Eye Findings in Dermatologic Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Eye Findings in Dermatologic Conditions FAST FACTS FOR BOARD REVIEW Series Editor: William W. Huang, MD, MPH Eye Findings in Dr. O’Neill is from Buffalo Medical Group, New York. The author reports no conflict of interest. Dermatologic Conditions Jenna O’Neill, MD Eye Finding Definition/Pathogenesis Dermatologic Condition(s) Miscellaneous Angioid streaks Rupture of Bruch membrane PXE, EDS (kyphoscoliosis and Associated with sickle cell (innermost layer of choroid); vascular types most commonly anemia, β thalassemia, broad red-brown lines associated), Cowden disease Paget disease of bone, radiating from optic nerve and phosphatemia; often idiopathic Ankyloblepharon Fusion of all or part of Hay-Wells syndrome (also AD mutation in p63 filiforme adnatum eyelid margins known as AEC syndrome, a form of ectodermal dysplasia) Blue sclerae Blue hue is due to Alkaptonuria, EDS, Fanconi EDS type 6 underlying choroidal veins, anemia, Marfan syndrome, (kyphoscoliosis; AR which show through thin nevus of Ota, osteogenesis mutation in PLOD, collagen fibers of sclera imperfecta types I–III, PXE which encodes lysyl hydroxylase): blue sclerae, retinal detachment, globe rupture, keratoconus; also found in alkaptonuria and nevus of Ota due to pigment deposition in sclera Brushfield spot White to gray spots at Down syndrome Normal in children periphery of iris due to (Kunkmann-Wolffian stromal hyperplasia bodies) Cherry red spot Bright red-orange color of Hurler disease, Also seen in central retinal fovea is contrasted against Niemann-Pick disease, artery occlusion (fovea pale color of retina due to Tay-Sachs disease, receives circulation from accumulation of lipid in sialidosis, Sandhoff disease choroid rather than retinal ganglion cells retinal artery); dapsone toxicity and carbon monoxide poisoning Coloboma Defect in one of the Epidermal nevus syndrome, Most commonly affects structures of the eye, such as Goltz syndrome (focal dermal the iris; may be unilateral the iris, retina, choroid, hypoplasia), incontinentia or bilateral or optic disc pigmenti, Gorlin syndrome Comma-shaped X-linked ichthyosis Do not affect visual corneal opacities (occur in up to 50%) acuity but may cause corneal erosions continued on next page Copyright Cutis 2016. This page may be reproduced by dermatologists for noncommercial use. Cutis® Fast Facts for Board Review (continued) Eye Finding Definition/Pathogenesis Dermatologic Condition(s) Miscellaneous Congenital Flat pigmented spots on Gardner syndrome (familial No impact on vision hypertrophy of outermost layer of retina adenomatous polyposis) unless located over retinal pigment macula epithelium Dendritic keratitis Linear branching pattern Herpes infection, Herpes simplex keratitis of corneal ulcers Richner-Hanhart syndrome is most common cause (tyrosinemia type II) of infectious blindness in Western world; pseudoherpetic keratitis caused by accumulation of tyrosine Ectopia lentis Displacement of lens Upward: Marfan from its normal position syndrome; downward: homocystinuria Juvenile posterior Also known as juvenile NF type II 90% of NF type II patients subcapsular cortical cataract have ocular symptoms lenticular opacity Kayser-Fleischer Dark rings encircling Wilson disease Caused by copper rings outermost portion of iris deposition in portion of cornea (Descemet membrane); early lesions best viewed via slit-lamp examination Lester iris Hyperpigmentation of Nail-patella syndrome AD mutation in papillary margin of iris LMX1B gene Lisch nodules Pigmented hamartomas of NF type I Present in >94% of NF melanocytes, which appear patients >6 years of as yellow-brown papules age; detected by on the surface of the iris slit-lamp examination; also optic gliomas Phakomas Astrocytic hamartomas of Tuberous sclerosis complex May calcify optic nerve, appear as grey-white lesions on retina continued on next page Copyright Cutis 2016. This page may be reproduced by dermatologists for noncommercial use. Cutis® Fast Facts for Board Review (continued) Eye Finding Definition/Pathogenesis Dermatologic Condition(s) Miscellaneous Pinguecula Yellow-white nodule Gaucher disease Generally asymptomatic; on conjunctiva adjacent differentiated from to limbus pterygium, which grows into cornea and may affect vision; most common cause is UV exposure Retinitis Salt-and-pepper appearance Refsum syndrome, Cockayne Progressive loss of vision pigmentosa of retina with clumps of syndrome, Sjögren-Larsson due to degeneration of black pigment syndrome (atypical retinitis retinal pigment epithelial pigmentosa: intraretinal cells; first symptom is glistening white dots) night blindness followed by loss of peripheral vision Abbreviations: PXE, pseudoxanthoma elasticum; EDS, Ehlers-Danlos syndrome; AEC, ankyloblepharon-ectodermal defects-cleft lip/palate; AD, autosomal dominant; AR, autosomal recessive; NF, neurofibromatosis. Copyright Cutis 2016. This page may be reproduced by dermatologists for noncommercial use. Cutis® Fast Facts for Board Review Practice Questions 1. Which type of EDS is most characteristically associated with blue sclerae and globe rupture? a. arthrochalasia b. classical c. dermatosparaxis d. hypermobility e. kyphoscoliosis 2. Ankyloblepharon may be associated with mutation of which gene? a. fibrillin 1 b. LMX1B c. NF1 d. p53 e. p63 3. Which is a characteristic ocular tumor in patients with tuberous sclerosis complex? a. congenital hypertrophy of retinal pigment epithelium b. phakoma c. pigmented iris hamartoma d. pinguecula e. pterygium 4. Which syndrome is not associated with blue sclerae? a. EDS type 6 b. lipoid proteinosis c. Marfan syndrome d. osteogenesis imperfecta type II e. pseudoxanthoma elasticum 5. Which term describes white spots at the periphery of the iris? a. Brushfield spots b. coloboma c. Kayser-Fleischer rings d. Lester iris e. Lisch nodules Fact sheets and practice questions will be posted monthly. Copyright Cutis 2016. This page may be reproduced by dermatologists for noncommercial use..
Recommended publications
  • Bouncebacks the Case of a 10-Year-Old Male with Eye Pain
    Bouncebacks The Case of a 10-Year-Old Male with Eye Pain Bouncebacks appears semimonthly in JUCM. Case presentations on each patient, along with case-by-case risk management commentary by Gregory L. Henry, past president of The American College of Emergency Physicians, and discussions by other nationally recognized experts are detailed in the book Bouncebacks! Emergency Department Cases: ED returns (2006, Anadem Publishing, www.anadem.com).] Also avail- able at www.amazon.com and www.acep.org. Ryan Longstreth, MD, FACEP and Michael B. Weinstock, MD his article is the third in a series scheduled returns. Tin which we will sequentially Other than these medical errors, dysp- answer the following questions: nea and advanced age were the two most I. What is the incidence of common factors associated with an un- bouncebacks? scheduled return visit. II. What is the incidence Another study looking at this is- of bounceback ad- sue was published in 1990 in missions? the Annals of Emergency Medi- III. What is the inci- cine by Pierce et al. During the dence of death in three-month study period, patients recently there were 17,214 new visits to discharged from the their ED with 569 unscheduled ED? returns (defined as ED return IV. What percent of within 48 hours), equating bouncebacks occur to a bounceback rate of just because of medical over 3%. errors? The researchers con- V. How can we use this © Barton Stabler / Images.com cluded that over 18% were information to im- due to physician-related prove patient safety? factors (e.g., misdiagnosis, This month, we will discuss treatment error, inappropriate Question IV: What percent of discharge on initial visit, radiol- bouncebacks occur because of medical errors? ogy over-reads, or lack of outpa- A 2006 case control study performed by Nunez tient analgesics when indicated).
    [Show full text]
  • CHQ-GDL-01074 Acute Management of Open Globe Injuries
    Acute management of Open Globe Injuries Document ID CHQ-GDL-01074 Version no. 2.0 Approval date 14/05/2020 Executive sponsor Executive Director Medical Services Effective date 14/05/2020 Author/custodian Director Infection Management and Prevention service, Review date 14/05/2022 Immunology and Rheumatology Supersedes 1.0 Applicable to All Children’s Health Queensland (CHQ) staff Authorisation Executive Director Clinical Services (QCH) Purpose This evidence-based guideline provides clinical practice advice for clinicians for the acute management of children with open globe injuries. A paediatric ophthalmology team must be actively involved in the management of all patients presenting with this condition. Scope This guideline applies to all Children’s Health Queensland (CHQ) Staff treating a child presenting for the management of open globe injury. Related documents • CHQ-GDL-01202 CHQ Paediatric Antibiocard: Empirical Antibiotic Guidelines • CHQ-PROC-01035 Antimicrobial Restrictions • CHQ Antimicrobial Restriction list • CHQ-GDL-01023 Tetanus Prophylaxis in Wound Management CHQ-GDL-01074- Acute management of Open Globe Injuries - 1 - Guideline Introduction Ocular trauma is an important cause of eye morbidity and is a leading cause of non-congenital mono-ocular blindness among children.1 A quarter of a million children present each year with serious ocular trauma. The vast majority of these are preventable.2 Open globe injuries are injuries where the cornea and/or sclera are breached and there is a full-thickness wound of the eye wall.3 It can be further delineated into globe rupture from blunt trauma and lacerations from sharp objects. When a large blunt object impacts onto the eye, there is an instant increase in intraocular pressure and the eye wall yields at its weakest point leading to tissue prolapse.4 Open globe lacerations are caused by sharp objects or projectiles and subdivided into either penetrating or perforating injuries.
    [Show full text]
  • Cone Interaction with Progressive Macular Dysfunction
    Correspondence 823 Sir, occasionally in the context of ectodermal dysplasia Management of ankyloblepharon filiforme adnatum syndromes3 and popliteal pterygium syndrome.4 AFA has also been reported in association with Edward’s Ankyloblepharon filiforme adnatum (AFA) is a syndrome,5 and CHANDS6 (curly hair, ankyloblepharon, rare congenital malformation affecting the eyelids. nail dysplasia). Other associations include hydrocephalus, We report a case describing its management. meningomyelocoele, and imperforate anus,7 cardiac defects and syndactyly.4 Detailed systemic assessment by an experienced paediatrician is therefore imperative in Case report the management of AFA. Our report illustrates a simple surgical approach that A male neonate was referred for assessment of his left is modified from previously published cases.1,2,4 It is safe eyelids. He was born at term, to a primigravid mother, and well tolerated with the aid of topical anaesthesia. weighing 3150 g. Pregnancy and delivery were Surgical correction should be performed promptly to unremarkable. There was no family history of minimise any risk of occlusion amblyopia, and enable ophthalmic or systemic disease. A detailed systemic full examination of the eye. assessment by a paediatrician was clear. Ocular examination showed partial fusion of his left upper and lower eyelids by a central, narrow band Conflict of interest of tissue, arising from the grey lines (Figure 1). Full The authors declare no conflict of interest. eyelid opening was impaired and interpalpebral aperture was limited to 3.5 mm. Right eye examination was normal. The band of tissue was retracted anteriorly with References a squint hook, clamped for 10 s, and excised with Vannas 1 Scott MH, Richard JM, Farris BK.
    [Show full text]
  • Topical Serum for Treatment of Keratomalacia
    PROCEDURES PRO > OPHTHALMOLOGY > PEER REVIEWED Topical Serum for Treatment of Keratomalacia Amy Knollinger, DVM, DACVO Eye Care for Animals Salt Lake City, Utah Corneal Anatomy An understanding of corneal anatomy is vital to determine if serum therapy for the treatment of keratomalacia should be initiated. The cornea makes up the anterior por- tion of the globe and provides multiple functions for vision: it is transparent (despite originating from surface ectoderm), thereby allowing for clear vision; it acts as the major refractive (bending of light) surface of the globe; and it provides a protective barrier between the globe and the environment The cornea consists of 4 layers in domestic species, being approximately 0.45–0.55 mm thick in the normal dog. The corneal epithelium is the most external layer overly- What You Will Need ing the stromal layer, which accounts for 90% of the total corneal thickness. The cor- n Sterile gloves neal epithelium in the dog and cat is 5–11 cells thick and has a turnover rate of n approximately 7 days.1 The stroma is made up of collagen fibers, which are precisely Clean #40 clipper blade arranged in parallel sheets running the entire diameter of the cornea, allowing for its n Chlorhexidine scrub and solution transparency. The third layer is an acellular membrane (ie, Descemet’s membrane), n Sterile needle and syringe which forms the basement membrane for the innermost layer, the endothelium. The n corneal endothelium is a single layer of hexagonally shaped cells forming the internal Red top sterile blood collection or barrier between the anterior chamber and the cornea.2 serum separator tube n Centrifuge Corneal Disease n Sterile pipette Corneal ulcers are classified by underlying cause.
    [Show full text]
  • Microscopic Anatomy of the Eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian Globes Mammalian Phylogeny General Anatomy Dog
    Microscopic Anatomy of the eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian globes Mammalian Phylogeny General Anatomy Dog Arterial Blood Vessels of the Orbit General Anatomy Dog * Horizontal section Long Posterior Ciliary a. Blood enters the globe Short Post. Ciliary a Long Post. Ciliary a. Anterior Ciliary a. Blood Supply General Anatomy Dog Major arterial circle of the iris Orbital Anatomy Dog Brain Levator Dorsal rectus Ventral rectus Zygomatic Lymph node Orbital Anatomy Dog Orbital Anatomy Dog Cartilaginous trochlea and the tendon of the dorsal oblique m. Orbital Anatomy Dog Rabbit Orbital Anatomy Dog Zygomatic salivary gland mucinous gland Orbital Anatomy Dog Gland of the Third Eyelid Eye lids (dog) Eye lids (dog) Meibomian glands at the lid margin Holocrine secretion Eye lids (primate) Upper tarsal plate Lower tarsal plate Eye lids (rabbit) The Globe The Globe Dog Cat Orangutan Diurnal Horse Diurnal Cornea Epithelium Stromal lamellae Bowman’s layer Dolphin Descemet’s m Endothelium TEM of surface epithelium Cornea Doubling of Descemet’s Vimentin + endothelium Iris Walls: The vertebrate eye Iris Sphincter m. Dilator m Blue-eye, GFAP stain Iris Collagen Iris Cat Sphinctor m. Dilator m. Iris Cat Phyomelanocytes Iris Equine Corpora nigra (Granula iridica) seen in ungulates living without shade Ciliary body Pars plicata Ciliary muscle Pars plana Ciliary body Zonular ligaments Ciliary body Primarily made of fibrillin A major component of elastin Ciliary body Alcian Blue staining acid mucopolysaccharides: Hyaluronic acid Ciliary
    [Show full text]
  • Two Cases of Endogenous Endophthalmitis That Progressed To
    rine to more distal vessels may have led to vasoconstric- References tion and subsequent vasospasm. In conclusion, epinephrine can lead to OAO following 1. Niemi G. Advantages and disadvantages of adrenaline in accidental intra-arterial injection of subcutaneously ad- regional anaesthesia. Best Pract Res Clin Anaesthesiol ministered local anesthetics. Hence, physicians should 2005;19:229-45. carefully administer local anesthesia while considering the 2. Park KH, Kim YK, Woo SJ, et al. Iatrogenic occlusion of possibility that such a complication may occur. the ophthalmic artery after cosmetic facial filler injections: a national survey by the Korean Retina Society. JAMA Byung Gil Moon Ophthalmol 2014;132:714-23. Retina Center, Department of Ophthalmology, HanGil Eye 3. Lazzeri D, Agostini T, Figus M, et al. Blindness following Hospital, Incheon, Korea cosmetic injections of the face. Plast Reconstr Surg 2012;129:995-1012. June-Gone Kim 4. Savino PJ, Burde RM, Mills RP. Visual loss following intra- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea nasal anesthetic injection. J Clin Neuroophthalmol E-mail: [email protected] 1990;10:140-4. 5. Webber B, Orlansky H, Lipton C, Stevens M. Complica- tions of an intra-arterial injection from an inferior alveolar Conflict of Interest nerve block. J Am Dent Assoc 2001;132:1702- 4. No potential conflict of interest relevant to this article was reported. Korean J Ophthalmol 2017;31(3):279-281 litus presented with blurred vision of the right eye for 10 https://doi.org/10.3341/kjo.2017.0002 days. Abdominal and chest computed tomography showed an emphysematous prostatic abscess with multiple pulmo- nary lesions.
    [Show full text]
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Eyes and Pupillary Assessment
    Eye and Pupillary Assessment GFR Training January 29, 2017 What are some things you should look for? Pupil Size Pupil Shape Reactivity Tracking Redness Trauma What assessment questions may provide more information? Sudden blurry vision? Difficult to focus? Sudden double vision? Sudden loss of vision? Seeing things? Seeing black spots? Flashes of light? Any eye pain? Sudden, severe headaches? Any recent trauma? Anatomy What might happen if there is damage to the ciliary body or the nerves that control the ciliary body? Muscles in the iris control pupil size: What is the pupil? What might happen if there is damage to these muscles or to the nerves that control them? Eye Muscles and Nerves Normal Eyes Unusual Eyes Description Condition Unilateral Dilated Pupil III Nerve Compression Bilateral Dilated Pupils Midbrain Injury Irregular Pupils Orbital Trauma Conjugate Gaze Frontal Lobe Lesion Deviation Small / Pinpoint Pontine Injury, Opiate Administration Pupils of Different Sizes Irregular/Misshapen Pupils Abnormal Tracking/Movement When scanning a room, reading, etc., human eyes move in a rapid, jerky fashion. This is called saccadic eye movements. When following (tracking) a single object, eye movements should be smooth and not saccadic. With serious head injuries, eyes often exhibit abnormal tracking movements. Jerky Tracking Other things to look for: Slow tracking Unilateral tracking Lack of tracking (no control or no movement at all) ***Be sure to check both vertically and horizontally!!*** Eyes pointing in different directions Bruising Skull Fracture Broken Nose Possible Causes? Trauma Globe Rupture Protect Swelling Ice Foreign Objects One time GFD had a call for a middle-aged man who was using a power drill, and somehow the drill ended up in his eye.
    [Show full text]
  • Globe Rupture and Protrusion of Intraocular Contents from Fall in Elderly Patient
    Open Access Case Report DOI: 10.7759/cureus.5988 Globe Rupture and Protrusion of Intraocular Contents from Fall in Elderly Patient Andrew Hanna 1 , Rohan Mangal 2 , Tej G. Stead 3 , Latha Ganti 4, 5, 6 1. Emergency Medicine, Graduate Medical Education, University of Central Florida, Orlando, USA 2. Emergency Medicine, Johns Hopkins University, Baltimore, USA 3. Emergency Medicine, Brown University, Providence, USA 4. Emergency Medicine, Envision Physician Services, Orlando, USA 5. Emergency Medicine, University of Central Florida College of Medicine / Hospital Corporation of America Graduate Medical Education Consortium of Greater Orlando, Orlando, USA 6. Emergency Medicine, Polk County Fire Rescue, Bartow, USA Corresponding author: Rohan Mangal, [email protected] Abstract The authors present a case of globe rupture from a fall in an elderly patient. This patient had her intraocular contents protruding and experienced complete vision loss in her right eye. The emergency management and downstream surgical care is discussed, as well as the use of the Ocular Trauma Score to predict prognosis. Our patient had an Ocular Trauma Score of 1, considering right retinal detachment and perforating injury. Categories: Emergency Medicine, Ophthalmology Keywords: emergency medicine, ophthalmology, trauma, globe rupture Introduction Amongst serious eye injuries, 40% are attributable to penetrating and perforating injury [1]. Globe rupture occurs when the structure of the cornea or sclera is disrupted, usually due to trauma. Symptoms of globe rupture include eye deformity, eye pain, and vision loss. Sometimes, if blunt force directly impacts the eye, the sclera may rupture due to intraocular pressure. Globe injuries are relatively uncommon, with an incidence of 3.5 per 100,000 eye injuries [2].
    [Show full text]
  • Iris Mammillations: Significance and Associations
    IRIS MAMMILLATIONS: SIGNIFICANCE AND ASSOCIATIONS 2 l NICOLA K. RAGGEL2, 1. ACHESON and A. LINN MURPHREE Los Angeles and London SUMMARY mammiform (nipple- or teat-like) protuberances. Iris mammillations are rarely described, distinctive Iris mammillations are an occasional finding with few previous reports. They are most commonly villiform protuberances that can cover the iris. In the l--6 majority of reported cases they are unilateral and found in association with melanosis oculi, with or sporadic, and are seen in association with oculodermal without periocular skin involvement in a naevus of melanosis. In past literature and current clinical Ota. They are thus often less precisely referred to as practice they are frequently confused with tbe iris iris melanosis, a term which should best be reserved nodules seen in neurofibromatosis type 1. Their clinical for increased pigmentation of the iris, irrespective of significance is not established, although it has been the presence of iris elevations overlying the pigmen­ 7 suggested that iris mammillations may be an external ted areas. This is supported by the rare descriptions sign of ocular hypertension or intraocular malignancy. of iris elevations in the absence of any increased iris We report a series of 9 patients between the ages of 3 pigmentation?,8 and 28 years with iris mammillations. The mammilla­ Iris mammillations are usually unilateral, often tions appear as regularly spaced, deep brown, smooth, presenting as heterochromia iridis. Occasional bilat­ 7 conical elevations on the iris, of uniform height or eral cases have been described. ,8 Iris mammillations increasing in height as the pupil margin is approached.
    [Show full text]
  • Congenital Ocular Anomalies in Newborns: a Practical Atlas
    www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2020;9(2):e090207 doi: 10.7363/090207 Received: 2019 Jul 19; revised: 2019 Jul 23; accepted: 2019 Jul 24; published online: 2020 Sept 04 Mini Atlas Congenital ocular anomalies in newborns: a practical atlas Federico Mecarini1, Vassilios Fanos1,2, Giangiorgio Crisponi1 1Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy 2Department of Surgery, University of Cagliari, Cagliari, Italy Abstract All newborns should be examined for ocular structural abnormalities, an essential part of the newborn assessment. Early detection of congenital ocular disorders is important to begin appropriate medical or surgical therapy and to prevent visual problems and blindness, which could deeply affect a child’s life. The present review aims to describe the main congenital ocular anomalies in newborns and provide images in order to help the physician in current clinical practice. Keywords Congenital ocular anomalies, newborn, anophthalmia, microphthalmia, aniridia, iris coloboma, glaucoma, blepharoptosis, epibulbar dermoids, eyelid haemangioma, hypertelorism, hypotelorism, ankyloblepharon filiforme adnatum, dacryocystitis, dacryostenosis, blepharophimosis, chemosis, blue sclera, corneal opacity. Corresponding author Federico Mecarini, MD, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy; tel.: (+39) 3298343193; e-mail: [email protected].
    [Show full text]