CRISPR/Cas9 – Transforming Gene Editing in Drug Discovery Labs

Total Page:16

File Type:pdf, Size:1020Kb

CRISPR/Cas9 – Transforming Gene Editing in Drug Discovery Labs Genomics CRISPR/Cas9 – transforming gene editing in drug discovery labs It is evident from a recent market survey on gene editing in drug discovery that CRISPR/Cas9 is now recognised as the superlative method when attempting a gene knockout or when introducing defined mutations, insertions or modifications to the genome. Although use of CRISPR/Cas9 is still mainly confined to the basic research area in the drug discovery process, its potential with respect to the identification and validation of new therapeutic targets, the investigation of mechanism of action and in the creation of screens to identify genes that regulate various cell biological processes are major objectives. The perceived key advantages of CRISPR/Cas9 edits are their efficiency (ie it edits targets sequences at surprisingly high rates), simplicity (ie easy to use and design) and programmability (ie get precision targeting). The main benefits of CRISPR/Cas9 technology that drug discovery labs are most eager to exploit is the ability to make a complete genetic knockout, while minimising off-target effects; the rapid generation of cell lines harbouring desired mutations; and the possibility to develop accurate models of complex human disease in an efficient manner. The delivery of the CRISPR components into some target cells remains sub-optimal and this limits some work on CRISPR/Cas9 gene editing today. Overall, there seems little doubt that CRISPR/Cas9 technology will transform gene editing in drug discovery labs over the coming years. enome editing uses engineered nucleases The CRISPR/Cas 9 system takes advantage of a By Dr John Comley in conjunction with endogenous repair s hort guide RNA (gRNA) to target the bacterial G mechanisms to alter the DNA in a cell. Cas9 endonuclease to specific genomic loci. Recently, a new genome editing tool based on a Because the gRNA supplies the specificity, chang- bacterial-clustered regularly-interspaced short ing the target only requires a change in the design palindromic repeats (CRISPR) and its associated of the sequence encoding the gRNA, as a result protein-9 nuclease (Cas9) has generated consider- editing can be directed to virtually any genomic able interest and looks set to transform the field. locus including most eukaryotic cells. The Drug Discovery World Fall 2016 33 Genomics CRISPR/Cas9 system greatly simplifies genome Figure 1: Current experience of gene editing editing and has great promise in many applications with CRISPR/Cas 9 technology areas such as stem cell engineering, gene therapy, Cutting edge – expert at drug development, tissue and animal disease mod- the forefront of current research els, agriculture, plant disease resistance, etc. In 4% drug development CRISPR can provide a more High – using regularly Very limited – complete 5% effective method to probe the function of specific novice genes, such that drug discovery and validation can 32% Moderate – some practical experience be accelerated. In gene therapy CRISPR offers pre- 22% cise editing or knockout of specific segments of a genome, enabling genetic research of defective genes and their behaviour. In February 2016, HTStec undertook a market Low – have made some initial investigations survey on CRISPR/Cas9 gene editing in drug dis- 37% covery mainly among drug research labs in phar- © HTStec 2016 ma, biotech and academia1. The main objective of this survey was to document the current use of CRISPR/Cas9 in gene editing in drug discovery applications and to understand its future impact. In Figure 2: Time period since first started using this article highlights from the market survey are CRISPR/Cas9 gene editing technology reported and the findings are discussed together with vendor updates on their CRISPR/Cas9 offer- 40% ings supporting drug discovery research. 38% 35% Current use of CRISPR/ 30% Cas9 gene editing 25% Most survey respondents’ current experience of 20% gene editing with CRISPR/Cas 9 technology and its % Responding 15% potential in drug discovery was low, ie have made 16% 15% some initial investigations. This was followed by 10% 9% 8% 32% very limited, ie complete novice; 22% moder- 5% 7% 7% ate, ie some practical experience; 5% high, ie using 0% N/A – not yet using <3 months 3-6 months 6-12 months 12-18 months 18-24 months >2 years regularly; and then only 4% cutting edge, ie expert at the forefront of current research (Figure 1). The © HTStec 2016 median time period since survey respondents had first investigated or started using CRISPR/Cas 9 gene editing technology was 6-12 months ago (Figure 2). Most (47%) of survey respondents were Figure 3: Area of the drug discovery process applying or intending to apply CRISPR/Cas 9 gene most applying or intending to apply editing to the basic research area of the drug dis- covery process. This was followed by target valida- CRISPR/Cas 9 gene editing tion (18% applying); target identification (10% applying) and then clinical studies and lead gener- Basic research 47% ation (both with 9% applying). Other drug discov- Target validation 18% ery areas ha d in total only 6% applying (Figure 3). Target identification 10% Oncology/cancer was the key disease or research Clinical studies 9% area most targeted by survey respondents (52% Lead generation 9% targeting) by CRISPR/Cas 9 gene editing. This was Biologics and bioprocessing 3% followed by immunology/inflammatory disease/ ADME/toxicology 2% autoimmune (30% targeting); neurology/CNS/ Lead optimisation 1% neurodegeneration/pain (27% targeting); metabol- 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% ic disease/diabetes (18% targeting); and then car- % Responding diovascular disease (17% targeting) (Figure 4). Most (49%) of survey respondents answered N/A, © HTStec 2016 ie they have not investigated other gene editing 34 Drug Discovery World Fall 2016 Genomics technologies prior to CRISPR/Cas 9 availability. 29% have previously investigated transcription Figure 4: Key diseases or research areas using activator-like effector nucleases (TALENs); 21% CRISPR/Cas 9 gene editing have investigated integration via homologous recombination (eg with rAAV); 16% zinc finger Oncology/cancer 50% Immunology/inflammatory nucleases (ZFN); and 11% other approaches disease/autoimmune 29% (Figure 5). Neurology/CNS/ 26% neurodegeneration/pain Metabolic disease/diabetes 18% Main rationale for using CRISPR/ Cas9 gene editing technology Cardiovascular disease 17% A gene knockout was what the majority (77%) of Systems biology 14% survey respondents most want to achieve using Respiratory/pulmonary disease 11% CRISPR/Cas 9 gene editing technology. This was Other 10% followed by introduce defined mutations, inser- Infectious diseases 10% tions or modifications (62% wanting); gene Bone and skeletal disease 8% knock-in (52% wanting); and then gene knock Toxicology 7% down (inducible) (40% wanting).Other aims were wanted by less than a third of survey respondents Drug metabolism studies 6% Not applying to any specific (Figure 6). Identification of new therapeutic targets disease or research area 5% was the main objective of survey respondents 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% CRISPR/Cas 9 gene editing in drug discovery % Responding © HTStec 2016 (61% wanting). This was followed by validation of new therapeutic targets (48% wanting); and then investigation of mechanism of action and screens Figure 5: Other gene editing technologies to identify genes that regulate various cell biologi- investigated prior to CRISPR/Cas 9 cal processes (both with 46% wanting). Of least interest was deconvolution and validation of N/A – did not attempt gene GWAS hits (only 8% targeting) (Figure 7). Survey editing prior to CRISPR/Cas9 47% respondents ranked some of the perceived advan- Transcription activator-like effector nucleases (TALENs) 28% tages of CRISPR/Cas 9 gene editing technology in Integration via homologous 20% order of importance. This analysis revealed that recombination (eg with rAAV) efficient, ie edit targets sequences at surprisingly Zinc finger nucleases (ZFN) 16% high rates, was seen as the main advantage of Other approaches 11% CRISPR/Cas 9 gene editing technology. This was followed by simplicity, ie easy to use and design; 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% % Responding programmable, ie get precision targeting; and then © HTStec 2016 fast, ie get tangible results wi thin weeks. Ranked least advantageous was multiplexing, ie can pro- gramme multiple guide RNAs and cleave multiple Figure 6: What respondents want to achieve genes simultaneously (Figure 8). Survey respon- using CRISPR/Cas 9 gene editing dents rated complete genetic knockout, while min- imising off-target effects as the potential benefit of CRISPR/Cas 9 in drug discovery they were most Gene knockout 77% interested in exploiting. This was closely followed Introduce defined mutations, insertions or modifications 62% by enables rapid generation of cell lines harbouring desired mutations; develop accurate models of Gene knock-in 52% complex human disease in an efficient manner; and Gene knock down (inducible) 40% then relative ease with which cellular models can Engineer induced pluripotent be generated. Rated least interesting was scalable stem cells (iPSCs) 33% generation of genome-wide CRISPR libraries for HT functional genomics screening (Figure 9). Introduce endogenous tags 30% Induce or repress transcription 25% Validating gene edits The downstream analytical technique most used to 0% 10% 20% 30% 40% 50% 60% 70% 80% © HTStec 2016 % Responding validate CRISPR/Cas 9 gene edits was P CR (70%
Recommended publications
  • A Multivariate Genome-Wide Association Study of Wing Shape in Drosophila Melanogaster William Pitchers1#A, Jessica Nye2#B, Eladio J
    Genetics: Early Online, published on February 21, 2019 as 10.1534/genetics.118.301342 A multivariate genome-wide association study of wing shape in Drosophila melanogaster William Pitchers1#a, Jessica Nye2#b, Eladio J. Márquez2#c, Alycia Kowalski1, Ian Dworkin1*#d, David Houle2* 1 Affiliation: Department of Integrative Biology, Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, United States of America 2 Affiliation: Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America #aCurrent Addresss: Microbiological Diagnostic Unit Public Health Laboratory at the University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia. #b Current Address: Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA- UAB-UB, Barcelona, 08193, Spain. #cCurrent Address: The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut, United States of America. #dCurrent Address: Department of Biology, McMaster University, Hamilton Ontario, Canada *Authors for correspondence, e-mail: [email protected] & [email protected] Running title: Multivariate GWAS of the fly wing Keywords: Multivariate GWAS, genome-wide association analysis, developmental genetics, phenomics, GP map, Drosophila wing Copyright 2019. Article Summary Understanding the inheritance and evolution of complex traits is an important challenge to geneticists and evolutionary biologists alike. A detailed understanding of how genetic variation affects complex traits is important for the treatment of disease, for our attempts to control the evolution of useful or dangerous organisms, and for understanding and predicting evolution over long time scales. To help understand the evolution and development of the Drosophila melanogaster wing, a model complex trait, we undertook a multivariate genome-wide association study using the Drosophila Genome Reference Panel.
    [Show full text]
  • Guide for Morpholino Users: Toward Therapeutics
    Open Access Journal of Drug Discovery, Development and Delivery Special Article - Antisense Drug Research and Development Guide for Morpholino Users: Toward Therapeutics Moulton JD* Gene Tools, LLC, USA Abstract *Corresponding author: Moulton JD, Gene Tools, Morpholino oligos are uncharged molecules for blocking sites on RNA. They LLC, 1001 Summerton Way, Philomath, Oregon 97370, are specific, soluble, non-toxic, stable, and effective antisense reagents suitable USA for development as therapeutics and currently in clinical trials. They are very versatile, targeting a wide range of RNA targets for outcomes such as blocking Received: January 28, 2016; Accepted: April 29, 2016; translation, modifying splicing of pre-mRNA, inhibiting miRNA maturation and Published: May 03, 2016 activity, as well as less common biological targets and diagnostic applications. Solutions have been developed for delivery into a range of cultured cells, embryos and adult animals; with development of a non-toxic and effective system for systemic delivery, Morpholinos have potential for broad therapeutic development targeting pathogens and genetic disorders. Keywords: Splicing; Duchenne muscular dystrophy; Phosphorodiamidate morpholino oligos; Internal ribosome entry site; Nonsense-mediated decay Morpholinos: Research Applications, the transcript from miRNA regulation; Therapeutic Promise • Block regulatory proteins from binding to RNA, shifting Morpholino oligos bind to complementary sequences of RNA alternative splicing; and get in the way of processes. Morpholino oligos are commonly • Block association of RNAs with cytoskeletal motor protein used to prevent a particular protein from being made in an organism complexes, preventing RNA translocation; or cell culture. Morpholinos are not the only tool used for this: a protein’s synthesis can be inhibited by altering DNA to make a null • Inhibit poly-A tailing of pre-mRNA; mutant (called a gene knockout) or by interrupting processes on RNA • Trigger frame shifts at slippery sequences; (called a gene knockdown).
    [Show full text]
  • Microrna: the Perfect Host
    RESEARCH HIGHLIGHTS RNA INTEREFERENCE MicroRNA: the perfect host By creating an expression cassette that embeds the sequence of short hairpin (sh)RNA into the larger fold of a ubiq- uitous microRNA, scientists can achieve highly efficient target gene knockdown. ‘Let a cell teach you how to do RNA methods interference most effectively’, could have been the motto behind collaborative efforts by the groups of Greg Hannon and Scott 5' Lowe at Cold Spring Harbor Laboratory 3' .com/nature e and Stephen Elledge at Harvard University to generate a second generation of shRNA Figure 1 | Cells process a hairpin RNA (red) embedded in a microRNA fold like endogenous microRNAs. .natur The RNAi machinery of the cell cleaves the microRNA (at the sites indicated with arrows) leading to a w libraries. Their goal was to develop an effec- tive screening tool to identify genes essen- robust expression of small interfering RNAs. tial for the regulation of tumor growth; a http://ww previous shRNA expression library had given good results, but it suffered from small interfering RNAs (Fig. 1). Hannon tion of any shRNA into the microRNA oup sub-optimal efficiency of knockdown. and Elledge created large libraries of fold, together with a promoter of choice. r G The scientists adopted a strategy, first microRNA-based shRNA vectors targeting Although the Hannon-Elledge library introduced by Brian Cullen at Duke many of the human and mouse genes, and is driven by an RNA polymerase III pro- University, which takes advantage of observed more efficient knockdown than moter, a promoter the cell uses for small lishing the cell’s endogenous RNA interference with the previous shRNA library (Silva et noncoding RNAs, microRNAs—like b (RNAi) machinery to process and cleave an al., 2005).
    [Show full text]
  • Artificial Microrna-Based RNA Interference and Specific Gene
    agronomy Article Artificial microRNA-Based RNA Interference and Specific Gene Silencing for Developing Insect Resistance in Solanum lycopersicum Mohammad Faisal * , Eslam M. Abdel-Salam and Abdulrahman A. Alatar Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (E.M.A.-S.); [email protected] (A.A.A.) * Correspondence: [email protected]; Tel.: +966-(011)-4675877 Abstract: RNA Interference (RNAi), which works against invading nucleic acids or modulates the expression of endogenous genes, is a natural eukaryotic regulating system, and it works by noncoding smaller RNA molecules. Plant-mediated gene silencing through RNAi can be used to develop plants with insect tolerance at transcriptional or post-transcriptional levels. In this study, we selected Myzus persicae’s acetylcholinesterase 1 gene (Ace 1) as a silencing target to develop transgenic Solanum lycopersicum L. plants’ resistance to aphids. An RNAi plasmid vector containing an artificial microRNA (amiRNA) sequence was engineered and successfully transformed into Jamila and Tomaland, two elite tomato cultivars. A northern blot analysis and PCR were carried out to check the efficacy of Agrobacterium-mediated transformation in T0 transgenic plants. The quantitative PCR data showed a substantial downregulation of the Ace 1 gene in aphids fed in clip cages on T1 transgenic plants. Furthermore, there was a substantial drop in aphid colonies that were fed on T1 transgenic plants of both the cultivars. These findings strongly suggest that transgenic plants that express amiRNA could be an important tool for engineering plants resistant to aphids and possibly for the prevention of viral disease in other plant-infested pests.
    [Show full text]
  • Integrated Platform for Genome-Wide Screening and Construction of High
    Integrated platform for genome-wide screening and PNAS PLUS construction of high-density genetic interaction maps in mammalian cells Martin Kampmanna,b, Michael C. Bassika,b, and Jonathan S. Weissmana,b,1 aDepartment of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and bHoward Hughes Medical Institute, University of California, San Francisco, CA 94158 Contributed by Jonathan S. Weissman, April 25, 2013 (sent for review February 23, 2013) A major challenge of the postgenomic era is to understand how function of another gene. In GI maps, GIs are determined for human genes function together in normal and disease states. In a large number of pairwise combinations of genes, and genes are microorganisms, high-density genetic interaction (GI) maps are clustered based on the similarity of their GI patterns. The clus- a powerful tool to elucidate gene functions and pathways. We tering typically reveals groups of genes that encode physically have developed an integrated methodology based on pooled interacting proteins or act in a common pathway (17). shRNA screening in mammalian cells for genome-wide identifica- In human cells, such a systematic elucidation of the functional tion of genes with relevant phenotypes and systematic mapping of interactions between human genes will be key to understanding all GIs among them. We recently demonstrated the potential of this how combinations of genes cause common polygenetic diseases approach in an application to pathways controlling the suscepti- and to developing
    [Show full text]
  • Glossary of Terms
    GLOSSARY OF TERMS Table of Contents A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Amino acids: any of a class of 20 molecules that are combined to form proteins in living things. The sequence of amino acids in a protein and hence protein function are determined by the genetic code. From http://www.geneticalliance.org.uk/glossary.htm#C • The building blocks of proteins, there are 20 different amino acids. From https://www.yourgenome.org/glossary/amino-acid Antisense: Antisense nucleotides are strings of RNA or DNA that are complementary to "sense" strands of nucleotides. They bind to and inactivate these sense strands. They have been used in research, and may become useful for therapy of certain diseases (See Gene silencing). From http://www.encyclopedia.com/topic/Antisense_DNA.aspx. Antisense and RNA interference are referred as gene knockdown technologies: the transcription of the gene is unaffected; however, gene expression, i.e. protein synthesis (translation), is lost because messenger RNA molecules become unstable or inaccessible. Furthermore, RNA interference is based on naturally occurring phenomenon known as Post-Transcriptional Gene Silencing. From http://www.ncbi.nlm.nih.gov/probe/docs/applsilencing/ B Biobank: A biobank is a large, organised collection of samples, usually human, used for research. Biobanks catalogue and store samples using genetic, clinical, and other characteristics such as age, gender, blood type, and ethnicity. Some samples are also categorised according to environmental factors, such as whether the donor had been exposed to some substance that can affect health.
    [Show full text]
  • Genetic Knockdown and Knockout Approaches in Hydra Mark Lommel#, Anja Tursch#, Laura Rustarazo-Calvo, Benjamin Trageser and Thomas W
    bioRxiv preprint doi: https://doi.org/10.1101/230300; this version posted December 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genetic knockdown and knockout approaches in Hydra Mark Lommel#, Anja Tursch#, Laura Rustarazo-Calvo, Benjamin Trageser and Thomas W. Holstein* Department oF Molecular Evolution and Genomics, Centre For Organismal Studies (COS), Heidelberg University, D-69120 Heidelberg, INF 230, Germany *Correspondence and requests For materials should be addressed to T.W.H. (email: [email protected]) # contributed equally Key words Cnidarians, Hydra, Functional tools, siRNA, CRISPR/Cas9, reverse genetics 1 bioRxiv preprint doi: https://doi.org/10.1101/230300; this version posted December 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Hydra is a member oF the Cnidaria, an ancient phylum at the base oF metazoan evolution and sister group to all bilaterian animals. The regeneration capacity oF Hydra, mediated by its stem cell systems is unparalleled in the animal kingdom. The recent sequencing oF the Hydra genome and that of other cnidarians has drawn new attention to this well-known model organism. In spite of this, the establishment of methods to manipulate gene expression in Hydra have remained a major challenge. Here we report a CRISPR-Cas9 based targeted mutation approach as well as an optimized, reproducible strategy For the delivery of siRNAs. Both approaches are based on a reFined electroporation protocol for adult Hydra polyps.
    [Show full text]
  • Core Rnai Machinery and Gene Knockdown in the Emerald Ash Borer (Agrilus Planipennis) ⇑ Chaoyang Zhao A, Miguel A
    Journal of Insect Physiology 72 (2015) 70–78 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis) ⇑ Chaoyang Zhao a, Miguel A. Alvarez Gonzales a, Therese M. Poland b, Omprakash Mittapalli a, a Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA b U.S. Forest Service, Northern Research Station, East Lansing, MI 48823, USA article info abstract Article history: The RNA interference (RNAi) technology has been widely used in insect functional genomics research and Received 29 October 2014 provides an alternative approach for insect pest management. To understand whether the emerald ash Received in revised form 11 December 2014 borer (Agrilus planipennis), an invasive and destructive coleopteran insect pest of ash tree (Fraxinus Accepted 12 December 2014 spp.), possesses a strong RNAi machinery that is capable of degrading target mRNA as a response to exog- Available online 23 December 2014 enous double-stranded RNA (dsRNA) induction, we identified three RNAi pathway core component genes, Dicer-2, Argonaute-2 and R2D2, from the A. planipennis genome sequence. Characterization of these core Keywords: components revealed that they contain conserved domains essential for the proteins to function in the Agrilus planipennis RNAi pathway. Phylogenetic analyses showed that they are closely related to homologs derived from RNA interference Dicer-2 other coleopteran species. We also delivered the dsRNA fragment of AplaScrB-2,ab-fructofuranosid- Argonaute-2 ase-encoding gene horizontally acquired by A. planipennis as we reported previously, into A.
    [Show full text]
  • RNA Interference Knockdown of DNA Methyl- Transferase 3 Affects Gene Alternative Splicing in the Honey Bee
    RNA interference knockdown of DNA methyl- transferase 3 affects gene alternative splicing in the honey bee Hongmei Li-Byarlaya, Yang Lib, Hume Stroudc, Suhua Fengc, Thomas C. Newmana, Megan Kanedad, Kirk K. Houd, Kim C. Worleye, Christine G. Elsikf, Samuel A. Wicklined, Steven E. Jacobsenc,g,h, Jian Mab,i, and Gene E. Robinsona,i,j,1 Departments of aEntomology and bBioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; cDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; dDepartment of Computation and Molecular Biophysics, School of Medicine, Washington University, St. Louis, MO 63110; eHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030; fDivisions of Animal and Plant Sciences, University of Missouri, Columbia, MO 65211; gEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and hHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095; iInstitute for Genomic Biology, Urbana, IL 61801; and jNeuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801 Contributed by Gene E. Robinson, June 8, 2013 (sent for review April 10, 2013) Studies of DNA methylation from fungi, plants, and animals indicate Recent studies in both invertebrates and mammals support the that gene body methylation is ancient and highly conserved idea that methylation is correlated with alternative splicing (AS) in eukaryotic genomes, but its role has not been clearly defined. of transcripts (7, 14). By comparing brain methylomes of queen It has been postulated that regulation of alternative splicing of and worker bees, a correlation was revealed between DNA transcripts was an original function of DNA methylation, but a methylation and AS (7, 8).
    [Show full text]
  • Gene Therapy for Treatment of Retinal Disease
    COVER STORY Gene Therapy for Treatment of Retinal Disease BY LAUREN S. TANEY, MD, AND ELIAS REICHEL, MD n the 1990s, gene therapy emerged as a novel strategy for treatment of human diseases. Early attempts at ”Gene therapy can be approached gene therapy in the United States centered on treat- ment of severe combined immunodeficiency due to in two primary ways: (1) delivery of Iadenosine deaminase deficiency, ornithine transcarbamy- genetic material into cells, lase deficiency, and hemophilia. Early setbacks gave way or (2) direct introduction of to later successes, resulting in increased acceptance of the concept of genetic therapy for treatment of human proteins into cells.” disease. In ophthalmology, early efforts in gene therapy focused correction, or gene knockdown. on treatment of inherited monogenic diseases such as Gene addition, the most commonly employed strate- Leber congenital amaurosis (LCA). Subsequent studies gy, involves the introduction of genetic material into cells investigated the use of gene therapy for, among others, that would otherwise lack such material. For inherited Usher syndrome 1B, choroideremia, and Leber heredi- retinal diseases, gene addition techniques can be used to tary optic neuropathy (LHON). Recently, attention has target loss-of-function genetic mutations in photorecep- expanded to encompass the use of genetic therapy for tors or the retinal pigment epithelium (RPE). more common and multifactorial eye diseases such as Gene addition targeting the photoreceptors has been age-related macular degeneration (AMD) and diabetic accomplished in preclinical studies in X-linked retinoschi- retinopathy. Many preclinical and clinical studies that sis, Stargardt disease, and achromatopsia.1-4 Gene addi- employ genetic therapeutic techniques are under way, tion targeting the RPE has been applied in clinical studies with promising results.
    [Show full text]
  • The Promise and Challenges of Developing Mirna-Based Therapeutics for Parkinson’S Disease
    cells Review The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson’s Disease Simoneide S. Titze-de-Almeida 1 , Cristina Soto-Sánchez 2, Eduardo Fernandez 2,3 , James B. Koprich 4, Jonathan M. Brotchie 4 and Ricardo Titze-de-Almeida 1,* 1 Technology for Gene Therapy Laboratory, Central Institute of Sciences, FAV, University of Brasilia, Brasília 70910-900, Brazil; [email protected] 2 Neuroprosthetics and Visual Rehabilitation Research Unit, Bioengineering Institute, Miguel Hernández University, 03202 Alicante, Spain; [email protected] (C.S.-S.); [email protected] (E.F.) 3 Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine—CIBER-BBN, 28029 Madrid, Spain 4 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada; [email protected] (J.B.K.); [email protected] (J.M.B.) * Correspondence: [email protected]; Tel.: +55-61-3107-7222 Received: 11 February 2020; Accepted: 18 March 2020; Published: 31 March 2020 Abstract: MicroRNAs (miRNAs) are small double-stranded RNAs that exert a fine-tuning sequence-specific regulation of cell transcriptome. While one unique miRNA regulates hundreds of mRNAs, each mRNA molecule is commonly regulated by various miRNAs that bind to complementary sequences at 3’-untranslated regions for triggering the mechanism of RNA interference. Unfortunately, dysregulated miRNAs play critical roles in many disorders, including Parkinson’s disease (PD), the second most prevalent neurodegenerative disease in the world. Treatment of this slowly, progressive, and yet incurable pathology challenges neurologists. In addition to L-DOPA that restores dopaminergic transmission and ameliorate motor signs (i.e., bradykinesia, rigidity, tremors), patients commonly receive medication for mood disorders and autonomic dysfunctions.
    [Show full text]
  • CRISPR Gene Editing Reveals Genetic Compensation As a Mechanism for Phenotypic Disjunction of Morphants and Mutants
    International Journal of Molecular Sciences Review Genotype to Phenotype: CRISPR Gene Editing Reveals Genetic Compensation as a Mechanism for Phenotypic Disjunction of Morphants and Mutants Cristy M. Salanga 1,2 and Matthew C. Salanga 2,* 1 Office of the Vice President for Research, Northern Arizona University, Flagstaff, AZ 86011, USA; [email protected] 2 Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA * Correspondence: [email protected] Abstract: Forward genetic screens have shown the consequences of deleterious mutations; however, they are best suited for model organisms with fast reproductive rates and large broods. Furthermore, investigators must faithfully identify changes in phenotype, even if subtle, to realize the full benefit of the screen. Reverse genetic approaches also probe genotype to phenotype relationships, except that the genetic targets are predefined. Until recently, reverse genetic approaches relied on non-genomic gene silencing or the relatively inefficient, homology-dependent gene targeting for loss-of-function generation. Fortunately, the flexibility and simplicity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has revolutionized reverse genetics, allowing for the precise mutagenesis of virtually any gene in any organism at will. The successful integration of insertions/deletions (INDELs) and nonsense mutations that would, at face value, produce the Citation: Salanga, C.M.; Salanga, expected loss-of-function phenotype, have been shown to have little to no effect, even if other M.C. Genotype to Phenotype: methods of gene silencing demonstrate robust loss-of-function consequences. The disjunction CRISPR Gene Editing Reveals Genetic between outcomes has raised important questions about our understanding of genotype to phenotype Compensation as a Mechanism for Phenotypic Disjunction of Morphants and highlights the capacity for compensation in the central dogma.
    [Show full text]