A Low Power Consumption Radar System for Measuring Ice Thickness and Snow/Firn Accumulation in Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

A Low Power Consumption Radar System for Measuring Ice Thickness and Snow/Firn Accumulation in Antarctica Annals of Glaciology 55(67) 2014 doi: 10.3189/2014AoG67A055 39 A low power consumption radar system for measuring ice thickness and snow/firn accumulation in Antarctica Jose A. URIBE,1 Rodrigo ZAMORA,1 Guisella GACITU A,1 AndreÂs RIVERA,1;3 David ULLOA2 1Glaciology and Climate Change, Centro de Estudios CientõÂficos (CECs), Valdivia, Chile E-mail: [email protected] 2Unmanned Industrial Ltda., Valdivia, Chile 3Department of Geography, Universidad de Chile, Santiago, Chile ABSTRACT. In order to measure total ice thickness and surface snow accumulation in Antarctica, we have designed and built a surveying system comprising two types of radar. This system is aimed at having low power consumption, low weight/volume and low construction cost. The system has a pulse- compression radar to measure ice thickness, and a frequency-modulated continuous wave (FM-CW) radar designed to measure hundreds of meters of surface snow/firn layers with high resolution. The pulse- compression radar operates at 155 MHz, 20 MHz of bandwidth; and the FM-CW radar operates from 550 to 900 MHz. The system was tested in December 2010 at Union Glacier (798460 S, 838240 W), West Antarctica, during an oversnow campaign, where Union and other nearby glaciers (Schanz, Schneider and Balish) were covered through 82 km of track. Ice thickness of 1540 m and snow/firn thickness of 120 m were detected in the area. The collected data allowed the subglacial topography, internal ice structure, isochronous and the snow/ice boundary layer to be detected. Here we describe radar electronics, their main features and some of the results obtained during the first test campaign. Further improvements will focus on the adaptation of the system to be implemented on board airplane platforms. KEYWORDS: Antarctic glaciology, glaciological instruments and methods, ground-penetrating radar, polar firn, radio-echo sounding INTRODUCTION rough areas using ground or airborne platforms. Its main Radio-echo sounding (RES) has been a useful method in advantages are its low power consumption and low weight/ glaciology since the discovery of the transparency of cold volume, which were achieved by taking into account, during ice for the propagation of electromagnetic waves (Waite and the design stage, the integration of a pulse-compression radar Schmidt, 1962). Radar applications in polar ice sheets have and a frequency-modulated continuous wave (FM-CW) included the study of ice thickness, subglacial topography, radar, as well as the complete design of each section. We subglacial roughness, subglacial geology and subglacial also reduced the implementation costs in designing and lakes (Peters and others, 2005; Vaughan and others, 2007). building each stage. Low power and compact design are Radar data have also been used to detect internal ice layers, important considerations for long oversnow traverses, as well estimate glacier mass balance and characterize ice dynam- as being a key factor for future implementation of radars on ics (Bingham and Siegert, 2007). In snow and firn, radars unmanned aerial vehicles (UAV), a configuration that can have been used to determine thickness, stratigraphy layers reduce operational costs for glaciological measurements and other properties (Plewes and Hubbard, 2001). Because (Blake and others, 2008; Remy and others, 2012). of the versatility of RES, numerous radar types have been In December 2008, we tested a pulse-compression developed for studying ice masses. Historical reviews of prototype radar designed to measure ice thickness at Union radar systems developed for glaciological purposes are Glacier (798460 S, 838240 W) and the Horseshoe Valley in provided by Gogineni and others (1998) and Plewes and West Antarctica (Fig. 1) (Rivera and others, 2010). Thanks to Hubbard (2001), for example. this experience, the upgraded radar presented in this paper Normally, radars designed to survey ice thickness are was used at Union Glacier, during an oversnow traverse completely independent of high-resolution radars aimed at carried out in December 2010. During this campaign, we measuring snow accumulation (Gogineni and others, 2001; performed ice thickness and snow/firn measurements along Kanagaratnam and others, 2004; Raney and others, 2008; Union, Schanz, Schneider and Balish glaciers (Fig. 8); results Panzer and others, 2013). However, a complete package are presented here to show the performance of the radar multi-frequency radar system, focused on wide-coverage system. These data complement the glaciological baseline of airborne survey, has been developed by the University of Union Glacier and improve knowledge of the basic Kansas, USA. This illustrated the importance of multispectral characteristics of nearby glaciers, where only BEDMAP data radar data to characterize the entire ice column (RodrõÂguez- (Lythe and others, 2001) were available until our first surveys Morales and others, 2013). (Rivera and others, 2010). In this paper, we present a design of a VHF/UHF ground The Union Glacier area was selected as a testing site radar system aimed at measuring cold ice thickness and high- because of its complex surface and subglacial topography, resolution surface snow/firn. This system is intended to survey the presence of a blue-ice area and the availability of in situ 40 Uribe and others: Radar for measuring ice and snow in Antarctica Table 1. Pulse-compression radar parameters Description Value Unit Frequency range 145±165 MHz Resolution in ice* 4:2 m Chirp length 1±10 ms Pulse repetition frequency (PRF) 10 (max) kHz Peak power 200 (max) W Coherent integration 64±4096 traces Trace length 2048 samples Sampling frequency 40:5 MHz Receiver gain 83:8 (max) dB Receiver noise figure 3:3 dB *See Discussion section for more details. Table 2. FM-CW radar parameters Description Value Unit Frequency range 550±900 MHz Resolution in air 0:5 m PRF 10 kHz Transmitter power 21 dBm Coherent integration 64±256 traces Trace length 4096 samples Range 480 m Sampling frequency 45 MHz Receiver gain 80:3 dB Receiver noise figure 4:1 dB waveform. This method uses long chirp-modulated pulses to increase the average transmitted power (Mahafza, 2000). Given the low attenuation of high frequencies in cold ice, it is possible to operate in VHF band, employing common RF amplifiers, electronics components and small antennas. FM- CW radars are often used as high-resolution systems because, despite their high bandwidth, they do not require Fig. 1. Location map of the testing site at Union Glacier (box in high-speed data acquisition. Figure 2 shows a reduced block lower image). diagram of the overall radar system. The pulse-compression system is based on an Advanced COherent Radar Depth Sounder (ACORDS) system by Namburi (2003), and the FM- mass-balance and ice-dynamic data collection. This area is CW system is based on the radar presented by Kanagar- located only 40 km upstream of the local grounding line at atnam and others (2004). Constellation Inlet, in the Ronne Ice Shelf. The proximity of The digital system generates the chirp waveform at our study area to the local grounding line zone is of interest 155 MHz to the pulse-compression radar transmitter, and due to possible upward grounding line migrations already the baseband frequency sweep (50±400 MHz) to the FM- forecast in the region (Hellmer and others, 2012). Hence, CW system, through two separate direct digital synthesizer contributions to build up a glaciological baseline of Union (DDS) systems. It also performs the analog-to-digital con- Glacier are important for understanding possible future versions of three received analog signals: two signals glacier dynamic responses to ongoing atmospheric and (channels 1 and 2) from the pulse-compression radar oceanic changes. receiver, and the intermediate frequency (IF) signal from Here we present the technical details of our system the FM-CW radar front-end. The two channel schemes have including the signal generation, RF systems, the RF power different amplification gains (low and high gain) of the amplifier and the digital data capture systems, as well as received signal to increase the dynamic range of the pulse- some of the results obtained. compression radar. This method was proposed by Namburi (2003) to avoid sensitivity time control (STC) systems. A geodetic Javad Lexon GPS receiver was used, which SYSTEM OVERVIEW provides NMEA183 messages and pulse per second (PPS) The pulse-compression method permits one to improve the signals for precise time marking and basic georeferencing of range resolution and the signal-to-noise ratio (SNR) that each radar trace captured and precise georeferencing in would have been obtained from the uncompressed pulse post-processing. All digitized data are coherently averaged Uribe and others: Radar for measuring ice and snow in Antarctica 41 Fig. 2. General block diagram of the radar system. inside the digital system, then sent to the computer through Furthermore, trimmer capacitors to the input and output an Ethernet link, where the raw data are stored. The matching networks were added for manual tuning to obtain computer runs a custom program that controls all radar a flat frequency response from 145 to 165 MHz. Finally, after parameters and preprocesses the raw data in real time for several laboratory tests, we reduced the current polarization viewing purposes. Tables 1 and 2 show the most important of the transistor drain (Idq) from 900 mA (data-sheet parameters of pulse compression and the FM-CW radars. recommendation) to 100 mA, reducing the total power consumption. With this configuration, we obtained 200 W of peak power (10 kHz of pulse repetition frequency (PRF), THE PULSE-COMPRESSION SYSTEM 10 ms chirp long) from the transmitter output in the complete Transmitter 145±165 MHz band. The pulse-compression radar transmitter (Fig. 3) consists of three stages: a pre-amplifier, a power driver amplifier and Receiver the final power stage. The power driver amplifier produces a The receiver (Fig. 4) is designed to produce two outputs from maximum output of 5 W.
Recommended publications
  • Review of the Geology and Paleontology of the Ellsworth Mountains, Antarctica
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 107; doi:10.3133/of2007-1047.srp107 Review of the geology and paleontology of the Ellsworth Mountains, Antarctica G.F. Webers¹ and J.F. Splettstoesser² ¹Department of Geology, Macalester College, St. Paul, MN 55108, USA ([email protected]) ²P.O. Box 515, Waconia, MN 55387, USA ([email protected]) Abstract The geology of the Ellsworth Mountains has become known in detail only within the past 40-45 years, and the wealth of paleontologic information within the past 25 years. The mountains are an anomaly, structurally speaking, occurring at right angles to the Transantarctic Mountains, implying a crustal plate rotation to reach the present location. Paleontologic affinities with other parts of Gondwanaland are evident, with nearly 150 fossil species ranging in age from Early Cambrian to Permian, with the majority from the Heritage Range. Trilobites and mollusks comprise most of the fauna discovered and identified, including many new genera and species. A Glossopteris flora of Permian age provides a comparison with other Gondwana floras of similar age. The quartzitic rocks that form much of the Sentinel Range have been sculpted by glacial erosion into spectacular alpine topography, resulting in eight of the highest peaks in Antarctica. Citation: Webers, G.F., and J.F. Splettstoesser (2007), Review of the geology and paleontology of the Ellsworth Mountains, Antarctica, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open- File Report 2007-1047, Short Research Paper 107, 5 p.; doi:10.3133/of2007-1047.srp107 Introduction The Ellsworth Mountains are located in West Antarctica (Figure 1) with dimensions of approximately 350 km long and 80 km wide.
    [Show full text]
  • Glaciological Investigations on Union Glacier, Ellsworth Mountains, West Antarctica
    Annals of Glaciology 51(55) 2010 91 Glaciological investigations on Union Glacier, Ellsworth Mountains, West Antarctica Andre´s RIVERA,1,2,3 R. ZAMORA,1 Camilo RADA,1 Jonathan WALTON,4 Stuart PROCTOR5 1Centro de Estudios Cientı´ficos, Av. Arturo Prat 514, Casilla 1469, Valdivia, Chile E-mail: [email protected] 2Departamento de Geografı´a, Universidad de Chile, Portugal 84, Casilla 3387, Santiago, Chile 3Centro de la Ingenierı´a de la Innovacio´n del CECS (CIN), Av. Arturo Prat 514, Casilla 1469, Valdivia, Chile 4Antarctic Logistics and Expeditions (ALE), LLC 4376 South 700 East, Suite 226 Salt Lake City, UT 84107-3006, USA 5Topcon Europe Positioning B.V., Essebaan 11, Capelle aan den IJssel, 2908LJ, The Netherlands ABSTRACT. Union Glacier, West Antarctica, was intensively mapped in December 2008, when an over- snow traverse was conducted by CECS and ALE, with the aim to determine the ice-dynamical characteristics of the glacier, through mapping the crevasse fields and by providing a glaciological baseline for future studies. A mean ice thickness of 1450 m was measured, confirming the presence of a deep subglacial topography (~900 m below sea level), much deeper than previously estimated. Ice velocities were also measured at 21 stakes drilled into the ice at the narrowest gate of the glacier between December 2007 and December 2008, yielding a mean value of 22.6 m a–1. These velocities, combined with the measured ice thicknesses and a numerical model, yielded an ice flux of 0.10 Æ 0.03 km3 a–1 w.e. Considering the ice basin above this gate, a mean surface mass balance of 0.18 Æ 0.05 m a–1 was estimated, a value consistent with a mean snow accumulation for nearby ice streams.
    [Show full text]
  • Mem170-Bm.Pdf by Guest on 30 September 2021 452 Index
    Index [Italic page numbers indicate major references] acacamite, 437 anticlines, 21, 385 Bathyholcus sp., 135, 136, 137, 150 Acanthagnostus, 108 anticlinorium, 33, 377, 385, 396 Bathyuriscus, 113 accretion, 371 Antispira, 201 manchuriensis, 110 Acmarhachis sp., 133 apatite, 74, 298 Battus sp., 105, 107 Acrotretidae, 252 Aphelaspidinae, 140, 142 Bavaria, 72 actinolite, 13, 298, 299, 335, 336, 339, aphelaspidinids, 130 Beacon Supergroup, 33 346 Aphelaspis sp., 128, 130, 131, 132, Beardmore Glacier, 429 Actinopteris bengalensis, 288 140, 141, 142, 144, 145, 155, 168 beaverite, 440 Africa, southern, 52, 63, 72, 77, 402 Apoptopegma, 206, 207 bedrock, 4, 58, 296, 412, 416, 422, aggregates, 12, 342 craddocki sp., 185, 186, 206, 207, 429, 434, 440 Agnostidae, 104, 105, 109, 116, 122, 208, 210, 244 Bellingsella, 255 131, 132, 133 Appalachian Basin, 71 Bergeronites sp., 112 Angostinae, 130 Appalachian Province, 276 Bicyathus, 281 Agnostoidea, 105 Appalachian metamorphic belt, 343 Billingsella sp., 255, 256, 264 Agnostus, 131 aragonite, 438 Billingsia saratogensis, 201 cyclopyge, 133 Arberiella, 288 Bingham Peak, 86, 129, 185, 190, 194, e genus, 105 Archaeocyathidae, 5, 14, 86, 89, 104, 195, 204, 205, 244 nudus marginata, 105 128, 249, 257, 281 biogeography, 275 parvifrons, 106 Archaeocyathinae, 258 biomicrite, 13, 18 pisiformis, 131, 141 Archaeocyathus, 279, 280, 281, 283 biosparite, 18, 86 pisiformis obesus, 131 Archaeogastropoda, 199 biostratigraphy, 130, 275 punctuosus, 107 Archaeopharetra sp., 281 biotite, 14, 74, 300, 347 repandus, 108 Archaeophialia,
    [Show full text]
  • 1 Compiled by Mike Wing New Zealand Antarctic Society (Inc
    ANTARCTIC 1 Compiled by Mike Wing US bulldozer, 1: 202, 340, 12: 54, New Zealand Antarctic Society (Inc) ACECRC, see Antarctic Climate & Ecosystems Cooperation Research Centre Volume 1-26: June 2009 Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Vessel names are shown viz: “Aconcagua” Ackroyd, Lieut. F: 1: 307, All book reviews are shown under ‘Book Reviews’ Ackroyd-Kelly, J. W., 10: 279, All Universities are shown under ‘Universities’ “Aconcagua”, 1: 261 Aircraft types appear under Aircraft. Acta Palaeontolegica Polonica, 25: 64, Obituaries & Tributes are shown under 'Obituaries', ACZP, see Antarctic Convergence Zone Project see also individual names. Adam, Dieter, 13: 6, 287, Adam, Dr James, 1: 227, 241, 280, Vol 20 page numbers 27-36 are shared by both Adams, Chris, 11: 198, 274, 12: 331, 396, double issues 1&2 and 3&4. Those in double issue Adams, Dieter, 12: 294, 3&4 are marked accordingly. Adams, Ian, 1: 71, 99, 167, 229, 263, 330, 2: 23, Adams, J.B., 26: 22, Adams, Lt. R.D., 2: 127, 159, 208, Adams, Sir Jameson Obituary, 3: 76, A Adams Cape, 1: 248, Adams Glacier, 2: 425, Adams Island, 4: 201, 302, “101 In Sung”, f/v, 21: 36, Adamson, R.G. 3: 474-45, 4: 6, 62, 116, 166, 224, ‘A’ Hut restorations, 12: 175, 220, 25: 16, 277, Aaron, Edwin, 11: 55, Adare, Cape - see Hallett Station Abbiss, Jane, 20: 8, Addison, Vicki, 24: 33, Aboa Station, (Finland) 12: 227, 13: 114, Adelaide Island (Base T), see Bases F.I.D.S. Abbott, Dr N.D.
    [Show full text]
  • USGS Open-File Report 2007-1047, Short Research Paper 069, 3 P.; Doi:10.3133/Of2007-1047.Srp069
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 069, doi:10.3133/of2007-1047.srp069 Craddock Massif and Vinson Massif remeasured Damien Gildea¹ and John Splettstoesser² ¹The Omega Foundation, Incline Village, Nevada U.S.A. 89450 ([email protected]) ²P.O. Box 515, Waconia, Minnesota U.S.A. 55387 ([email protected]) Abstract The highest peak in Antarctica, the Vinson Massif (78º35’S, 85º25’W), is at an elevation of 4892 m (16,046 ft), as determined in 2004. Measurements of the elevation have fluctuated over the years, from its earliest surveyed elevation of 5140 m (16,859 ft), to its present height. Vinson Massif and three of its near neighbors in the Sentinel Range of the Ellsworth Mountains are the highest peaks in Antarctica, making them a favorite objective of mountaineers. Well over 1,100 people have climbed Vinson since the first ascent by a team in the 1966-67 austral summer. The range is composed of Crashsite quartzite, making the Sentinel’s very resistant to erosion. Very accurate elevations have been achieved annually by GPS mapping done by a climbing team sponsored by the Omega Foundation, active in Antarctica since 1998. The Craddock Massif now includes Mt. Craddock, the ninth highest peak in Antarctica, at 4368 m (14,327 ft). Both are named for Campbell Craddock*, a U.S. geologist active in Antarctic research beginning in 1959-60. *Deceased, 23 July 2006. Citation: Gildea, D., and J. Splettstoesser (2007), Craddock Massif and Vinson Massif remeasured, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K.
    [Show full text]
  • CRREL Report 93-14
    CRREL REPORT 93-14 Malcolm Mellor Aviation Notes onAntarctic August1993 Abstract Antarctic aviation has been evolving for the best part of a century, with regular air operations developing over the past three or four decades. Antarctica is the last continent where aviation still depends almost entirely on expeditionary airfields and “bush flying,” but change seems imminent. This report describes the history of aviation in Antarctica, the types and characteristics of existing and proposed airfield facilities, and the characteristics of aircraft suitable for Antarctic use. It now seems possible for Antarctic aviation to become an extension of mainstream international aviation. The basic requirement is a well-distributed network of hard-surface airfields that can be used safely by conventional aircraft, together with good international collaboration. The technical capabilities al- ready exist. Cover: Douglas R4D Que Sera Sera, which made the first South Pole landing on 31 October 1956. (Smithsonian Institution photo no. 40071.) The contents of this report are not to be used for advertising or commercial purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products. For conversion of SI metric units to U.S./British customary units of measurement consult ASTM Standard E380-89a, Standard Practice for Use of the International System of Units, published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103. CRREL Report 93-14 US Army Corps of Engineers Cold Regions Research & Engineering Laboratory Notes on Antarctic Aviation Malcolm Mellor August 1993 Approved for public release; distribution is unlimited. PREFACE This report was prepared by Dr.
    [Show full text]
  • Ski Antarctica
    SKI ANTARCTICA 2021 EXPEDITION TRIP NOTES SKI ANTARCTICA TRIP NOTES 2021 EXPEDITION DETAILS Dates: December 15–30, 2021 Duration: 16 days Departure: ex Punta Arenas, Chile Price: US$30,950 per person Looking west over Rossman Cove. Photo: Wilson Cheung During the southern hemisphere summer of 2021/22, Adventure Consultants will operate an expedition to ski in the Ellsworth Mountains in Antarctica. This Ski Antarctica trip offers the opportunity for backcountry skiers to carve first tracks on pristine slopes in the world’s most remote environment. The Heritage Range that will be our playground for The mountains were discovered on 23 November this expedition has the breadth of terrain to suit 1935 by Lincoln Ellsworth on a trans-Antarctic any experience level, with unparalleled views in all flight and he named them the Sentinel Range. directions and options for multi-day trips or day The Canadian company Adventure Network tours from our base at Union Glacier Camp. International (ANI) opened up this area to private expeditions and operated regular flights to Enjoy the exploration as a trip in itself, or as an add- its summer camp at Patriot Hills from 1985. In on to our Vinson Massif or South Pole expeditions 2003/2004 they withdrew their Antarctic operations to complete your Antarctic experience. and Antarctica Logistics & Expeditions (ALE) stepped in. ALE is run by some of the same people that initially started ANI back in the 1980s and they now use a new camp at Union Glacier as their base HISTORY within Antarctica. Union Glacier is located in the Heritage Range amongst the Ellsworth Mountains, 1,300km/700 The terrain and skiing in the area is varied with nautical miles from the South Pole.
    [Show full text]
  • Itinerary Changes 2021
    ITINERARY CHANGES 2021 Due to the ongoing COVID-19 pandemic ALE has made some adjustments to our operations in order to ensure the well-being of our guests and staff and to minimize the risk of bringing the infection into Antarctica. Below, you will find how our itineraries across all of our experiences for the 2021-22 season will be modified. Punta Arenas • You will be required to arrive in Punta Arenas 4 nights prior to your departure. • Welcome and Safety Briefings will be done virtually. • There will be no fitting periods for Rental Clothing in the Punta Arenas office, instead clothing will be picked up at a specified location and time. Further information will be given upon arrival in Punta Arenas. • Your Gear Checks will be done virtually and we will explain to you how this will be done once you arrive in Punta Arenas. • Flight Check in and Baggage Drop Off will be done using COVID-19 safe practices and you will receive more information on how this will be done on arrival in Punta Arenas. • You will be required to complete and sign a COVID-19 Declaration prior to your departure. Antarctica ALE has developed COVID-19 management procedures for Antarctica. These will be covered in your briefings in Punta Arenas and on arrival at Union Glacier. Please visit our FAQ for more detailed information on ALE’s COVID-19 Management Strategy https:// bit.ly/3g5e4ql SKI ANTARCTICA Carve first tracks on pristine slopes with unparalleled ABACKCOUNTRY SKIER’S views in all directions. Explore some of Antarctica’s most spectacular ski terrain deep in the Heritage PLAYGROUND Range of the Ellsworth Mountains.
    [Show full text]
  • Union Glacier Please Refer to the Corresponding final Paper in TC If Available
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 8, 1227–1256, 2014 Open Access www.the-cryosphere-discuss.net/8/1227/2014/ The Cryosphere TCD doi:10.5194/tcd-8-1227-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 8, 1227–1256, 2014 This discussion paper is/has been under review for the journal The Cryosphere (TC). Union Glacier Please refer to the corresponding final paper in TC if available. A. Rivera et al. Union Glacier: a new exploration gateway for the West Antarctic Ice Sheet Title Page Abstract Introduction A. Rivera1,2, R. Zamora1, J. A. Uribe1, R. Jaña3, and J. Oberreuter1 Conclusions References 1Centro de Estudios Científicos, P.O. Box 5110466, Valdivia, Chile 2Departamento de Geografía, Universidad de Chile, P.O. Box 3387, Santiago, Chile Tables Figures 3Instituto Antártico Chileno, Punta Arenas, Chile Received: 31 December 2013 – Accepted: 24 January 2014 – Published: 20 February 2014 J I Correspondence to: A. Rivera ([email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 1227 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD Union Glacier (79◦460 S/83◦240 W) in the West Antarctic Ice Sheet (WAIS), has been used by the private company Antarctic Logistic and Expeditions (ALE) since 2007 for 8, 1227–1256, 2014 their landing and commercial operations, providing a unique logistic opportunity to per- 5 form glaciological research in a vast region, including the Ice divide between Institute Union Glacier and Pine Island glaciers and the Subglacial Lake Ellsworth.
    [Show full text]
  • Heritage Range First Ascents Antarctica, Heritage Range Calvarin Peak from the Southwest with the Approximate Line Climbed by the French Team to Make the First Ascent
    AAC Publications Heritage Range First Ascents Antarctica, Heritage Range Calvarin Peak from the southwest with the approximate line climbed by the French team to make the first ascent. Photo by Manu Pellissier French guides Sam Beaugey and Manu Pellissier, with their client François Calvarin, left ALE's Union Glacier camp on November 27 with loaded sleds for the 170km journey north to Mt. Vinson. Their aim was to make first ascents in the Heritage Range along the way. Ski journeys between Vinson and ALE's bases at Patriot Hills or Union Glacier had been done before, but only in 2017 had ascents been made along the way, and that was in the reverse direction. The French team skied north up the Driscoll Glacier, crossed into the Schneider Glacier, and camped near Rogers Peak (1,521m), first climbed in 2017. On the 29th, the trio climbed a striking, leftward- slanting gully on the southwest face of a 1,729m summit to the southeast of Rogers Peak, which they named Calvarin Peak (79°21.409'S, 84°08.716W). They climbed ten 60m pitches of generally steep snow with difficult belays. Traversing the very sharp summit crest, they descended the north ridge and returned to camp after 10 hours. Over the next five days they continued north, across the Minnesota Glacier and then into the Nimitz Glacier, which drains the southern reaches of the Ellsworth Mountains. They camped on the eastern side of the southern Bastien Range. On December 5 they set off up the east ridge of a nearby peak, climbing 500m of snow and mixed terrain to a summit they named Bogets Peak (78°55.965'S, 85°24.481'W, 1,567m GPS).
    [Show full text]
  • 1 Compiled by Mike Wing New Zealand Antarctic Society (Inc) Volume 1-36: Feb 2019 Vessel Names Are Shown Viz: “Aconcagua”. S
    ANTARCTIC1 Compiled by Mike Wing 12: 190, 19: 144, 22: 5, New Zealand Antarctic Society (Inc) Injury, 1: 340, 2: 118, 492, 3: 480, 509, 523, 4: 15, 8: 130, 282, 315, 317, 331, 409, Volume 1-36: Feb 2019 9: 12, 18, 19, 23, 125, 313, 394, 6: 17, 7: 6, 22, 11: 395, 12: 348, 18: 56, 19: 95, Vessel names are shown viz: “Aconcagua”. See also 22: 16, 32: 29, list of ship names under ‘Ships’. Ships All book reviews are shown under ‘Book Reviews’ ANARE, 8: 13, All Universities are shown under ‘Universities’ Argentine Navy, 1: 336, Aircraft types appear under ‘Aircraft’. “Bahia Paraiso” Obituaries & Tributes are shown under 'Obituaries', see Sinking 11: 384, 391, 441, 476, 12: 22, 200, also individual names. 353, 13: 28, Fishing, 30: 1, Vol 20 page numbers 27-36 are shared by both double Japanese, 24: 67, issues 1&2 and 3&4. Those in double issue 3&4 are NGO, 29, 62(issue 4), marked accordingly viz: 20: 4 (issue 3&4) Polar, 34, Soviet, 8: 426, Vol 27 page numbers 1-20 are shared by both issues Tourist ships, 20: 58, 62, 24: 67, 1&2. Those in issue 2 are marked accordingly viz. 27: Vehicles, (issue 2) NZ Snow-cat, 2: 118, US bulldozer, 1: 202, 340, 12: 54, Vol 29 pages 62-68 are shared by both issues 3&4. ACECRC, see Antarctic Climate & Ecosystems Duplicated pages in 4 are marked accordingly viz. 63: Cooperation Research Centre (issue 4). Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Ackroyd, Lieut.
    [Show full text]
  • New Last Glacial Maximum Ice Thickness Constraints for the Weddell Sea Embayment, Antarctica
    New Last Glacial Maximum Ice Thickness constraints for the Weddell Sea Embayment, Antarctica Keir A. Nichols1, Brent M. Goehring1, Greg Balco2, Joanne S. Johnson3, Andrew S. Hein4, Claire Todd5 5 1. Department of Earth and Environmental Sciences, Tulane University, New Orleans, 70118, LA, USA. 2. Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, 94709, CA, USA. 3. British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK. 4. School of GeoSciences, University of Edinburgh, Drummund Street, Edinburgh, EH8 9XP, UK. 5. Department of Geosciences, Pacific Lutheran University, Tacoma, 98447, WA, USA. 10 Correspondence to: Keir Nichols ([email protected]) Abstract. We describe new Last Glacial Maximum (LGM) ice thickness constraints for three locations spanning the Weddell Sea Embayment (WSE) of Antarctica. Samples collected from the Shackleton Range, Pensacola Mountains, and the 15 Lassiter Coast constrain the LGM thickness of the Slessor Glacier, Foundation Ice Stream, and grounded ice proximal to the modern Ronne Ice Shelf edge on the Antarctic Peninsula, respectively. Previous attempts to reconstruct LGM-to-present ice thickness changes around the WSE used measurements of long-lived cosmogenic nuclides, primarily 10Be. An absence of post-LGM apparent exposure ages at many sites led to LGM thickness reconstructions that were spatially highly variable, and inconsistent with flowline modelling. Estimates for the contribution of the ice sheet occupying the WSE at the LGM to 20 global sea level since deglaciation vary by an order of magnitude, from 1.4 to 14.1 m of sea level equivalent. Here we use a short-lived cosmogenic nuclide, in situ produced 14C, which is less susceptible to inheritance problems than 10Be and other long-lived nuclides.
    [Show full text]