congenital cardiac and forelimb anomalies. It Holt and Oram first described this syndrome when they is caused by mutations of the TBX5 gene, a member of the reported on a family with atrial septal defects and con- T-box family that encodes a transcription factor. Molecular genital anomalies of the thumbs [1]. Since then, about studies have demonstrated that mutations predicted to create 200 clinical papers have been published that further de- null alleles cause substantial abnormalities in both the limbs lineate the clinical features of Holt-Oram syndrome and heart, and that missense mutations of TBX5 can produce (HOS). The prevalence of HOS is 1 of 100,000 live distinct phenotypes. One class of missense mutations causes births, and it occurs with wide ethnic and geographic significant cardiac malformations but only minor skeletal distribution. Its clinical manifestations have proved to be abnormalities; others might cause extensive upper limb variable [2,3•,4•], but with complete penetrance. All pa- malformations but less significant cardiac abnormalities. tients with HOS have upper limb anomaly and about Intrafamilial variations of the malformations strongly suggest 85% to 95% have cardiac malformation. On the basis of that genetic background or modifier genes play an important these findings, the criteria for diagnosis include either role in the phenotypic expression of HOS. Efforts to the presence of cardiac malformations, conduction de- understand the intracellular pathway of TBX5 would provide a fects and radial ray abnormalities (or both) in an indi- unique window onto the molecular basis of common vidual, or the presence of radial ray abnormalities with or congenital heart diseases and limb malformations.
    [Show full text]
  • A CLINICAL STUDY of 25 CASES of CONGENITAL KEY WORDS: Ectromelia, Hemimelia, Dysmelia, Axial, Inter- LIMB DEFICIENCIES Calary
    PARIPEX - INDIAN JOURNAL OF RESEARCH Volume-7 | Issue-1 | January-2018 | PRINT ISSN No 2250-1991 ORIGINAL RESEARCH PAPER Medical Science A CLINICAL STUDY OF 25 CASES OF CONGENITAL KEY WORDS: Ectromelia, Hemimelia, Dysmelia, Axial, Inter- LIMB DEFICIENCIES calary M.B.B.S., D.N.B (PMR), M.N.A.M.S Medical officer, D.P.M.R., K.G Medical Dr Abhiman Singh University Lucknow (UP) An Investigation of 25 patients from congenital limb deficient patients who went to D. P. M. R. , K.G Medical University Lucknow starting with 2010 with 2017. This study represents the congenital limb deficient insufficient number of the India. Commonest deficiencies were Adactylia Also mid Ectromelia (below knee/ below elbow deficiency).Below knee might have been basic in male same time The following elbow for female Youngsters. No conclusive reason for the deformity might be isolated, however, A large number guardians accepted that possible exposure to the eclipse throughout pregnancy might have been those reason for ABSTRACT those deficiency. INTRODUCTION Previous Treatment Only 15 patients had taken some D. P. M. R., K.G Medical University Lucknow (UP) may be a greatest treatment, 5 underwent some surgical treatment and only 4 Also its identity or sort of Rehabilitation Centre in India. Thusly the patients used prosthesis. This indicates the ignorance or lack of limb deficient children attending this department can easily be facilities to deal with the limb deficient children. accepted as a representative sample of the total congenital limb deficiency population in the India. DEFICIENCIES The deficiencies are classified into three categories:- MATERIAL AND METHODS This study incorporates 25 patients congenital limb deficiency for 1) Axial Dysmelia where medial or lateral portion is missing lack who originated for medicine at D.
    [Show full text]
  • Treatments for Ankyloglossia and Ankyloglossia with Concomitant Lip-Tie Comparative Effectiveness Review Number 149
    Comparative Effectiveness Review Number 149 Treatments for Ankyloglossia and Ankyloglossia With Concomitant Lip-Tie Comparative Effectiveness Review Number 149 Treatments for Ankyloglossia and Ankyloglossia With Concomitant Lip-Tie Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-2012-00009-I Prepared by: Vanderbilt Evidence-based Practice Center Nashville, TN Investigators: David O. Francis, M.D., M.S. Sivakumar Chinnadurai, M.D., M.P.H. Anna Morad, M.D. Richard A. Epstein, Ph.D., M.P.H. Sahar Kohanim, M.D. Shanthi Krishnaswami, M.B.B.S., M.P.H. Nila A. Sathe, M.A., M.L.I.S. Melissa L. McPheeters, Ph.D., M.P.H. AHRQ Publication No. 15-EHC011-EF May 2015 This report is based on research conducted by the Vanderbilt Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2012-00009-I). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment.
    [Show full text]
  • Four Unusual Cases of Congenital Forelimb Malformations in Dogs
    animals Article Four Unusual Cases of Congenital Forelimb Malformations in Dogs Simona Di Pietro 1 , Giuseppe Santi Rapisarda 2, Luca Cicero 3,* , Vito Angileri 4, Simona Morabito 5, Giovanni Cassata 3 and Francesco Macrì 1 1 Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (S.D.P.); [email protected] (F.M.) 2 Department of Veterinary Prevention, Provincial Health Authority of Catania, 95030 Gravina di Catania, Italy; [email protected] 3 Institute Zooprofilattico Sperimentale of Sicily, Via G. Marinuzzi, 3, 90129 Palermo, Italy; [email protected] 4 Veterinary Practitioner, 91025 Marsala, Italy; [email protected] 5 Ospedale Veterinario I Portoni Rossi, Via Roma, 57/a, 40069 Zola Predosa (BO), Italy; [email protected] * Correspondence: [email protected] Simple Summary: Congenital limb defects are sporadically encountered in dogs during normal clinical practice. Literature concerning their diagnosis and management in canine species is poor. Sometimes, the diagnosis and description of congenital limb abnormalities are complicated by the concurrent presence of different malformations in the same limb and the lack of widely accepted classification schemes. In order to improve the knowledge about congenital limb anomalies in dogs, this report describes the clinical and radiographic findings in four dogs affected by unusual congenital forelimb defects, underlying also the importance of reviewing current terminology. Citation: Di Pietro, S.; Rapisarda, G.S.; Cicero, L.; Angileri, V.; Morabito, Abstract: Four dogs were presented with thoracic limb deformity. After clinical and radiographic S.; Cassata, G.; Macrì, F. Four Unusual examinations, a diagnosis of congenital malformations was performed for each of them.
    [Show full text]