2. 6 Public Warning Response Following Tornadoes in New Orleans, La, and Springfield, Mo: a Sociological Analysis

Total Page:16

File Type:pdf, Size:1020Kb

2. 6 Public Warning Response Following Tornadoes in New Orleans, La, and Springfield, Mo: a Sociological Analysis 2. 6 PUBLIC WARNING RESPONSE FOLLOWING TORNADOES IN NEW ORLEANS, LA, AND SPRINGFIELD, MO: A SOCIOLOGICAL ANALYSIS William R. Donner*, Havidan Rodriguez*, and Walter Diaz** *Disaster Research Center (DRC), University of Delaware, Newark, DE **Center for Applied Social Research (CISA) University of Puerto Rico-Mayagüez ABSTRACT 1 This study examines public response to tornado that a meteorological approach to public safety warnings through an application of the could be greatly augmented through the framework laid out by Mileti and colleagues incorporation of social science methods and (2000). A qualitative approach was adopted to data. For instance, paying greater attention to supplement our knowledge of public warning how cultural myths about tornado threats shape response with detailed descriptions of how risk communication could improve the individuals interpret and react to risk information. effectiveness of watches and warnings. Following tornado outbreaks, data were collected from individuals in regions surrounding 1. INTRODUCTION New Orleans, LA, and Springfield, MO, using in- depth interview guides. As each region is We possess few empirical records characterized by significant diversity, documenting how socio-cultural factors affect researchers developed a purposive sampling public response to tornado threats (Donner strategy to ensure the collection of 2006; Mitchem 2003; Balluz et al 2000; Aguirre representative data. Interviewees (n=40) were 1988; Legates and Biddle 1999, Schmidlin and asked about how they received, interpreted, and King 1998). Partly to address this problem, responded to warning information. Researchers qualitative data were collected using in-depth then used content analysis to analyze these interviews with respondents in New Orleans and data in order to evaluate and supplement Mileti's southwestern Mississippi following tornado model. Ongoing analysis confirms Mileti's model, touchdowns in each region. Data were yet reveals a high degree of complexity with organized and interpreted by using Mileti’s regard to a) stage transition, b) interaction and model of warning response (1999), which communication, and c) social factors. Findings incorporates research on disasters, from this study will contribute to the communication, and risk perception. Findings development of quantitative models intended to shed much light on warning system design establish end-user policies. These policies will difficulties, diagnose future complications, and guide the deployment and use of radar suggest ways to guide radar development in a technology currently under development by the manner consistent with end-user needs. Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). 2. PROBLEM From a forecasting perspective, findings suggest When warnings are issued, research 1 This work was supported primarily by the demonstrates that a considerable number of Engineering Research Center’s Program of the people will not respond, react too slowly, or take National Science Foundation under NSF Award incorrect steps towards protecting themselves. Number 0313747. Any opinions, findings and Meteorologists, engineers, and public officials conclusions or recommendations expressed in this attempt to mitigate these problems through the material are those of the author(s) and do not development of new technologies. In itself a necessarily reflect those of the National Science necessary but insufficient solution, this approach Foundation. We would also like to recognize the remains unchallenged among scientists and work of our undergraduate research assistants Megan policymakers despite our understanding of how Gunyuzlu, Jennifer Westfall, Mike Clark, Michelle social factors influence risk perception, Moses, and Caroline Bomfim whose contributions to communication, and protective action. Many this project have been extremely valuable. public officials, moreover, consider public 1 response a problem of individual choice experiences difficulties comprehending warnings (Sorenson 2000). A potential outcome of conveyed solely by way of sirens (Tierney 1987; ignoring social factors is that the technologies Lachman, Tatsuoka, and Bonk 1961). That we develop will fail to offer sufficient protection multiple sources of warning increase chances of to communities. The objective of this research comprehension is consistently observed in is to develop an understanding of non- studies (Mileti and Darlington 1995, Mileti 1975). technological (e.g., social, psychological, When it comes to belief, evidence economic, etc.) features of warnings systems indicates that one’s proximity to a given threat often at the root of response problems and also shapes warning response: a closer location solutions. to the threat for which the warning was issued elicits greater credulity (Sorenson 1982; Diggory 3. LITERATURE 1956), which, admittedly, may simply result from exposure to an upsurge of environmental cues From a sociological perspective, the (Hammer and Schmidlin 2002; Mileti 1993; principal problem of warning response lies at the Tierney 1987; Saarinen and Sell 1985; level of interpretation, interaction, and protective Sorenson 1982; Quarantelli 1980, 1984; Drabek action. In order to address these issues in a 1969). Further findings suggest that how more systematic fashion, Mileti (1999) information is conveyed determines whether summarizes the work of Mileti and Sorenson someone will believe the warning. Specific (1990) and Perry and Lindell (1992) into a information is preferred over general information generalized model of warning response (Carter 1980, Greene, Perry, and Lindell 1981, applicable to a wide range of disaster agents. Fritz 1957; Perry, Lindell, and Greene 1980; The model is used to interpret and organize the Perry, Lindell, and Greene 1981; Perry 1979), data colleted in this research. Principal and studies point out that official sources, such components of the warning process, according as government and media, enhance the to Mileti (1999), include: potential for belief (Drabek 1994; Rogers 1985; Perry, Green, and Mushkatel 1983; Sorenson 1) Receiving a warning 1982; Perry, Lindell, and Green 1981; Flynn 2) Understanding the warning 1979; Drabek 1969). In spite of such 3) Believing the warning is credible observations, nevertheless, other researchers 4) Confirming a threat make a strong case that warning belief is 5) Personalizing a threat enhanced within personal channels or through 6) Determining whether protective action is the actions of “significant others” (Clifford 1956; needed Li 1991; Perry and Greene 1983; Nigg 1987; 7) Determining whether protective action is Sorenson 1982). feasible Researchers observe a common tendency to confirm questionable or uncertain With the problem of reception, it is information. What conditions present the need important to consider that the public is likely to to verify warning messages? Interestingly hear warning messages via the mass media or enough, the more times one receives warning television (Schmidlin and King 1997). While the information, the more likely one is to confirm it mass media appears, however, to have become (Nigg 1982). Additionally, those in possession an important means of communicating warning of information confirming the threat are more information, one should still bear in mind that it likely to believe and/or personalize a warning is through multiple channels that a warning message (Perry and Greene 1982). Indeed, it is message is most likely to reach its intended often through personal channels that warning audience (Lindell and Perry 1987). information is confirmed: Kirschenbaum’s Research also reveals a trend among (1992) study of public response following a some warning recipients to misunderstand the major gas explosion in Israel found that a instructions or misinterpret the meaning of majority of those who attempted to confirm warnings (Blanchard-Boehm 1998). In some official information did so not through formal cases, degrees of understanding vary according channels (e.g., police), but through immediate to the number of channels through which a neighbors. warning is conveyed, as well as the attributes Acknowledging the presence of a risk, and characteristics of those channels. There is however, is not tantamount to believing that one some evidence, for instance, that the public personally is at risk. In many cases, warning 2 messages fall short of eliciting response simply care in the event of disasters or other because the risk they convey is too uncertain disruptions in social life.” Thus, the decision to and abstract. Before action is taken, one must access public shelter may be contingent on a define oneself as “at risk”—one must number of factors, ranging from the physical “personalize” a risk. It is such personalization characteristics of certain social groups, as well that so often takes the form of social behavior. as dominant cultural patterns with respect to Repeated studies of earthquake response, for housing styles and cooperation. Some cultures instance, demonstrate that one’s likelihood of may actively avoid engaging in protective preparing for a disaster increases when others behavior because of hegemonic control exerted are seen as doing so (Mileti and Darlington through culture (Webb, Wachtendorf, and Eyre 1997; Mileti and Fitzpatrick 1992). Mileti and 2000). Darlington (1998) write, “Our most robust The objective of the study is to describe conclusion is to underscore the value of an the data using Mileti’s
Recommended publications
  • Severe Storms in the Midwest
    Informational/Education Material 2006-06 Illinois State Water Survey SEVERE STORMS IN THE MIDWEST Stanley A. Changnon Kenneth E. Kunkel SEVERE STORMS IN THE MIDWEST By Stanley A. Changnon and Kenneth E. Kunkel Midwestern Regional Climate Center Illinois State Water Survey Champaign, IL Illinois State Water Survey Report I/EM 2006-06 i This report was printed on recycled and recyclable papers ii TABLE OF CONTENTS Abstract........................................................................................................................................... v Chapter 1. Introduction .................................................................................................................. 1 Chapter 2. Thunderstorms and Lightning ...................................................................................... 7 Introduction ........................................................................................................................ 7 Causes ................................................................................................................................. 8 Temporal and Spatial Distributions .................................................................................. 12 Impacts.............................................................................................................................. 13 Lightning........................................................................................................................... 14 References .......................................................................................................................
    [Show full text]
  • Tornadoes & Funnel Clouds Fake Tornado
    NOAA’s National Weather Service Basic Concepts of Severe Storm Spotting 2009 – Rusty Kapela Milwaukee/Sullivan weather.gov/milwaukee Housekeeping Duties • How many new spotters? - if this is your first spotter class & you intend to be a spotter – please raise your hands. • A basic spotter class slide set & an advanced spotter slide set can be found on the Storm Spotter Page on the Milwaukee/Sullivan web site (handout). • Utilize search engines and You Tube to find storm videos and other material. Class Agenda • 1) Why we are here • 2) National Weather Service Structure & Role • 3) Role of Spotters • 4) Types of reports needed from spotters • 5) Thunderstorm structure • 6) Shelf clouds & rotating wall clouds • 7) You earn your “Learner’s Permit” Thunderstorm Structure Those two cloud features you were wondering about… Storm Movement Shelf Cloud Rotating Wall Cloud Rain, Hail, Downburst winds Tornadoes & Funnel Clouds Fake Tornado It’s not rotating & no damage! Let’s Get Started! Video Why are we here? Parsons Manufacturing 120-140 employees inside July 13, 2004 Roanoke, IL Storm shelters F4 Tornado – no injuries or deaths. They have trained spotters with 2-way radios Why Are We Here? National Weather Service’s role – Issue warnings & provide training Spotter’s role – Provide ground-truth reports and observations We need (more) spotters!! National Weather Service Structure & Role • Federal Government • Department of Commerce • National Oceanic & Atmospheric Administration • National Weather Service 122 Field Offices, 6 Regional, 13 River Forecast Centers, Headquarters, other specialty centers Mission – issue forecasts and warnings to minimize the loss of life & property National Weather Service Forecast Office - Milwaukee/Sullivan Watch/Warning responsibility for 20 counties in southeast and south- central Wisconsin.
    [Show full text]
  • Tornadoes in the Gulf Coast States
    4.2 COOL SEASON SIGNIFICANT (F2-F5) TORNADOES IN THE GULF COAST STATES Jared L. Guyer and David A. Imy NOAA/NWS Storm Prediction Center, Norman, Oklahoma Amanda Kis University of Wisconsin, Madison, Wisconsin Kar’retta Venable Jackson State University, Jackson, Mississippi 1. INTRODUCTION Tornadoes pose a significant severe weather 300 mb winds and geopotential heights; 500 mb winds, threat during the cool season in the Gulf Coast states. geopotential heights, temperature, and absolute Galway and Pearson (1981) found that 68% of all vorticity; 700 mb winds, geopotential heights, and December through February tornadoes in the United temperature; 850 mb winds, geopotential heights, and States occur in the Gulf Coast/Southeast states. They temperature; precipitable water, surface temperature also noted that long track tornadoes in winter outbreaks and dewpoint, and MSLP; 0-3 km AGL helicity; and accounted for a higher percentage of deaths compared lowest 180 mb Most Unstable CAPE (MUCAPE). Aside to long track spring outbreak tornadoes. While strong from direct utilization for this study, the NARR maps wind fields are often present in association with dynamic were also compiled and organized to serve as an shortwave troughs that impact the region, uncertainty analog reference for operational forecasters. regarding low-level moisture and atmospheric instability can make forecasting such events quite challenging for operational forecasters (Vescio and Thompson 1993). The purpose of this study is to help identify a set of patterns, parameters, and conditions that are commonly associated with the development of cool season tornadoes in the Gulf Coast States, with a focus on significant (F2 and greater) tornadoes.
    [Show full text]
  • A Background Investigation of Tornado Activity Across the Southern Cumberland Plateau Terrain System of Northeastern Alabama
    DECEMBER 2018 L Y Z A A N D K N U P P 4261 A Background Investigation of Tornado Activity across the Southern Cumberland Plateau Terrain System of Northeastern Alabama ANTHONY W. LYZA AND KEVIN R. KNUPP Department of Atmospheric Science, Severe Weather Institute–Radar and Lightning Laboratories, Downloaded from http://journals.ametsoc.org/mwr/article-pdf/146/12/4261/4367919/mwr-d-18-0300_1.pdf by NOAA Central Library user on 29 July 2020 University of Alabama in Huntsville, Huntsville, Alabama (Manuscript received 23 August 2018, in final form 5 October 2018) ABSTRACT The effects of terrain on tornadoes are poorly understood. Efforts to understand terrain effects on tornadoes have been limited in scope, typically examining a small number of cases with limited observa- tions or idealized numerical simulations. This study evaluates an apparent tornado activity maximum across the Sand Mountain and Lookout Mountain plateaus of northeastern Alabama. These plateaus, separated by the narrow Wills Valley, span ;5000 km2 and were impacted by 79 tornadoes from 1992 to 2016. This area represents a relative regional statistical maximum in tornadogenesis, with a particular tendency for tornadogenesis on the northwestern side of Sand Mountain. This exploratory paper investigates storm behavior and possible physical explanations for this density of tornadogenesis events and tornadoes. Long-term surface observation datasets indicate that surface winds tend to be stronger and more backed atop Sand Mountain than over the adjacent Tennessee Valley, potentially indicative of changes in the low-level wind profile supportive to storm rotation. The surface data additionally indicate potentially lower lifting condensation levels over the plateaus versus the adjacent valleys, an attribute previously shown to be favorable for tornadogenesis.
    [Show full text]
  • Unusually Devastating Tornadoes in the United States: 1995–2016
    Unusually devastating tornadoes in the United States: 1995–2016 Tyler Fricker ∗, James B. Elsner 1 Florida State University ∗ 2 Corresponding author address: Tyler Fricker, Florida State University, Department of Geography, 3 Florida State University, 113 Collegiate Loop, Tallahassee, FL 32306. 4 E-mail: [email protected] Generated using v4.3.2 of the AMS LATEX template 1 ABSTRACT 5 Previous research has identified a number of physical, socioeconomic, and 6 demographic factors related to tornado casualty rates. However, there remains 7 gaps in our understanding of community-level vulnerabilities to tornadoes. 8 Here a framework for systematically identifying the most unusually devastat- 9 ing tornadoes, defined as those where the observed number of casualties far 10 exceeds the predicted number, is provided. Results show that unusually dev- 11 astating tornadoes occur anywhere tornadoes occur in the United States, but 12 rural areas across the Southeast appear to be most frequented. Five examples 13 of unusually devastating tornadoes impacting four communities are examined 14 in more detail. In addition, results highlight that cities and towns impacted 15 by unusually devastating tornadoes have their own socioeconomic and de- 16 mographic profiles. Identifying geographic clusters of unusually devastating 17 tornadoes builds a foundation to address community-level causes of destruc- 18 tion that supports ethnographic and qualitative—in addition to quantitative— 19 studies of place-based vulnerability. 2 1. Introduction Tornadoes are one of the deadliest weather-related hazards in the United States. Wind energy and population density explain a large portion of tornado casualty rates (Ashley et al. 2014; Ashley and Strader 2016; Fricker et al.
    [Show full text]
  • Killer Tornado Guide (1950-2020) for North Central and Northeast Wisconsin
    KILLER TORNADO GUIDE (1950-2020) FOR NORTH CENTRAL AND NORTHEAST WISCONSIN Updated: 2/1/21 1 KILLER TORNADO GUIDE (1950-2020) FOR NORTH CENTRAL AND NORTHEAST WISCONSIN BROWN MENOMINEE CALUMET OCONTO DOOR ONEIDA FOREST OUTAGAMIE FLORENCE PORTAGE KEWAUNEE SHAWANO LANGLADE VILAS LINCOLN WAUPACA MANITOWOC WAUSHARA MARATHON WINNEBAGO MARINETTE WOOD 2 TORNADO REFERENCE GUIDE – KILLER TORNADOES DATE Time Deadly Tornadoes in GRB Service Area Deaths Month Day Year (CST) Start / End Location County or Counties 2 6 25 1950 21:00 1 W Woodboro - 5 NE Rhinelander Oneida 6 9 26 1951 15:45-1608 9 SSW Amherst - 2 SW Bear Creek Portage, Waupaca 2 4 3 1956 12:50 3 S Bancroft - 2 NW Amherst Portage 2 8 19 1968 16:10 3 SW Pound - Marinette Marinette 1 8 9 1979 18:20 Rockland Beach Calumet 1 4 27 1984 14:37-15:07 Fawn Lake - Star Lake Oneida, Vilas 1 4 27 1984 15:20-15:40 1 NE Winneconne - Freedom Winnebago, Outagamie 2 6 8 1985 18:15-18:32 Park Falls - 3 SE Monico Oneida 1 8 29 1992 19:10-19:55 1 N Wautoma - 3 SE Poy Sippi Waushara 1 8 19 2011 15:45-15:56 2.9 NW - 5.2 ESE Wausaukee Marinette 2 DEATHS: June 25, 1950 The EF4 tornado touched down one mile west of Woodboro in Oneida County around 9 PM CST and traveled 13.1 miles to five miles northeast of Rhinelander. The tornado reached a maximum width of 880 yards. Two deaths were reported in Oneida County. 6 DEATHS: September 26, 1951 The EF4 tornado developed 9 miles south southwest of Amherst in Portage County around 3:45 PM CST.
    [Show full text]
  • David L. Maack, CEM, CPM, WCEM Office of Emergency Management 730 Wisconsin Ave Racine, WI 53403 262-636-3515
    David L. Maack, CEM, CPM, WCEM Office of Emergency Management 730 Wisconsin Ave Racine, WI 53403 262-636-3515 FOR IMMEDIATE RELEASE DATE: April 18, 2017 FOR MORE INFORMATION CONTACT: David L. Maack, CEM, CPM, WCEM Racine County Emergency Management 262.636.3515 Racine County Emergency Management Debunks Common Tornado Myths (RACINE) There are many different myths associated with tornadoes and the biggest one in Racine County is that Lake Michigan protects Racine from tornadoes. This is simply not true. Racine County has had 26 tornadoes since 1844 and the May 18th, 1883 tornado which hit the north side of the City of Racine, just blocks from Lake Michigan, is still listed as one of Wisconsin’s Top Ten Killer Tornadoes in Wisconsin history. “I think most every community has some sort of reason why tornadoes don’t hit them,” commented David Maack, Racine County Emergency Management Coordinator, “Most people have never seen a tornado but that does not mean that they are not a threat.” Other myths include: • Seeking shelter under an overpass is safe. An overpass can act as a wind tunnel and flying debris is a huge concern. If you can safely drive away from the tornado, do so. Otherwise seek shelter in a building. If that isn’t possible, get out of the car and seek shelter in a low- lying ditch. Make sure to cover your head. • You can outrun a tornado in a vehicle. Tornadoes can move at up to 70 mph or more and shift directions erratically and without warning. It is unwise to try to outrun a tornado.
    [Show full text]
  • How Mobile Home Residents Understand and Respond to Tornado Warnings
    JULY 2019 L I U E T A L . 521 How Mobile Home Residents Understand and Respond to Tornado Warnings BROOKE FISHER LIU Department of Communication, University of Maryland, College Park, College Park, Maryland a MICHAEL EGNOTO National Consortium for the Study of Terrorism and Responses to Terrorism, University of Maryland, Downloaded from http://journals.ametsoc.org/wcas/article-pdf/11/3/521/4879140/wcas-d-17-0080_1.pdf by guest on 04 August 2020 College Park, College Park, Maryland JUNGKYU RHYS LIM Department of Communication, University of Maryland, College Park, College Park, Maryland (Manuscript received 26 July 2017, in final form 19 February 2019) ABSTRACT Mobile home residents experience higher fatality rates from tornadoes than ‘‘fixed home’’ residents. Yet, research on how mobile home residents understand and respond to tornado warnings is lacking. Such research can help meteorologists and their partners better communicate tornado risk. We conducted four surveys with residents of the southeastern United States. This region has the highest concentration of tornado fatalities and killer tornadoes, in part because of the high density of mobile homes. Findings reveal that today’s tornado warning system inadequately prepares mobile home residents to respond safely to tornadoes. The study offers recommendations for how to improve tornado communication for mobile and fixed home residents. 1. Introduction not safe. Instead, the NWS recommends that mobile home residents abandon their homes immediately if Tornadoes are one of nature’s most violent storms they have access to a sturdy shelter (NWS 2018a). (NOAA 2010). When the National Weather Service Unfortunately, mobile home residents may not have (NWS) issues a tornado warning, they recommend access to sturdy structures like a neighbor’s home, a that people go to a basement, safe room, or interior school, or a community shelter.
    [Show full text]
  • THE TORNADO POSITION a Thesis Presented to the Graduate Faculty
    THE TORNADO POSITION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Fine Arts Eric Morris August, 2010 THE TORNADO POSITION Eric Morris Thesis Approved: Accepted: ________________________________ ________________________________ Advisor Interim Dean of the College Dr. Mary Biddinger Dr. Chand K. Midha ________________________________ ________________________________ Faculty Reader Dean of the Graduate School Dr. Michael Dumanis Dr. George K. Newkome ________________________________ ________________________________ Faculty Reader Date Dr. Robert Miltner ________________________________ Department Chair Dr. Michael Schuldiner ii TABLE OF CONTENTS Page Epilogue ...............................................................................................................................v Erratum ................................................................................................................................1 Short Documentary Film......................................................................................................2 How to Assume the Tornado Position (1)............................................................................4 Once a Boy ...........................................................................................................................5 Siren Siren and now I’m Expected to Sleep ........................................................................7 When Used as Directed, the Tornado Position
    [Show full text]
  • ~M!Ch!Gan
    ~~u Western Michigan University · WESTERNInformation Center 383-0040 NEWS Office of Public Information Volume 13, Number 25 TEL·U 383-1444 March 26, 198 7 ~M!CH!GAN Sports Line 383-GOLD A celebration of \\<hat was and will he. Budget presentations set Students help develop device to control flooding Public presentations on the 1987-88 budget, intended primarily for students, A trio of Western students and a have been scheduled for 4:30 p.m. Wednes- Kalamazoo firm have developed what they day, April 8, and 7:30 p.m. Thursday, think is the solution to temporary flooding April 9, in 2304 Sangren Hall. Robert M. problems-a flood control unit called the Beam, vice president for business and ''Superbag. '' finance, will lead the April 8 presentation. Last fall, JGJ Enterprises, Inc., of President Haenicke will lead the April 9 Kalamazoo, approached the Department presentation. of Mechanical Engineering and requested assistance in evaluating and refining a flood control unit it had developed. Former agriculture head Under the direction of faculty members to keynote conference Richard G. Schubert and Jerry H. Hamelink, the students began redesigning · John R. Block, the flood control unit for their senior pro- U.S. Secretary of ject. agriculture from The students involved were David A. Lee 1981-86, will be the of Bay City, Thomas C. Cottrell of Farm- keynote speaker for ington and John T. Truax of Mount Western's 22nd Clemens. The seniors were required to par- annual Food Man- ticipate in an applied research and develop- agement Conference ment project to meet their graduation re- Monday and Tues- .
    [Show full text]
  • Tornado Myths'
    Links and Information from Tornado Day on Good Morning Cincinnati WKRC TV, Local 12 Cincinnati, Ohio PRECISION DOPPLER 12 RADAR http://www.wkrc.com/weather/doppler/doppler12.aspx POP UP PRECISION DOPPLER 12 RADAR FOR YOUR DESKTOP http://www.wkrc.com/weather/Popup_Doppler/default.aspx Left:April 26, 1884, Garnet, Kansas, The first known tornado photograph. Photographer A.A. Adams. Right: August 28, 1884, near Forestburg, South Dakota, The second tornado photograph. Photographer F. N. Robinson. SIX DANGEROUS TORNADO MYTHS MYTH # 1 - TORNADOES CANNOT FORM IN OR CROSS MOUNTAINS. FALSE TELL THAT TO SCOTT NEWTON WHO TOOK THE PHOTOGRAPH AT THE LINK BELOW – THE HIGHEST TORNADO KNOWN AT NEARLY 12,000 FT. IN THE SIERRA NEVADA. http://tornado.sfsu.edu/RockwellPassTornado/ MYTH # 2 - CITIES ARE PROTECTED FROM TORNADOES BECAUSE THE BUILDINGS DISRUPT WIND FLOW? FALSE A LOOK AT THESE WILL CONVINCE YOU. OMAHA – 1913 http://www.livgenmi.com/1913netornado~imagedirectory.htm CINCINNATI 1915 http://www.shorstmeyer.com/tornadoes/1915/1915.html NASHVILLE, 1998 http://www.cnn.com/WEATHER/9804/16/nashville.tornado.4/#2 http://cimss.ssec.wisc.edu/goes/misc/980416.html OKLAHOMA CITY – 1999 http://www.hprcc.unl.edu/nebraska/OKCDAMAGEPATH-lg.html http://www.hprcc.unl.edu/nebraska/may99plainstornadoes-photos.html MIAMI, FLORIDA – 1997 http://www.srh.noaa.gov/mfl/newpage/tornpix.html FORT WORTH – 2000 http://www.dallassky.com/fwtornado.htm http://www.kenkuhl.com/tornado/ SAALT LAKE CITY - 1999 http://www.hprcc.unl.edu/nebraska/SLCtornado.html MYTH # 3 - OPENING WINDOWS WILL PROTECT MY HOUSE FROM THE DAMAGING PRESSURE DROP THAT CAN CAUSE THE HOUSE TO EXPLODE FALSE IT’S THE WIND (AND THE DEBRIS HURLED BY THE WIND) NOT THE PRESSURE DROP BECAUSE THE WINDS GET THERE FIRST – SO….DO NOT WASTE TIME OPENING YOUR WINDOWS.
    [Show full text]
  • TAW-School Information
    Have a Plan at Home, at Work, and When You’re Away In a home or building, move to a pre-designated shelter, such as a basement, and get under a sturdy table or the stairs. A specially-constructed “safe room” within a building offers the best protection. If a basement is not available, move to a small interior room on the lowest floor and cover yourself with anything close at hand: towels, blankets, pillows. If possible, get under a sturdy table, desk or counter. Put as many walls as possible between you and the storm. Stay away from windows. If caught outdoors, seek shelter in a sturdy building. If you cannot quickly walk to shelter, get into a vehicle, buckle your seatbelt and drive to the closest sturdy shelter. If flying debris occurs while you are driving, pull over and park. Now you have two options as a last resort: - Stay in the vehicle with the seatbelt on and place your head below the windows. - If you can safely get noticeably lower than the roadway, exit the vehicle and lie in that area, covering your head with your hands. Do not seek shelter under an overpass. Mobile homes, even if tied down, offer little protection from tornadoes. You should leave a mobile home and go to the designated storm shelter or the lowest floor of a sturdy nearby building. Make sure you have multiple ways to receive weather information. A NOAA Weather Radio, access to local TV, and smart phone apps can keep you informed when severe weather threatens.
    [Show full text]