Genetic Commonalities in Gynecologic Cancers Using Publicly Available Genome-Wide Association Study Summary Results: an Exploratory Meta-Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Commonalities in Gynecologic Cancers Using Publicly Available Genome-Wide Association Study Summary Results: an Exploratory Meta-Analysis Title Page Genetic Commonalities in Gynecologic Cancers Using Publicly Available Genome-Wide Association Study Summary Results: An Exploratory Meta-Analysis by Mark Francis Vater BS Biology, Northern Kentucky University, 2014 Submitted to the Graduate Faculty of the Graduate School of Public Health in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2021 Committee Membership Page UNIVERSITY OF PITTSBURGH GRADUATE SCHOOL OF PUBLIC HEALTH This thesis was presented by Mark Francis Vater It was defended on August 4, 2021 and approved by Jeanine Buchanich, Associate Professor, Department of Biostatistics Ada Youk, Associate Professor, Department of Biostatistics John Shaffer, Assistant Professor, Department of Human Genetics Thesis Advisor: Jenna Carlson, Assistant Professor, Department of Biostatistics ii Copyright © by Mark Vater 2021 iii Abstract Genetic Commonalities in Gynecologic Cancers Using Publicly Available Genome-Wide Association Study Summary Results: An Exploratory Meta-Analysis Mark Francis Vater, MS University of Pittsburgh, 2021 Abstract Public Health Significance: Gynecologic cancers are responsible for millions of deaths worldwide every year. The goal of this research is to further scientific understanding of such cancers, potentially leading to improved diagnosis and treatment. The public health significance of this project is to uncover potential genetic underpinnings of gynecologic cancers, aiding in efforts to reduce the mortality rate of gynecologic cancers, which is imperative in protecting the health of susceptible persons across the globe. Gynecologic cancers are those which arise in the female reproductive system, chiefly, those of the ovaries, cervix, vulva, endometrium, and vagina. These conditions present a serious threat to the health of susceptible persons, leading to nearly three million deaths worldwide each year. Questions remain about the genetic origins and risk factors for each of them. Specifically, there is uncertainty regarding potential overlap in genetic architecture for these conditions. This analysis sought to answer the questions: are there shared genetic variants between ovarian cancers and endometrial and cervical cancers? If so, what are the genetic implications of these overlapping variants? This was accomplished by gathering summary-level data from published genome-wide association studies (GWAS) and analyzing them using fixed effects inverse variance meta- analysis. Four datasets were included, three ovarian cancer datasets, one cervical and one endometrial cancer dataset. Three meta-analyses were performed: ovarian + endometrial cancer, iv ovarian + cervical cancer, and ovarian cancer only. Several significant variants were found in the ovarian + endometrial cancer meta-analysis, including those located on genes TERT (p=3.1e-17), ABO (p=3.4e-11), and ATAD5 (p=3.7e-12). The ovarian + cervical cancer meta-analysis was inconclusive, but the ovarian-only meta-analysis provided evidence for significant variants across datasets, including those located on genes TIPARP (p=2.3e-14) and SKAP1 (p=3.0e-10). Some variants found may yield new insight if studied in conjunction with both types of cancer in the meta-analysis, such as ABO for endometrial cancer, a known genetic factor in ovarian cancer risk. Further study is needed to determine the relevance and level of involvement for shared genetic variants in multiple types of gynecologic cancers, potentially leading to new or improved treatments. v Table of Contents Preface ............................................................................................................................................ x 1.0 Introduction ............................................................................................................................. 1 1.1 Distinct Characteristics of Gynecologic Cancer Sub-Types ....................................... 1 1.2 General Commonalities Across Gynecologic Cancer Sub-Types .............................. 2 1.2.1 Genome-Wide Association Commonalities Across Sub-Types ........................7 1.3 Research Question .......................................................................................................... 8 2.0 Methods .................................................................................................................................. 10 2.1 Datasets Included .......................................................................................................... 10 2.2 Data Processing ............................................................................................................. 16 2.3 Analysis Steps ................................................................................................................ 18 2.4 Fixed Effects Inverse Variance Meta-Analysis .......................................................... 18 2.5 Additional Steps and Considerations .......................................................................... 21 3.0 Results .................................................................................................................................... 23 3.1 Individual Study Results .............................................................................................. 23 3.2 Meta-Analysis Results .................................................................................................. 28 3.2.1 Ovarian+Endometrial Cancer Meta-Analysis .................................................28 3.2.2 Ovarian+Cervical Cancer Meta-Analysis Results ..........................................34 3.2.3 Ovarian-Only Meta-Analysis Results ...............................................................39 4.0 Discussion............................................................................................................................... 46 4.1 Limitations .................................................................................................................... 52 4.2 Conclusion ..................................................................................................................... 54 vi Appendix A Other Highly Significant Variants from O+E and O-Only Meta-Analyses .................................................................................................................................................. 56 Appendix B Custom R Code and METAL Scripts .................................................................. 60 Bibliography .............................................................................................................................. 135 vii List of Tables Table 1: Significant Top Loci Variants for O+E Meta-Analysis ............................................ 33 Table 2: All Significant Variants for O+C Meta-Analysis ...................................................... 38 Table 3: Significant Top Loci Variants for Ovarian-Only Meta-Analysis ............................ 45 viii List of Figures Figure 1: Flowchart of data from identification to assessment .............................................. 17 Figure 2: Manhattan and QQ Plots for Individual Data Sources. ......................................... 27 Figure 3: Manhattan and QQ Plots for O+E Meta-Analysis .................................................. 30 Figure 4: Locus and Forest Plots for High Significant Variants in O+E. .............................. 32 Figure 5: Manhattan and QQ Plots for O+C Meta-Analysis .................................................. 35 Figure 6: Locus and Forest Plots for High Significant Variants in O+C. ............................. 37 Figure 7: Manhattan and QQ Plot for Ovarian-Only Meta-Analysis ................................... 41 Figure 8: Locus and Forest Plots of the High Significant Variants for Ovarian-Only Meta- Analysis ............................................................................................................................ 43 Figure 9: Locus and Forest Plots for Other Highly Significant Variants in the O+E and O- Only Meta-Analyses. ....................................................................................................... 59 ix Preface The creator of this work wishes to thank the Department of Biostatistics and the Department of Human Genetics at the University of Pittsburgh Graduate School of Public Health, as well as family and friends that supported him throughout this journey. x 1.0 Introduction Gynecologic cancers are a class of cancers that affect people susceptible to cancers of the ovaries, cervix, endometrium, vulva, and vagina (i.e., those with female reproductive organs), and result in approximately 2.9 million cancer deaths every year globally (Sankaranarayanan and Ferlay, 2006). Specific to the United States, the incidence of gynecologic cancers is approximately 40 diagnoses and 12.5 deaths per 100,000 susceptible people per year (Phelan et al., 2017). As such, these cancers pose a serious threat to the health of susceptible people. Each of these cancers has been well researched singularly. However, the similarities and differences of the underlying sub-types of gynecologic cancers are not fully understood. That is, there may be commonalities in the mechanisms of gynecologic cancers in terms of tumorigenesis, genomic makeup, etc., that are currently not characterized in the body of literature. Investigating such commonalities may lead to improved or new methods of treatment or prevention for gynecologic cancers. 1.1 Distinct Characteristics of Gynecologic Cancer
Recommended publications
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Redefining the Specificity of Phosphoinositide-Binding by Human
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins Nilmani Singh1†, Adriana Reyes-Ordoñez1†, Michael A. Compagnone1, Jesus F. Moreno Castillo1, Benjamin J. Leslie2, Taekjip Ha2,3,4,5, Jie Chen1* 1Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; 2Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; 3Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205; 5Howard Hughes Medical Institute, Baltimore, MD 21205, USA †These authors contributed equally to this work. *Correspondence: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employed a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights Into Cell Differentiation and Function
    International Journal of Molecular Sciences Article The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights into Cell Differentiation and Function Yashwanth Subbannayya 1 , Markus Haug 1, Sneha M. Pinto 1, Varshasnata Mohanty 2, Hany Zakaria Meås 1, Trude Helen Flo 1, T.S. Keshava Prasad 2 and Richard K. Kandasamy 1,* 1 Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; [email protected] (Y.S.); [email protected] (M.H.); [email protected] (S.M.P.); [email protected] (H.Z.M.); trude.fl[email protected] (T.H.F.) 2 Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India; [email protected] (V.M.); [email protected] (T.S.K.P.) * Correspondence: [email protected] Abstract: CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells. The activation and functional status of CD4+ T cells is important for adequate responses to pathogen infections but has also been associated with auto-immune disorders and survival in several cancers. In the current study, we carried out a label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed between resting and activated CD4+ T cells.
    [Show full text]
  • Immune Adaptor SKAP1 Acts a Scaffold for Polo-Like Kinase 1 (PLK1)
    www.nature.com/scientificreports OPEN Immune adaptor SKAP1 acts a scafold for Polo-like kinase 1 (PLK1) for the optimal cell cycling Received: 14 September 2018 Accepted: 6 June 2019 of T-cells Published: xx xx xxxx Monika Raab1,2, Klaus Strebhardt1 & Christopher E. Rudd2,3,4 While the immune cell adaptor protein SKAP1 mediates LFA-1 activation induced by antigen-receptor (TCR/CD3) ligation on T-cells, it is unclear whether the adaptor interacts with other mediators of T-cell function. In this context, the serine/threonine kinase, polo-like kinase (PLK1) regulates multiple steps in the mitotic and cell cycle progression of mammalian cells. Here, we show that SKAP1 is phosphorylated by and binds to PLK1 for the optimal cycling of T-cells. PLK1 binds to the N-terminal residue serine 31 (S31) of SKAP1 and the interaction is needed for optimal PLK1 kinase activity. Further, siRNA knock- down of SKAP1 reduced the rate of T-cell division concurrent with a delay in the expression of PLK1, Cyclin A and pH3. Reconstitution of these KD cells with WT SKAP1, but not the SKAP1 S31 mutant, restored normal cell division. SKAP1-PLK1 binding is dynamically regulated during the cell cycle of T-cells. Our fndings identify a novel role for SKAP1 in the regulation of PLK1 and optimal cell cycling needed for T-cell clonal expansion in response to antigenic activation. Polo-like kinase 1 (PLK1) is a serine/threonine kinase that regulates the mitosis of mammalian cells. It is a mem- ber of the Polo-like serine/threonine kinase (PLKs) family that are structurally conserved from yeast to mam- mals.
    [Show full text]
  • Quantitative Interactomics in Primary T Cells Unveils TCR Signal
    Quantitative interactomics in primary T cells unveils TCR signal diversification extent and dynamics Guillaume Voisinne, Kristof Kersse, Karima Chaoui, Liaoxun Lu, Julie Chaix, Lichen Zhang, Marisa Goncalves Menoita, Laura Girard, Youcef Ounoughene, Hui Wang, et al. To cite this version: Guillaume Voisinne, Kristof Kersse, Karima Chaoui, Liaoxun Lu, Julie Chaix, et al.. Quantitative interactomics in primary T cells unveils TCR signal diversification extent and dynamics. Nature Immunology, Nature Publishing Group, 2019, 20 (11), pp.1530 - 1541. 10.1038/s41590-019-0489-8. hal-03013469 HAL Id: hal-03013469 https://hal.archives-ouvertes.fr/hal-03013469 Submitted on 23 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESOURCE https://doi.org/10.1038/s41590-019-0489-8 Quantitative interactomics in primary T cells unveils TCR signal diversification extent and dynamics Guillaume Voisinne 1, Kristof Kersse1, Karima Chaoui2, Liaoxun Lu3,4, Julie Chaix1, Lichen Zhang3, Marisa Goncalves Menoita1, Laura Girard1,5, Youcef Ounoughene1, Hui Wang3, Odile Burlet-Schiltz2, Hervé Luche5,6, Frédéric Fiore5, Marie Malissen1,5,6, Anne Gonzalez de Peredo 2, Yinming Liang 3,6*, Romain Roncagalli 1* and Bernard Malissen 1,5,6* The activation of T cells by the T cell antigen receptor (TCR) results in the formation of signaling protein complexes (signalo­ somes), the composition of which has not been analyzed at a systems level.
    [Show full text]
  • A Graph-Theoretic Approach to Model Genomic Data and Identify Biological Modules Asscociated with Cancer Outcomes
    A Graph-Theoretic Approach to Model Genomic Data and Identify Biological Modules Asscociated with Cancer Outcomes Deanna Petrochilos A dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Neil Abernethy, Chair John Gennari, Ali Shojaie Program Authorized to Offer Degree: Biomedical Informatics and Health Education UMI Number: 3588836 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3588836 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 ©Copyright 2013 Deanna Petrochilos University of Washington Abstract Using Graph-Based Methods to Integrate and Analyze Cancer Genomic Data Deanna Petrochilos Chair of the Supervisory Committee: Assistant Professor Neil Abernethy Biomedical Informatics and Health Education Studies of the genetic basis of complex disease present statistical and methodological challenges in the discovery of reliable and high-confidence genes that reveal biological phenomena underlying the etiology of disease or gene signatures prognostic of disease outcomes. This dissertation examines the capacity of graph-theoretical methods to model and analyze genomic information and thus facilitate using prior knowledge to create a more discrete and functionally relevant feature space.
    [Show full text]
  • Systematic Elucidation of Neuron-Astrocyte Interaction in Models of Amyotrophic Lateral Sclerosis Using Multi-Modal Integrated Bioinformatics Workflow
    ARTICLE https://doi.org/10.1038/s41467-020-19177-y OPEN Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow Vartika Mishra et al.# 1234567890():,; Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Net- works (SEARCHIN) to identify ligand-mediated interactions between distinct cellular com- partments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication
    [Show full text]
  • Inflammatory, Regulatory, and Autophagy Co-Expression Modules
    Durocher et al. Journal of Neuroinflammation (2019) 16:56 https://doi.org/10.1186/s12974-019-1433-4 RESEARCH Open Access Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage Marc Durocher1, Bradley P. Ander1, Glen Jickling1, Farah Hamade1, Heather Hull1, Bodie Knepp1, Da Zhi Liu1, Xinhua Zhan1, Anh Tran1, Xiyuan Cheng1, Kwan Ng1, Alan Yee1, Frank R. Sharp1 and Boryana Stamova1,2* Abstract Background: Intracerebral hemorrhage (ICH) has a high morbidity and mortality. The peripheral immune system and cross-talk between peripheral blood and brain have been implicated in the ICH immune response. Thus, we delineated the gene networks associated with human ICH in the peripheral blood transcriptome. We also compared the differentially expressed genes in blood following ICH to a prior human study of perihematomal brain tissue. Methods: We performed peripheral blood whole-transcriptome analysis of ICH and matched vascular risk factor control subjects (n = 66). Gene co-expression network analysis identified groups of co-expressed genes (modules) associated with ICH and their most interconnected genes (hubs). Mixed-effects regression identified differentially expressed genes in ICH compared to controls. Results: Of seven ICH-associated modules, six were enriched with cell-specific genes: one neutrophil module, one neutrophil plus monocyte module, one T cell module, one Natural Killer cell module, and two erythroblast modules. The neutrophil/monocyte modules were enriched in inflammatory/immune pathways; the T cell module in T cell receptor signaling genes; and the Natural Killer cell module in genes regulating alternative splicing, epigenetic, and post-translational modifications.
    [Show full text]
  • (FDR<0.05) Enriched in the 1015 Genes Co-Clustered with Known T
    Supplementary Table 3. Significant biological processes (FDR<0.05) enriched in the 1,015 genes co-clustered with known T cell gene signatures. Among 1,015 genes, 771 were associated with GO annotation in DAVID database v6.7. List Total: total number of genes in my list. Pop Hits: total number of genes associated with this GO term from the database. Pop Total: total number of genes in the database. Fold Enrichment: relative enrichment ratio, calculated by (Count)/(List Total) divided by (Pop Hits)/(Pop Total). Index Gene Ontology Accession Gene Ontology Name Count List Total Pop Hits Pop Total Fold Enrichment FDR Genes AQP9, C1QC, B2M, LILRA1, LILRA2, CLEC4E, S1PR4, LILRA4, IFNG, LILRA6, CLEC4A, VNN1, ERAP2, FAS, CRTAM, C5AR1, GBP5, NCF2, NCF1, NCF4, SERPING1, HLA-DQA2, HLA-DQA1, PDCD1LG2, LILRB1, CCR9, C1QA, C1QB, LILRB2, CCR7, CCR6, UNC13D, CCR5, CD40LG, CCR4, LILRB3, CCR2, LILRB4, HLA-DPA1, VSIG4, HLA-DRA, IL1R2, IL1R1, HLA-DRB1, OAS3, ACP5, OAS1, OAS2, CD74, IFI35, ZAP70, FCER1G, HLA-DRB5, HLA-DPB1, HLA-DOA, HLA-DOB, DHX58, BLNK, IL23R, KIR2DS4, CD300C, SLAMF7, OASL, RGS1, APOL1, CD300A, HMHB1, CD209, CLEC7A, LY86, LY9, CLNK, FCRL4, SH2D1A, NOD2, HAMP, CCL3L1, CCL3L3, TICAM2, ICAM1, GZMA, CMKLR1, LY96, WAS, IL18BP, LAX1, TNFSF12- TNFSF13, HLA-DQB1, CSF2, GPR183, CCR1, GPR65, CXCL9, NCF1C, IL7R, CLEC10A, CCL24, CCL22, CYP27B1, CCL23, FCGR1C, FTHL3, FCGR1A, FCGR1B, BCL3, C2, CD27, CD28, FYB, IL18R1, IL7, CD1C, CTLA4, CCL19, CD1B, CD1A, TRIM22, CD180, CD1E, CCL18, CCL17, CCL13, FCGR2B, FCGR2C, P2RY14, LIME1, CD14, IL16, IL18, TLR1, TNFSF15,
    [Show full text]
  • Mouse Tiparp Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Tiparp Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tiparp conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tiparp gene (NCBI Reference Sequence: NM_178892 ; Ensembl: ENSMUSG00000034640 ) is located on Mouse chromosome 3. 6 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 6 (Transcript: ENSMUST00000047906). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tiparp gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-371A15 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a gene trapped allele exhibit postnatal lethality, skeletal and craniofacial defects, kidney defects and embryonic hemorrhaging. Exon 2 starts from about 0.1% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 2591 bp, and the size of intron 2 for 3'-loxP site insertion: 14022 bp. The size of effective cKO region: ~1420 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 6 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Tiparp Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Supplemental Materials and Methods Page
    1 2 Supplementary Information for 3 4 5 Vertebrate adaptive radiation is assembled from an ancient and disjunct spatiotemporal 6 landscape 7 8 Emilie J. Richards, Joseph A. McGirr, Jeremy R. Wang, Michelle E. St. John, Jelmer W. 9 Poelstra, Maria J. Solano, Delaney C. O’Connell, Bruce J. Turner, Christopher H. Martin* 10 11 *Correspondence to: [email protected] 12 13 14 15 This PDF file includes: 16 17 Supplementary text 18 Figures S1 to S17 19 Tables S1 to S19 20 SI References 21 22 Other supplementary materials for this manuscript include the following: 23 24 Datasets S1 to S9 25 26 27 28 29 30 31 32 33 34 35 36 37 1 38 Table of Contents 1. Supplemental Materials and Methods Page 1.1 Sampling 4 1.2 Genomic Library Prep 5 1.3 De novo genome assembly and annotation 5 1.4 Population genotyping. 6 1.5 Population genetic analyses 8 1.6 Mutation rate estimation. 10 1.7 Demographic Inferences 12 1.8 Introgression in SSI specialists 13 1.9 Search for candidate adaptive alleles in SSI specialists 15 1.10 Introgression in outgroup generalist populations 18 1.11. Characterization of adaptive alleles through GO analysis 19 1.12 Characterization of adaptive alleles through genome-wide association mapping 19 1.13 Characterization of adaptive alleles through differential gene expression and QTL 22 analysis from previous studies 1.14 Timing of divergence among adaptive alleles 23 1.15 Timing of selective sweeps on adaptive alleles 26 2. Supplementary Results and Discussion 31 2 2.1 Spatiotemporal stages of adaption based on timing of divergence among adaptive alleles 31 2.2 Spatiotemporal stages of adaptation based on timing of selection on adaptive alleles 35 3.
    [Show full text]