News from Iwate's Reconstruction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Social Contribution Activities
Commitment of Top Management Sustainability Management Environment Social Governance ESG Data Social Contribution Activities FY2019 Materiality Targets and Results : As planned : Delayed Self- Details of Main Initiatives FY2019 Target Indicator FY2019 Results Evaluation Undertake activities in cooperation with local Social contribution expenditure: 1�0% of ordinary income*1 Social contribution expenditure as a percentage 3�28% communities, NGOs, and other organizations *1 Ordinary income for MMC on a non-consolidated basis of ordinary income Breakdown of Social Contribution Expenditures*2 Social Contribution Activities Policy Social Contribution Activities Policy (¥ million) To address diversifying social issues, MITSUBISHI FY2017 FY2018 FY2019 In April 2020, we formulated a wider-ranging social MOTORS carries out its STEP social contribution activ- Society 132 116 118 contribution activities policy to help address increas- ities, focused on four main themes, standing for the Traffic safety 10 8 21 first letters of Society, Traffic safety, Environment and Environment 135 37 32 ingly diverse global social issues� In addition to con- People 206 225 169 People� Based on this policy, we will continue to con- tinuing with ongoing efforts, the policy calls for us to Support for tribute to society by utilizing each and every employ- step up activities through alliances in key markets� disaster-strick- 25 62 60 ee's skills and know-how as well as our technologies en areas To make more people aware of these activities, we and products, aiming -
Flood Loss Model Model
GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano -
Readings of Environmental Radiation Monitoring of Public Water Areas (Preliminary Report)
Readings of Environmental Radiation Monitoring of Public Water Areas (Preliminary Report) August 4, 2011 Local Nuclear Emergency Response Headquarters (Radioactivity Team) Disaster Provision Main Office of Fukushima Pref. (Nuclear Power Team) 1 Date: Thursday, July 7 – Friday, July 27, 2011 2 Number of monitoring locations: Rivers: 6 locations (water quality) Lakes and dam reservoirs: 5 locations (water quality) Lakes and dam reservoirs: 2 locations (bottom sediment) Agricultural reservoirs: 4 locations (water quality) Groundwater: 10 locations (water quality) 3 Monitoring Results (1) Rivers (water quality) Radioactive iodine: Not detectable in any locations Radioactive cesium: Cs-134 Not detectable – 1.18 Bq/L Cs-137 Not detectable – 1.30 Bq/L (2) Lakes and dam reservoirs (water quality and bottom sediment) a. Water quality Radioactive iodine: Not detectable in any location Radioactive cesium: Not detectable in any location b. Bottom sediment Radioactive iodine: Not detectable in any location Radioactive cesium: Cs-134 Not detectable – 334 Bq/kg Cs-137 Not detectable – 371 Bq/kg (3) Agricultural reservoirs (water quality) Radioactive iodine: Not detectable in any locations Radioactive cesium: Not detectable in any location (4) Groundwater (water quality) Radioactive iodine: Not detectable in any locations Radioactive cesium: Not detectable in any location *Water quality monitoring has been conducted once a month for rivers since May and once a month for lakes, dam reservoirs, and agricultural reservoirs since June. The quality of groundwater is monitored once a year. (Inquiries: Monitoring Team, Radioactivity Team Tel: 024-521-1917) Readings of Environmental Radiation Monitoring at Rivers, Lakes, Dam Reservoirs, and Agricultural Reservoirs(Preliminary Report)(Second report in July) August 4, 2011 Local Nuclear Emergency Response Headquarters (Radioactivity Team) Disaster Provision Main Office of Fukushima Pref. -
A Record of the Reconstruction from March 2011 to March 2019 a Er the Great East Japan Earthquake and Tsunami
IWATE Moving toward Reconstruction A record of the reconstruction from March 2011 to March 2019 aer the Great East Japan Earthquake and Tsunami Sanriku Railway Rias Line All parts of the Tohoku East-West Expressway, Kamaishi Akita Line are open. Miyako-Muroran Ferry August 2019 Iwate Kamaishi Unosumai Memorial Stadium Contents Introduction Introduction 1 1 Disaster Damage and the Reconstruction Plan 2 When the Great East Japan Earthquake and Tsunami infrastructures that we could not finish during the initial struck the Tohoku region on the Pacific coast side on March recovery period. We will also promote efforts to Build Back 11, 2011, 5,140 lives were lost in Iwate, primarily on the coast. Better in the Sanriku area, by also taking into account its 2 Status of the Reconstruction 4 I would like to express my sincere condolences to those that future, through supporting mental and emotional care of lost their loved ones, in addition to the families of the 1,114 disaster survivors, providing assistance to form new commu- 3 Support from Abroad 6 people that are still missing. nities, and revitalizing commercial activities in the forestry, With the love and feelings the victims had towards their marine, and agricultural sectors. 4 Main Initiatives So Far hometown firmly in our mind, it became our mission to In addition, as a disaster-affected prefecture, ensure the livelihood as well as the ability to learn and work we can contribute to the improvement of disaster for those affected by the disaster. It also became essential for risk reduction both in Japan and the entire world. -
Icp-Ms Measurements of Iodine and Bromine in Environmental Samples Collected Along the Kuji River, Japan
JAERI-Conf 2003-010 JP0350637 4.42 ICP-MS MEASUREMENTS OF IODINE AND BROMINE IN ENVIRONMENTAL SAMPLES COLLECTED ALONG THE KUJI RIVER, JAPAN Kouhei N. KUSHITA1 and Hikaru AMAN02 'Nuclear Technology and Education Center 2Department of Environmental Sciences Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, lbaraki-ken 319-1195 JAPAN ABSTRACT From a viewpoint of monitoring the distribution and transfer of long-lived radioiodine (129 1) and possible hazardous brominated substances, I and Br contents in various environmental samples collected in the Kuji River area, Japan, were studied by ICP-MS. The feature of the change in concentrations of I and Br, as well as those of other general properties such as pH etc., in Kuji River watershed were coincident with each other. It is considered from te obtained data tat te environmental conditions, especially those of the soil of the area, mainly control the distribution of I and Br in the river water. The circulation characteristics of I and Br showed different features in different transfer media, which could be ascribed to the different chemical properties of these elements in each media. It was also shown that the distributions of I and Br are varied even within a small zone of about 20 km width around a high mountain of this area, which is also considered to reflect the environmental characteristics of the district. KEYWORDS: ICP-MS, IODINE, BROMINE, RIVER, SOIL, TRANSFER 1. INTRODUCTION In nuclear accidents such as that at Chernobyl in 1986, radio-iodine has been always one of the main concerns because of its high mobility and hazardous property toward people. -
Damage Patterns of River Embankments Due to the 2011 Off
Soils and Foundations 2012;52(5):890–909 The Japanese Geotechnical Society Soils and Foundations www.sciencedirect.com journal homepage: www.elsevier.com/locate/sandf Damage patterns of river embankments due to the 2011 off the Pacific Coast of Tohoku Earthquake and a numerical modeling of the deformation of river embankments with a clayey subsoil layer F. Okaa,n, P. Tsaia, S. Kimotoa, R. Katob aDepartment of Civil & Earth Resources Engineering, Kyoto University, Japan bNikken Sekkei Civil Engineering Ltd., Osaka, Japan Received 3 February 2012; received in revised form 25 July 2012; accepted 1 September 2012 Available online 11 December 2012 Abstract Due to the 2011 off the Pacific Coast of Tohoku Earthquake, which had a magnitude of 9.0, many soil-made infrastructures, such as river dikes, road embankments, railway foundations and coastal dikes, were damaged. The river dikes and their related structures were damaged at 2115 sites throughout the Tohoku and Kanto areas, including Iwate, Miyagi, Fukushima, Ibaraki and Saitama Prefectures, as well as the Tokyo Metropolitan District. In the first part of the present paper, the main patterns of the damaged river embankments are presented and reviewed based on the in situ research by the authors, MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and JICE (Japan Institute of Construction Engineering). The main causes of the damage were (1) liquefaction of the foundation ground, (2) liquefaction of the soil in the river embankments due to the water-saturated region above the ground level, and (3) the long duration of the earthquake, the enormity of fault zone and the magnitude of the quake. -
Export of 134 Cs and 137 Cs in the Fukushima River Systems at Heavy Rains by Typhoon Roke in September 2011
Biogeosciences, 10, 6215–6223, 2013 Open Access www.biogeosciences.net/10/6215/2013/ doi:10.5194/bg-10-6215-2013 Biogeosciences © Author(s) 2013. CC Attribution 3.0 License. Export of 134 Cs and 137 Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011 S. Nagao1, M. Kanamori2, S. Ochiai1, S. Tomihara3, K. Fukushi4, and M. Yamamoto1 1Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi, Ishikawa 923-1224, Japan 2Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan 3Aquamarine Fukushima, Obama, Iwaki, Fukushima 971-8101, Japan 4Division of Earth Dynamics, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan Correspondence to: S. Nagao ([email protected]) Received: 31 December 2012 – Published in Biogeosciences Discuss.: 15 February 2013 Revised: 19 July 2013 – Accepted: 27 July 2013 – Published: 2 October 2013 Abstract. At stations on the Natsui River and the Same River gen explosions (Japanese Government, 2011; Chino et al., in Fukushima Prefecture, Japan, effects of a heavy rain event 2011). Surface deposition of 134Cs and 137Cs shows consid- on radiocesium export were studied after Typhoon Roke dur- erable external radioactivity in a zone extending northwest ing 21–22 September 2011, six months after the Fukushima from the NPP, about 20 km wide and 50–70 km long inside Dai-ichi Nuclear Power Plant accident. Radioactivity of the 80 km zone of the NPP (MEXT, 2011; Yoshida and Taka- 134Cs and 137Cs in river waters was 0.009–0.098 Bq L−1 in hashi, 2012). -
Dispersion of Cs-134 and Cs-137 in River Waters from Fukushima And
DOI: 10.15669/pnst.4.9 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 9-13 ARTICLE Dispersion of Cs-134 and Cs-137 in river waters from Fukushima and Gunma prefectures at nine months after the Fukushima Daiichi NPP accident Seiya Nagaoa*, Masaki Kanamorib, Shinya Ochiaia, Kyuma Suzukic and Masayoshi Yamamotoa a Low Level Radioactivity Laboratory, Kanazawa University, 24 O, Wake, Nomi-shi, Ishikawa-ken, 923-1224, Japan; b Graduate School of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa-shi, Ishikawa-ken, 920-1192, Japan; c Gunma Prefectural Fisheries Experimental Station, 13 Shikishima, Maebashi-shi, Gunma-ken, 371-1036, Japan To estimate short-term and long-term impacts of radiation dose, dynamics of 134Cs and 137Cs in river watershed environments were studied in Fukushima and Gunma prefectures at nine months after the Fukushima Daiichi Nuclear Power Plant (NPP) accident. Radioactivity of 134Cs and 137Cs in the river waters ranged respectively from 0.007 Bq/l to 0.149 Bq/l and 0.008 Bq/l to 0.189 Bq/l. Their horizontal distributions were consistent with those of material that had been deposited on the ground surface. The percentages of particulate forms of 134Cs and 137Cs were 56–89% for the Fukushima river samples. Results show that the transport of 134Cs and 137Cs from the watershed to the river waters occurred mainly as particulate forms and that their radioactivity depends on the levels of radioactivity at the watersheds of the respective river systems. Keywords: 134Cs; 137Cs; radiocesium; existence forms; lake waters; transport behavior 1. Introduction1 2. -
Akita Prefecture)
Japan Contents 2 ............ Getting to Japan Highlighted area shows Tohoku and North Kanto. 4 ............ Diversity of Tohoku & North Kanto 8 ............ Favorite Moments 12 .......... The Best of Tohoku in 3 Days 16 .......... The Best of Tohoku in 1 Week 20 ......... Exploring Lake Towada (Aomori prefecture) 24 ......... Kakunodate (Akita prefecture) 27 ......... Lake Tazawa & Nyuto Onsen (Akita prefecture) 28 ......... Tono (Iwate prefecture) 32 ......... Sendai (Miyagi prefecture) 35 ......... Matsushima (Miyagi prefecture) 36 ......... Nikko (Tochigi prefecture) 40 ......... Kusatsu & Ikaho Onsen (Gunma prefecture) 44 ......... Tokyo 46 ......... Sapporo (Hokkaido) 50 ......... Yamagata prefecture 55 ......... Fukushima prefecture 60 ......... Ibaraki prefecture 65 ......... Photo Gallery The articles and photos of p. 6 to p. 47 are featured in Frommer’s Japan day BY day. The hotels, restaurants, attractions in this guide (from p. 6 to p. 47) have been ranked for quality, value, service, amenities, and special features using a star-rating system. The listed information is up to date as of October 9, 2012. The listed information (prices, hours, times, and holidays) is subject to change. The listed telephone numbers are for when calling within Japan. When calling from outside Japan, add the country code of 81 and drop the 0 before the area code. Some of the listed websites are in Japanese only. Credit cards are abbreviated as following: AE: American Express, MC: Master Card, DC: Diners Club, V: Visa. The cities of Sapporo and Tokyo are not in Tohoku or North Kanto. 2 3 Cities in the U.S.A. with Direct Flights to and from Japan Atlanta (Hartsfield-Jackson Atlanta International Airport), Boston (General Edward Lawrence Getting to Japan Logan International Airport), Chicago (Chicago O’Hare International Airport), Dallas (Dallas/Fort Worth International Airport), Denver (Denver International Airport), Detroit (Detroit Metropolitan Wayne County Airport), Guam (Guam International Airport), Honolulu (Honolulu International Japan has four international airports. -
Readings of Environmental Radiation Monitoring of Public Water Areas (Preliminary Report)
Readings of Environmental Radiation Monitoring of Public Water Areas (Preliminary Report) September 9, 2011 Nuclear Emergency Response Headquarters (Radioactivity Team) Disaster Provision Main Office of Fukushima Pref. (Nuclear Power Team) 1 Date Wednesday, August 17 – Wednesday, August 31, 2011 2 Number of monitoring locations Rivers: 8 locations (water quality) Lakes and dam reservoirs: 13 locations (water quality) Lakes and dam reservoirs: 1 location (bottom sediment) 3 Monitoring Results (1) Rivers (water quality) Radioactive iodine: Not detected in any locations Radioactive cesium: Cs-134 Not detected – 1.60 Bq/L Cs-137 Not detected – 2.15 Bq/L (2) Lakes and dam reservoirs (water quality and bottom sediment) a. Water quality Radioactive iodine: Not detected Radioactive cesium: Not detected b. Bottom sediment Radioactive iodine: Not detected Radioactive cesium: Cs-134 338 Bq/L Cs-137 405 Bq/L *Water quality monitoring has been conducted once a month for rivers since May and once a month for lakes, dam reservoirs, and agricultural reservoirs since June. The quality of groundwater is monitored once a year. (Nuclear Power Team, Monitoring Team: 024-521-6938) Readings of Environmental Radiation Monitoring at Rivers, Lakes, Dam Reservoirs, and Agricultural Reservoirs(Preliminary Report)(Second report in August) September 9, 2011 Nuclear Emergency Response Headquarters (Radioactivity Team) Disaster Provision Main Office of Fukushima Pref. (Nuclear Power Team) Water & Air Environment Division, Social Affairs & Environment Department, Fukushima -
The Fukushima Daiichi Accident Technical Volume 4
The Fukushima Daiichi Accident Fukushima The The Fukushima Daiichi Accident Technical Volume 4/5 Technical Volume 4/5 Radiological Consequences Radiological Consequences Radiological PO Box 100, Vienna International Centre 1400 Vienna, Austria Printed in Austria ISBN 978–92–0–107015–9 (set) 1 THE FUKUSHIMA DAIICHI ACCIDENT TECHNICAL VOLUME 4 RADIOLOGICAL CONSEQUENCES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GERMANY OMAN ALBANIA GHANA PAKISTAN ALGERIA GREECE PALAU ANGOLA GUATEMALA PANAMA ARGENTINA GUYANA PAPUA NEW GUINEA ARMENIA HAITI PARAGUAY AUSTRALIA HOLY SEE PERU AUSTRIA HONDURAS PHILIPPINES AZERBAIJAN HUNGARY POLAND BAHAMAS ICELAND PORTUGAL BAHRAIN INDIA QATAR BANGLADESH INDONESIA REPUBLIC OF MOLDOVA BELARUS IRAN, ISLAMIC REPUBLIC OF ROMANIA BELGIUM IRAQ RUSSIAN FEDERATION BELIZE IRELAND RWANDA BENIN ISRAEL SAN MARINO BOLIVIA, PLURINATIONAL ITALY SAUDI ARABIA STATE OF JAMAICA SENEGAL BOSNIA AND HERZEGOVINA JAPAN SERBIA BOTSWANA JORDAN SEYCHELLES BRAZIL KAZAKHSTAN SIERRA LEONE BRUNEI DARUSSALAM KENYA SINGAPORE BULGARIA KOREA, REPUBLIC OF SLOVAKIA BURKINA FASO KUWAIT SLOVENIA BURUNDI KYRGYZSTAN SOUTH AFRICA CAMBODIA LAO PEOPLE’S DEMOCRATIC SPAIN CAMEROON REPUBLIC SRI LANKA CANADA LATVIA SUDAN CENTRAL AFRICAN LEBANON SWAZILAND REPUBLIC LESOTHO SWEDEN CHAD LIBERIA SWITZERLAND CHILE LIBYA SYRIAN ARAB REPUBLIC CHINA LIECHTENSTEIN TAJIKISTAN COLOMBIA LITHUANIA CONGO LUXEMBOURG THAILAND COSTA RICA MADAGASCAR THE FORMER YUGOSLAV CÔTE D’IVOIRE MALAWI REPUBLIC OF MACEDONIA CROATIA MALAYSIA TOGO -
Transport Behavior of Particulate Organic Matter in River Water During Snow Melting in the Ishikari, Tokachi, Teshio and Kushiro Rivers, Japan
J. Asiat. Soc. Bangladesh, Sci. 38(2): 163-173, December 2012 TRANSPORT BEHAVIOR OF PARTICULATE ORGANIC MATTER IN RIVER WATER DURING SNOW MELTING IN THE ISHIKARI, TOKACHI, TESHIO AND KUSHIRO RIVERS, JAPAN M. JAHANGIR ALAM a,b, S. NAGAO a, AND M. EMRAN QUAYUM* a Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan. b School of Geographical Sciences, Southwest University, China. *Department of Chemistry, University of Dhaka, Dhaka-1000, BANGLADESH Abstract Both ∆14C and δ13C were used to study the transport behavior of particulate organic matter (POM) in the Ishikari, Tokachi, Teshio and Kushiro rivers in Japan. Water samples were collected once a month in April and May in 2004 and 2005 during snow melting. Positive correlations were found between ∆14C and particulate organic carbon (POC) content. Negative correlations were found between ∆14C and increased water level. These results indicate that the river systems showed similar transportation behavior during snow melting because of the variation of water level and water discharge. Keywords: Rivers, Carbon Isotopes, POM, Turbidity, AMS, Japan Introduction The annual load of riverine particulate organic carbon (POC) from land to ocean corresponds to half the total organic carbon (Meybeck 1982). Transportation of POC in river systems one pathway of the carbon cycle in terrestrial ecosystems is important for the carbon cycle. Geographical, hydrological and land use features control carbon discharge and transport patterns in rivers (Hope et al. 1994 and Torn et al. 1994). The hydrological situation must be considered in sub-arctic and arctic areas because the watershed environments vary from spring to summer because of snow melt.