Using GIS with GPS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metadata and GIS
Metadata and GIS ® An ESRI White Paper • October 2002 ESRI 380 New York St., Redlands, CA 92373-8100, USA • TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL [email protected] • WEB www.esri.com Copyright © 2002 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373- 8100, USA. -
Georeferencing Accuracy of Geoeye-1 Stereo Imagery: Experiences in a Japanese Test Field
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010 GEOREFERENCING ACCURACY OF GEOEYE-1 STEREO IMAGERY: EXPERIENCES IN A JAPANESE TEST FIELD Y. Meguro a, *, C.S.Fraser b a Japan Space Imaging Corp., 8-1Yaesu 2-Chome, Chuo-Ku, Tokyo 104-0028, Japan - [email protected] b Department of Geomatics, University of Melbourne VIC 3010, Australia - [email protected] Commission VIII, Working Group ICWG IV/VIII KEY WORDS: GeoEye-1, Stereo, RPCs, geopositioning, accuracy evaluation, bias compensation, satellite imagery ABSTRACT: High-resolution satellite imagery (HRSI) is being increasingly employed for large-scale topographic mapping, and especially for geodatabase updating. As the spatial resolution of HRSI sensors increases, so the potential georeferencing accuracy also improves. However, accuracy is not a function of spatial resolution alone, as it is also dependent upon radiometric image quality, the dynamics of the image scanning, and the fidelity of the sensor orientation model, both directly from orbit and attitude observations and indirectly from ground control points (GCPs). Users might anticipate accuracies of, say, 1 pixel in planimetry and 1-3 pixels in height when using GCPs. However, there are practical and in some cases administrative/legal imperatives for the georeferencing accuracy of HRSI systems to be quantified through well controlled tests. This paper discusses an investigation into the georeferencing accuracy attainable from the GeoEye-1 satellite, and specifically the 3D accuracy achievable from stereo imagery. Both direct georeferencing via supplied RPCs and indirect georeferencing via ground control and bias-corrected RPCs were examined for a stereo pair of pansharpened GeoEye-1 Basic images covering the Tsukuba Test Field in Japan, which contains more than 100 precisely surveyed and image identifiable GCPs. -
Knowledge-Driven Geospatial Location Resolution for Phylogeographic
Bioinformatics, 31, 2015, i348–i356 doi: 10.1093/bioinformatics/btv259 ISMB/ECCB 2015 Knowledge-driven geospatial location resolution for phylogeographic models of virus migration Davy Weissenbacher1,*, Tasnia Tahsin1, Rachel Beard1,2, Mari Figaro1,2, Robert Rivera1, Matthew Scotch1,2 and Graciela Gonzalez1 1Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259, USA and 2Center for Environmental Security, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5904, USA *To whom correspondence should be addressed. Abstract Summary: Diseases caused by zoonotic viruses (viruses transmittable between humans and ani- mals) are a major threat to public health throughout the world. By studying virus migration and mutation patterns, the field of phylogeography provides a valuable tool for improving their surveil- lance. A key component in phylogeographic analysis of zoonotic viruses involves identifying the specific locations of relevant viral sequences. This is usually accomplished by querying public data- bases such as GenBank and examining the geospatial metadata in the record. When sufficient detail is not available, a logical next step is for the researcher to conduct a manual survey of the corresponding published articles. Motivation: In this article, we present a system for detection and disambiguation of locations (topo- nym resolution) in full-text articles to automate the retrieval of sufficient metadata. Our system has been tested on a manually annotated corpus of journal articles related to phylogeography using inte- grated heuristics for location disambiguation including a distance heuristic, a population heuristic and a novel heuristic utilizing knowledge obtained from GenBank metadata (i.e. a ‘metadata heuristic’). Results: For detecting and disambiguating locations, our system performed best using the meta- data heuristic (0.54 Precision, 0.89 Recall and 0.68 F-score). -
GIS Solutions for Community Development ESRI GIS Software Helping Design Tomorrow’S Cities Today
Planning Building and Safety Code Enforcement Engineering GIS Solutions for Community Development ESRI GIS Software Helping Design Tomorrow’s Cities Today On any given day, more than 1,000,000 people around the world use ESRI’s geographic information system (GIS) technology to improve the way they conduct business. Founded in 1969, ESRI’s GIS solutions are emerging as an integral component in nearly every type of government service. Local government professionals have always been involved in developing communities we would all want to call home. Originally, this meant designing and maintaining cities and counties through land use regulation and infrastructure support. Agencies have had to balance the needs of residential neighborhoods, agricultural areas, and business concerns. Now, in addition to that complex challenge, local governments must factor into these decisions the requirements of a growing list of regional, state, and federal agencies as well as special interest groups. Rapidly changing economic conditions have further complicated the process by threatening the funding needed to carry out these functions. To date, local governments have been right-sized and downsized and have had budgets drastically cut while trying to maintain service levels. Information technology, especially geographic information systems, has proven crucial in helping local governments cope in this environment. ESRI® software solutions help planning, building and safety, public works, and engineering professionals meet or exceed these demands. ESRI software is the number one choice of local governments for mapping and analysis. Using GIS software from ESRI, local government staff have discovered how traditional tasks can be performed more efficiently and tasks—previously impractical or impossible—can be easily accomplished. -
Arcims Metadata Services
ArcIMS® Metadata Services ® An ESRI White Paper • May 2002 ESRI 380 New York St., Redlands, CA 92373-8100, USA • TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL [email protected] • WEB www.esri.com Copyright © 2002 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373- 8100, USA. -
Introduction to Georeferencing
Introduction to Georeferencing Turning paper maps to interactive layers DMDS Workshop Jay Brodeur 2019-02-29 Today’s Outline ➢ Basic fundamentals of GIS and geospatial data ⚬ Vectors vs. rasters ⚬ Coordinate reference systems ➢ Introduction to Quantum GIS (QGIS) ➢ Hands-on Problem-Solving Assignments Quantum GIS (QGIS) ➢ Free and open-source GIS software ➢ User-friendly, fully-functional; relatively lightweight ➢ Product of the Open Source Geospatial Foundation (OSGeo) ➢ Built in C++; uses python for scripting and plugins ➢ Version 1.0 released in 2009 ➢ Current version: 3.16; Long-term release (LTR): 3.14 GDAL - Geospatial Data Abstraction Library www.gdal.org SAGA - System for Automated Geoscientific Analyses saga-gis.org/ GRASS - Geographic Resources Analysis Support System www.grass.osgeo.org QGIS - Quantum GIS qgis.org GeoTools www.geotools.org Helpful QGIS Tutorials and Resources ➢ QGIS Tutorials: http://www.qgistutorials.com/en/ ➢ QGIS Quicktips with Klas Karlsson: https://www.youtube.com/channel/UCxs7cfMwzgGZhtUuwhny4-Q ➢ QGIS Training Guide: https://docs.qgis.org/2.8/en/docs/training_manual/ Geospatial Data Fundamentals Representing real-world geographic information in a computer Task 1: Compare vector and raster data layers Objective: Download some openly-available raster and vector data. Explore the differences. Topics Covered: ➢ The QGIS Interface ➢ Geospatial data ➢ Layer styling ➢ Vectors vs rasters Online version of notes: https://goo.gl/H5vqNs Task 1.1: Downloading vector raster data & adding it to your map 1. Navigate a browser to Scholars Geoportal: http://geo.scholarsportal.info/ 2. Search for ‘index’ using the ‘Historical Maps’ category 3. Load the 1:25,000 topo map index 4. Use the interactive index to download the 1972 map sheet of Hamilton 5. -
Georeferencing
Georeferencing How do we make sure all our data layers line up ? Georeferencing: = linking a layer or dataset with spatial coordinates Registration: = lining up layers with each other Rectification: The process by which the geometry of an image is made planimetric Georeferencing • ‘To georeference’ the act of assigning locations to atoms of information • Is essential in GIS, since all information must be linked to the Earth’s surface • The method of georeferencing must be: – Unique, linking information to exactly one location – Shared, so different users understand the meaning of a georeference – Persistent through time, so today’s georeferences are still meaningful tomorrow Georeferencing Based on Data Types • Raster and Raster • Vector and Vector • Raster and Vector Geocoding Concepts and Definitions Definition of Geocoding • Geocoding can be broadly defined as the assignment of a code to a geographic location. Usually however, Geocoding refers to a more specific assignment of geographic coordinates (latitude,Longitude) to an individual address.. UN Report Definition of Geocoding • What is Geocoding • Geocoding is a process of creating map features from addresses, place names, or similar textual information based on attributes associated with a referenced geographic database, typically a street network that has address ranges associated with each street segment or 'link' running from one intersection to the next. Definition of Geocoding • What is Geocoding • Geocoding typically uses Interpolation as a method to find the location information about an address. – (If the address along one side of a block range from 1 to 199, then Street Number = 66 is about one-third of the way along that side of the block.) • Data required: – Reasonably clean, consistent list of legal addresses (i.e. -
A Comparison of Address Point and Street Geocoding Techniques
A COMPARISON OF ADDRESS POINT AND STREET GEOCODING TECHNIQUES IN A COMPUTER AIDED DISPATCH ENVIRONMENT by Jimmy Tuan Dao A Thesis Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE (GEOGRAPHIC INFORMATION SCIENCE AND TECHNOLOGY) August 2015 Copyright 2015 Jimmy Tuan Dao DEDICATION I dedicate this document to my mother, sister, and Marie Knudsen who have inspired and motivated me throughout this process. The encouragement that I received from my mother and sister (Kim and Vanna) give me the motivation to pursue this master's degree, so I can better myself. I also owe much of this success to my sweetheart and life-partner, Marie who is always available to help review my papers and offer support when I was frustrated and wanting to quit. Thank you and I love you! ii ACKNOWLEDGMENTS I will be forever grateful to the faculty and classmates at the Spatial Science Institute for their support throughout my master’s program, which has been a wonderful period of my life. Thank you to my thesis committee members: Professors Darren Ruddell, Jennifer Swift, and Daniel Warshawsky for their assistance and guidance throughout this process. I also want to thank the City of Brea, my family, friends, and Marie Knudsen without whom I could not have made it this far. Thank you! iii TABLE OF CONTENTS DEDICATION ii ACKNOWLEDGMENTS iii LIST OF TABLES iii LIST OF FIGURES iv LIST OF ABBREVIATIONS vi ABSTRACT vii CHAPTER 1: INTRODUCTION 1 1.1 Brea, California -
Arcsde Configuration and Tuning Guide for Oracle
ArcGIS® 9 ArcSDE® Configuration and Tuning Guide for Oracle® Copyright © 1999, 2002–2005 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. ESRI, SDE, ArcView, ArcIMS, ArcInfo Librarian, MapObjects, ArcInfo, ArcSDE, ArcCatalog, ArcMap, ArcToolbox, ArcStorm, ArcGIS, and Spatial Database Engine are trademarks, registered trademarks, or service marks of ESRI in the United States, the European Community, or certain other jurisdictions. -
Arcview Product Catalog Details Relevant Software Extensions, Data, Training, and Documentation
ArcView® Product Catalog More than 500,000 copies of ESRI® ArcView® are in use worldwide. ArcView helps thousands of organizations understand spatial relationships in their data, make better decisions, and improve business processes. With ArcView, you can create intelligent, dynamic maps using data from a wide range of popular data sources. Perform state-of-the-art geographic information system (GIS) analysis and map creation with the tools and data available for ArcView. When you add one or more of the optional extensions to ArcView, the possibilities for data exploration, integration, and analysis are limitless. You can learn more about ArcView and the resources available to you from ESRI via this catalog. The ArcView Product Catalog details relevant software extensions, data, training, and documentation. Order online at www.esri.com/avcatalog or call 1-888-621-0887. Pricing applicable for U.S. sales only. Shipping and taxes not included. 3 ArcViewArcView offersoffers many exciting capabilities such as extensive symbology, editing tools, metadata management, and on-the-fl y projection. ArcView The Geographic Information System for Everyone TM ArcView provides data visualization, query, analysis, and integration capabilities along with the ability to create and edit geographic data. ArcView is designed with an intuitive Windows® user interface and includes Visual Basic® for Applications for customization. ArcView consists of three desktop applications: ArcMap™, ArcCatalog™, and ArcToolbox™. ArcMap provides data display, query, and analysis. ArcCatalog provides geographic and tabular data management, creation, and organization. ArcToolbox provides basic data conversion. Using these three applications together, you can perform any GIS task, simple to advanced, including mapping, data management, geographic analysis, data editing, and geoprocessing. -
Toponym Resolution in Scientific Papers
SemEval-2019 Task 12: Toponym Resolution in Scientific Papers Davy Weissenbachery, Arjun Maggez, Karen O’Connory, Matthew Scotchz, Graciela Gonzalez-Hernandezy yDBEI, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA zBiodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85281, USA yfdweissen, karoc, [email protected] zfamaggera, [email protected] Abstract Disambiguation of toponyms is a more recent task (Leidner, 2007). We present the SemEval-2019 Task 12 which With the growth of the internet, the public adop- focuses on toponym resolution in scientific ar- ticles. Given an article from PubMed, the tion of smartphones equipped with Geographic In- task consists of detecting mentions of names formation Systems and the collaborative devel- of places, or toponyms, and mapping the opment of comprehensive maps and geographi- mentions to their corresponding entries in cal databases, toponym resolution has seen an im- GeoNames.org, a database of geospatial loca- portant gain of interest in the last two decades. tions. We proposed three subtasks. In Sub- Not only academic but also commercial and open task 1, we asked participants to detect all to- source toponym resolvers are now available. How- ponyms in an article. In Subtask 2, given to- ponym mentions as input, we asked partici- ever, their performance varies greatly when ap- pants to disambiguate them by linking them plied on corpora of different genres and domains to entries in GeoNames. In Subtask 3, we (Gritta et al., 2018). Toponym disambiguation asked participants to perform both the de- tackles ambiguities between different toponyms, tection and the disambiguation steps for all like Manchester, NH, USA vs. -
Arcsde Administration Command Reference
ArcGIS® 9 ArcSDE® Administration Command Reference Copyright © 2007 ESRI All Rights Reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and the copyright laws of the given countries of origin and applicable international laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373, USA. The information contained in this document is subject to change without notice. RESTRICTED/LIMITED RIGHTS LEGEND U.S. Government Restricted/Limited Rights: Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987); and/or FAR §12.211/12.212 [Commercial Technical Data/Computer Software]; DFARS §252.227-7015 (NOV 1995) [Technical Data]; and/or DFARS §227.7202 [Computer Software], as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. ESRI, MapObjects, ArcView, ArcIMS, ArcSDE, ArcInfo, ArcEditor, ArcGIS, ArcMap, ArcCatalog, ArcToolbox, ArcObjects, MapObjects, SDE, and the ESRI globe logo are trademarks of ESRI, registered in the United States and the European Community, or certain other jurisdictions.