Ski Antarctica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detrital Zircon Geochronology of Palaeozoic Siliciclastic Rocks from the Ellsworth Mountains, West Antarctica
O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Detrital zircon geochronology of Palaeozoic siliciclastic rocks from the Ellsworth Mountains, West Antarctica Paula Castillo* and C. Mark Fanning Research School of Earth Sciences, The Australian National University, Canberra, Australia. Rodrigo Fernández University of Texas Institute for Geophysics, The University of Texas at Austin, Austin, Texas, USA. Fernando Poblete Geosciences Rennes, Université de Rennes 1, Rennes, France. Departamento de Geología, Universidad de Chile, Santiago, Chile. *Contact email: [email protected] Abstract. In the Ellsworth Mountains there is an extensive record of sedimentation from early Cambrian to Permian times. However, the tectonic history and the palaeogeographic significance remain enigmatic. Nine sandstone samples were analysed for their U-Pb detrital zircon age spectra using SHRIMPII and RG. They belong to the early Cambrian to Carboniferous-Permian sequences and record typical Gondwana margin signatures. Variations up section/sequence in zircon provenance suggest restricted basinal deposition during the Cambrian,! with likely sources in the Namaqua-Natal and Mozambique/Maud Belts. There are little or no contributions from older cratons and so the Ellsworth basin evolved as a separate basin to that in the Transantarctic Mountains.! This basin configuration changed after the Devonian and deposition continued Figure 1. Reconstruction of part of Gondwana at ca. 500 Ma. during the late Palaeozoic, when the Ellsworth Mountains South America: SFC - Sao Francisco craton; PPC - basin only received detritus from the Ross/Pan-African Paranapanema craton; RPC - Río de la Plata craton. -
Review of the Geology and Paleontology of the Ellsworth Mountains, Antarctica
U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 107; doi:10.3133/of2007-1047.srp107 Review of the geology and paleontology of the Ellsworth Mountains, Antarctica G.F. Webers¹ and J.F. Splettstoesser² ¹Department of Geology, Macalester College, St. Paul, MN 55108, USA ([email protected]) ²P.O. Box 515, Waconia, MN 55387, USA ([email protected]) Abstract The geology of the Ellsworth Mountains has become known in detail only within the past 40-45 years, and the wealth of paleontologic information within the past 25 years. The mountains are an anomaly, structurally speaking, occurring at right angles to the Transantarctic Mountains, implying a crustal plate rotation to reach the present location. Paleontologic affinities with other parts of Gondwanaland are evident, with nearly 150 fossil species ranging in age from Early Cambrian to Permian, with the majority from the Heritage Range. Trilobites and mollusks comprise most of the fauna discovered and identified, including many new genera and species. A Glossopteris flora of Permian age provides a comparison with other Gondwana floras of similar age. The quartzitic rocks that form much of the Sentinel Range have been sculpted by glacial erosion into spectacular alpine topography, resulting in eight of the highest peaks in Antarctica. Citation: Webers, G.F., and J.F. Splettstoesser (2007), Review of the geology and paleontology of the Ellsworth Mountains, Antarctica, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open- File Report 2007-1047, Short Research Paper 107, 5 p.; doi:10.3133/of2007-1047.srp107 Introduction The Ellsworth Mountains are located in West Antarctica (Figure 1) with dimensions of approximately 350 km long and 80 km wide. -
PDF-TITEL-AA-CHILE-EMPEORSADVENTURE Kopie.Pages
Antarktis Flug-Expeditionen EMPEROR PENGUINS Besuch der Kaiserpinguin-Kolonie in der Gould-Bucht ex Punta Arenas / Chile via Basecamp Union Glaciar POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de Saison 2021/22 Veranstalter Direkt-Angebote ab-bis Punta Arenas (Chile) für individuelle Planungen alle Abfahrten der Saison inkl. englischsprachiger Termine POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur * Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de EMPEROR PENGUINS A PHOTOGRAPHER’S PARADISE Immerse yourself in the sights and sounds of the Gould Bay Emperor Penguin Colony on the remote coast of the Weddell Sea. Camp on the same sea ice where thousands of birds come to raise and feed their young. Photograph majestic emperors and their chicks against a spectacular backdrop of ice cliffs, pressure ridges, and icebergs. Spot petrels and seals amongst the endless white expanse. Fall asleep to a chorus of trumpeting calls and wake to find curious penguins outside your tent. Our remote field camp offers you unparalleled access to the emperors as you witness their amazing adaptations to the Antarctic environment alongside our expert guides. ITINERARY Arrival Day Punta Arenas, Chile Pre-departure Day Luggage Pick-Up & Briefing Day 1 Fly to Antarctica Day 2 Explore Union Glacier Day 3 Fly to Emperor Colony Day 4-6 Live with the Emperors Day 7 Return to Union Glacier Day 8 Explore Union Glacier Day 9 Return to Chile Flexible Departure Day Fly Home *Subject to change based on weather and flight conditions. -
Number 90 RECORDS of ,THE UNITED STATES ANTARCTIC
~ I Number 90 RECORDS OF ,THE UNITED STATES ANTARCTIC SERVICE Compiled by Charles E. Dewing and Laura E. Kelsay j ' ·r-_·_. J·.. ; 'i The National Archives Nat i on a 1 A r c hive s and R e c o rd s S e r vi c e General Services~Administration Washington: 1955 ---'---- ------------------------ ------~--- ,\ PRELIMINARY INVENTORY OF THE RECORDS OF THE UNITED STATES ANTARCTIC SERVICE {Record Group 1 Z6) Compiled by Charles E. Dewing and Laura E. Kelsay The National Archives National Archives and Records Service General Services Administration Washington: 1955 National Archives Publication No. 56-8 i\ FORENORD To analyze and describe the permanently valuable records of the Fed eral Government preserved in the National Archives Building is one of the main tasks of the National Archives. Various kinds of finding aids are needed to facilitate the use of these records, and the first step in the records-description program is the compilation of preliminary inventories of the material in the 270-odd record groups to which the holdings of the National Archives are allocated. These inventories are called "preliminary" because they are provisional in character. They are prepared.as soon as possible after the records are received without waiting to screen out all disposable material or to per fect the arrangement of the records. They are compiled primarily for in ternal use: both as finding aids to help the staff render efficient refer ence service and as a means of establishing administrative control over the records. Each preliminary inventory contains an introduction that briefly states the history and fUnctions of the agency that accumulated the records. -
S. Antarctic Projects Officer Bullet
S. ANTARCTIC PROJECTS OFFICER BULLET VOLUME III NUMBER 8 APRIL 1962 Instructions given by the Lords Commissioners of the Admiralty ti James Clark Ross, Esquire, Captain of HMS EREBUS, 14 September 1839, in J. C. Ross, A Voya ge of Dis- covery_and Research in the Southern and Antarctic Regions, . I, pp. xxiv-xxv: In the following summer, your provisions having been completed and your crews refreshed, you will proceed direct to the southward, in order to determine the position of the magnet- ic pole, and oven to attain to it if pssble, which it is hoped will be one of the remarka- ble and creditable results of this expedition. In the execution, however, of this arduous part of the service entrusted to your enter- prise and to your resources, you are to use your best endoavours to withdraw from the high latitudes in time to prevent the ships being besot with the ice Volume III, No. 8 April 1962 CONTENTS South Magnetic Pole 1 University of Miohigan Glaoiologioal Work on the Ross Ice Shelf, 1961-62 9 by Charles W. M. Swithinbank 2 Little America - Byrd Traverse, by Major Wilbur E. Martin, USA 6 Air Development Squadron SIX, Navy Unit Commendation 16 Geological Reoonnaissanoe of the Ellsworth Mountains, by Paul G. Schmidt 17 Hydrographio Offices Shipboard Marine Geophysical Program, by Alan Ballard and James Q. Tierney 21 Sentinel flange Mapped 23 Antarctic Chronology, 1961-62 24 The Bulletin is pleased to present four firsthand accounts of activities in the Antarctic during the recent season. The Illustration accompanying Major Martins log is an official U.S. -
Antarctic Primer
Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state. -
The American Antarctic Mountaineering Expedition Are Vinson Massif (1), Mount Shinn (2), Mount Tyree (3), and Mount Gardner (4)
.' S S \ Ilk 'fr 5 5 1• -Wqx•x"]1Z1"Uavy"fx{"]1Z1"Nnxuxprlau"Zu{vny. Oblique aerial photographic view of part of the Sentinel Range. Four of the mountains climbed by the American Antarctic Mountaineering Expedition are Vinson Massif (1), Mount Shinn (2), Mount Tyree (3), and Mount Gardner (4). Mount Os- tenso and Long Gables, also climbed, are among the peaks farther north. tica. Although tentative plans were made to answer The American Antarctic the challenge, it was not until 1966 that those plans began to materialize. In November of that Mountaineering Expedition year, the National Geographic Society agreed to provide major financial support for the undertaking, and the Office of Antarctic Programs of the Na- SAMUEL C. SILVERSTEIN* tional Science Foundation, in view of the proven Rockefeller University capability, national representation, and scientific New York, N.Y. aims of the group, arranged with the Department of Defense for the U.S. Naval Support Force, A Navy LC-130 Hercules circled over the lower Antarctica, to provide the logistics required. On slopes of the Sentinel Range, then descended, touched December 3, the climbing party, called the Ameri- its skis to the snow, and glided to a stop near 10 can Antarctic Mountaineering Expedition, assem- waiting mountaineers and their equipment. Twenty- bled in Los Angeles to prepare for the unprece- five miles to the east, the 16,860-foot-high summit dented undertaking. of Vinson Massif, highest mountain in Antarctica, glistened above a wreath of gray cloud. Nearby The Members were Mount Tyree, 16,250 feet, second highest The expedition consisted of 10 members selected mountain on the Continent; Mount Shinn, about 16,- by the American Alpine Club. -
To Read About Umberto Nobile and His Flight Over the North Pole
90° North ~ UMBERTO NOBILE ~ The North Pole Flights Umberto Nobile – 1885 (Lauro, Italy) – 1978 (Rome, Italy Italian aeronautical engineer and aeronautical science professor; designer of semi-rigid airships including the Norge and Italia. Promoted from Colonel to General in the Italian air force following the Norge North Pole flight, forced to resign following the Italia disaster. Spent five years in the USSR in the 1930s developing Soviet airship program; lived in the US for several years during WW II; returned to Italy in 1944 where he remained until his death in 1978 at age 92. Italian airship designer and pilot Umberto Nobile took part in two flights over the North Pole, one in 1926 in the airship Norge and another in 1928 in the airship Italia. The Norge [meaning Norway] flight took place on May 11-14, 1926, and was a joint Norwegian-American-Italian venture. The co-leaders were the great Norwegian explorer Roald Amundsen, American adventurer Lincoln Ellsworth, and Italian Umberto Nobile, the airship's designer and pilot. The Norge departed Kings Bay [Ny Ålesund], Spitsbergen in the Svalbard Archipelago on May 11, 1926--just five days after American Richard Byrd's claimed (and highly questionable) attainment of the North Pole by airplane--and flew by way of the North Pole to Teller (near Nome), Alaska. The flight, which originated in Rome, had been touted as "Rome to Nome" but bad weather forced them to land at the small settlement of Teller just short of Nome. This was the first undisputed attainment of the North Pole by air and the first crossing of the polar sea from Europe to North America. -
Mid-Holocene Pulse of Thinning in the Weddell Sea Sector of the West Antarctic Ice Sheet
ARTICLE Received 9 Feb 2016 | Accepted 9 Jul 2016 | Published 22 Aug 2016 DOI: 10.1038/ncomms12511 OPEN Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet Andrew S. Hein1, Shasta M. Marrero1, John Woodward2, Stuart A. Dunning2,3, Kate Winter2, Matthew J. Westoby2, Stewart P.H.T. Freeman4, Richard P. Shanks4 & David E. Sugden1 Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall B400 m to the present level at 6.5–3.5 ka, and could have contributed 1.4–2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet. 1 School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK. 2 Department of Geography, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, UK. 3 School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. -
Download Factsheet
Antarctic Factsheet Geographical Statistics May 2005 AREA % of total Antarctica - including ice shelves and islands 13,829,430km2 100.00% (Around 58 times the size of the UK, or 1.4 times the size of the USA) Antarctica - excluding ice shelves and islands 12,272,800km2 88.74% Area ice free 44,890km2 0.32% Ross Ice Shelf 510,680km2 3.69% Ronne-Filchner Ice Shelf 439,920km2 3.18% LENGTH Antarctic Peninsula 1,339km Transantarctic Mountains 3,300km Coastline* TOTAL 45,317km 100.00% * Note: coastlines are fractal in nature, so any Ice shelves 18,877km 42.00% measurement of them is dependant upon the scale at which the data is collected. Coastline Rock 5,468km 12.00% lengths here are calculated from the most Ice coastline 20,972km 46.00% detailed information available. HEIGHT Mean height of Antarctica - including ice shelves 1,958m Mean height of Antarctica - excluding ice shelves 2,194m Modal height excluding ice shelves 3,090m Highest Mountains 1. Mt Vinson (Ellsworth Mts.) 4,892m 2. Mt Tyree (Ellsworth Mts.) 4,852m 3. Mt Shinn (Ellsworth Mts.) 4,661m 4. Mt Craddock (Ellsworth Mts.) 4,650m 5. Mt Gardner (Ellsworth Mts.) 4,587m 6. Mt Kirkpatrick (Queen Alexandra Range) 4,528m 7. Mt Elizabeth (Queen Alexandra Range) 4,480m 8. Mt Epperly (Ellsworth Mts) 4,359m 9. Mt Markham (Queen Elizabeth Range) 4,350m 10. Mt Bell (Queen Alexandra Range) 4,303m (In many case these heights are based on survey of variable accuracy) Nunatak on the Antarctic Peninsula 1/4 www.antarctica.ac.uk Antarctic Factsheet Geographical Statistics May 2005 Other Notable Mountains 1. -
Glaciological Investigations on Union Glacier, Ellsworth Mountains, West Antarctica
Annals of Glaciology 51(55) 2010 91 Glaciological investigations on Union Glacier, Ellsworth Mountains, West Antarctica Andre´s RIVERA,1,2,3 R. ZAMORA,1 Camilo RADA,1 Jonathan WALTON,4 Stuart PROCTOR5 1Centro de Estudios Cientı´ficos, Av. Arturo Prat 514, Casilla 1469, Valdivia, Chile E-mail: [email protected] 2Departamento de Geografı´a, Universidad de Chile, Portugal 84, Casilla 3387, Santiago, Chile 3Centro de la Ingenierı´a de la Innovacio´n del CECS (CIN), Av. Arturo Prat 514, Casilla 1469, Valdivia, Chile 4Antarctic Logistics and Expeditions (ALE), LLC 4376 South 700 East, Suite 226 Salt Lake City, UT 84107-3006, USA 5Topcon Europe Positioning B.V., Essebaan 11, Capelle aan den IJssel, 2908LJ, The Netherlands ABSTRACT. Union Glacier, West Antarctica, was intensively mapped in December 2008, when an over- snow traverse was conducted by CECS and ALE, with the aim to determine the ice-dynamical characteristics of the glacier, through mapping the crevasse fields and by providing a glaciological baseline for future studies. A mean ice thickness of 1450 m was measured, confirming the presence of a deep subglacial topography (~900 m below sea level), much deeper than previously estimated. Ice velocities were also measured at 21 stakes drilled into the ice at the narrowest gate of the glacier between December 2007 and December 2008, yielding a mean value of 22.6 m a–1. These velocities, combined with the measured ice thicknesses and a numerical model, yielded an ice flux of 0.10 Æ 0.03 km3 a–1 w.e. Considering the ice basin above this gate, a mean surface mass balance of 0.18 Æ 0.05 m a–1 was estimated, a value consistent with a mean snow accumulation for nearby ice streams. -
Mem170-Bm.Pdf by Guest on 30 September 2021 452 Index
Index [Italic page numbers indicate major references] acacamite, 437 anticlines, 21, 385 Bathyholcus sp., 135, 136, 137, 150 Acanthagnostus, 108 anticlinorium, 33, 377, 385, 396 Bathyuriscus, 113 accretion, 371 Antispira, 201 manchuriensis, 110 Acmarhachis sp., 133 apatite, 74, 298 Battus sp., 105, 107 Acrotretidae, 252 Aphelaspidinae, 140, 142 Bavaria, 72 actinolite, 13, 298, 299, 335, 336, 339, aphelaspidinids, 130 Beacon Supergroup, 33 346 Aphelaspis sp., 128, 130, 131, 132, Beardmore Glacier, 429 Actinopteris bengalensis, 288 140, 141, 142, 144, 145, 155, 168 beaverite, 440 Africa, southern, 52, 63, 72, 77, 402 Apoptopegma, 206, 207 bedrock, 4, 58, 296, 412, 416, 422, aggregates, 12, 342 craddocki sp., 185, 186, 206, 207, 429, 434, 440 Agnostidae, 104, 105, 109, 116, 122, 208, 210, 244 Bellingsella, 255 131, 132, 133 Appalachian Basin, 71 Bergeronites sp., 112 Angostinae, 130 Appalachian Province, 276 Bicyathus, 281 Agnostoidea, 105 Appalachian metamorphic belt, 343 Billingsella sp., 255, 256, 264 Agnostus, 131 aragonite, 438 Billingsia saratogensis, 201 cyclopyge, 133 Arberiella, 288 Bingham Peak, 86, 129, 185, 190, 194, e genus, 105 Archaeocyathidae, 5, 14, 86, 89, 104, 195, 204, 205, 244 nudus marginata, 105 128, 249, 257, 281 biogeography, 275 parvifrons, 106 Archaeocyathinae, 258 biomicrite, 13, 18 pisiformis, 131, 141 Archaeocyathus, 279, 280, 281, 283 biosparite, 18, 86 pisiformis obesus, 131 Archaeogastropoda, 199 biostratigraphy, 130, 275 punctuosus, 107 Archaeopharetra sp., 281 biotite, 14, 74, 300, 347 repandus, 108 Archaeophialia,