Ordinary Council Meeting Held on 17/02/2021

Total Page:16

File Type:pdf, Size:1020Kb

Ordinary Council Meeting Held on 17/02/2021 Kooloonbung Creek Flying-fox Camp Management Plan Final Adopted by Council June 2019 PORT MACQUARIE-HASTINGS COUNCIL ecology / vegetation / wildlife / aquatic ecology / GIS Acknowledgements Port Macquarie-Hastings Council would like to thank everyone who participated in community consultation, with all comments considered in the development of this plan and incorporated where possible. Council acknowledges input by the New South Wales Office of Environment and Heritage to the Plan in developing the template upon which this Camp Management Plan is based, and Dr Peggy Eby who provided advice which was included in the template. PR3995 Kooloonbung Creek Camp Management Plan ecosure.com.au | i Acronyms and abbreviations ABLV Australian bat lyssavirus BAM Biodiversity Assessment Method BC Act Biodiversity Conservation Act 2016 (NSW) BDAR Biodiversity Development Assessment Report BFF Black flying-fox (Pteropus alecto) the camp Kooloonbung Creek flying-fox camp CE Critically endangered Council Port Macquarie-Hastings Council DoEE Department of the Environment and Energy (Commonwealth) DPI Department of Primary Industries (NSW) E Endangered EEC Endangered Ecological Communities EP&A Act Environmental Planning and Assessment Act 1979 (NSW) EPA Environment Protection Authority EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) FKCNP Friends of Kooloonbung Creek Nature Park GHFF Grey-headed flying-fox (Pteropus poliocephalus) the Guideline Referral guideline for management actions in grey-headed and spectacled flying-fox camps 2015 (Commonwealth) HeV Hendra virus KCPoM Kooloonbung Creek Plan of Management 2012 LEP Local Environmental Plan LGA Local Government Area LGNSW Local Government of New South Wales LRFF Little red flying-fox (Pteropus scapulatus) MNES Matters of national environmental significance NFFMP National flying-fox monitoring program PR3995 Kooloonbung Creek Camp Management Plan ecosure.com.au | ii NPW Act National Parks and Wildlife Act 1974 (NSW) NPWS National Parks and Wildlife Service (NSW) OEH Office of Environment and Heritage (NSW) the Park Kooloonbung Creek Nature Park the Plan this Camp Management Plan POEO Act Protection of the Environment Operations Act 1997 (NSW) the Policy Flying-fox Camp Management Policy 2015 (NSW) SEPPs State Environmental Planning Policies SIS Species impact statement TEC Threatened ecological community V Vulnerable PR3995 Kooloonbung Creek Camp Management Plan ecosure.com.au | iii Contents Acknowledgements ................................................................................................................ i Acronyms and abbreviations ..................................................................................................ii List of figures ........................................................................................................................ v List of tables ......................................................................................................................... vii 1 Introduction .................................................................................................................... 1 1.1 Flying-foxes in urban areas ..................................................................................... 1 1.2 Plan objectives ........................................................................................................ 2 2 Context .......................................................................................................................... 5 2.1 Camp description .................................................................................................... 5 2.2 Tenure .................................................................................................................. 11 2.3 Other ecological values ......................................................................................... 11 2.4 History of the camp ............................................................................................... 15 2.5 Sensitive receptors ............................................................................................... 16 2.6 Management to date ............................................................................................. 18 3 Community engagement .............................................................................................. 22 3.1 Stakeholders ......................................................................................................... 22 3.2 Engagement methods and results ......................................................................... 23 3.2.1 Community consultation meeting ................................................................... 23 3.2.2 Survey responses .......................................................................................... 25 3.2.3 Public submissions on draft Plan ................................................................... 26 4 Camp management options ......................................................................................... 28 4.1 Level 1 actions: routine camp management .......................................................... 28 4.1.1 Education and awareness programs .............................................................. 28 4.1.2 Property modification without subsidies ......................................................... 29 4.1.3 Property modification subsidies...................................................................... 30 4.1.4 Service subsidies ........................................................................................... 30 4.1.5 Routine camp maintenance and operational activities .................................... 30 4.1.6 Revegetation and land management to create alternative habitat .................. 31 4.1.7 Provision of artificial roosting habitat .............................................................. 32 4.1.8 Protocols to manage incidents ....................................................................... 32 4.1.9 Participation in research ................................................................................ 32 4.1.10 Appropriate land-use planning ....................................................................... 32 4.1.11 Property acquisition ....................................................................................... 32 4.1.12 Do nothing ..................................................................................................... 32 4.2 Level 2 actions: in-situ management ..................................................................... 33 4.2.1 Buffers ........................................................................................................... 33 4.2.2 Noise attenuation fencing .............................................................................. 34 4.3 Level 3 actions: disturbance or dispersal .............................................................. 35 4.3.1 Nudging ......................................................................................................... 35 PR3995 Kooloonbung Creek Camp Management Plan ecosure.com.au | iv 4.3.2 Dispersal ........................................................................................................ 35 4.4 Unlawful activities ................................................................................................. 37 4.4.1 Culling............................................................................................................ 37 4.5 Camp management options analysis .................................................................... 38 5 Planned management approach .................................................................................. 44 5.1 Level 1 management ............................................................................................ 44 5.2 Level 2 management ............................................................................................ 45 5.2.1 Canopy-mounted sprinklers ........................................................................... 45 5.2.1.1 Installation and operational considerations ................................................. 46 5.3 Level 3 management ............................................................................................ 47 6 Evaluation and review .................................................................................................. 52 7 Plan administration ...................................................................................................... 53 7.1 Monitoring of the camp ......................................................................................... 53 7.2 Responsibilities ..................................................................................................... 53 7.3 Funding commitment ............................................................................................ 53 References and further resources ....................................................................................... 54 Appendix 1 Legislation ........................................................................................................ 61 Appendix 2 Flying-fox ecology & behaviour ......................................................................... 66 Appendix 3 Protected Matters ............................................................................................. 72 Appendix 4 Human and animal health ................................................................................
Recommended publications
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Wyong Council As Having a Critical Relationship in Providing Food Or Habitat for Native Fauna
    DCP 14 TREE MANAGEMENT 2005 TABLE OF CONTENTS 1.0 INTRODUCTION 4 1.1 Where does this DCP apply? 4 1.2 What is the purpose of this DCP? 4 1.3 What are the aims of this DCP? 4 1.4 How does this DCP relate to other Legislation? 4 1.5 Definitions used in this DCP 5 2.0 TREE REMOVAL 9 2.1 Application of this section 9 2.2 What works are prohibited? 9 2.3 When is consent required for tree removal? 9 2.4 What are the requirements when making application for tree removal? 9 2.5 Notification of applications 10 2.6 Tree removal considerations 10 2.7 Review of refused applications 12 2.8 Arborist's reports 12 3.0 LAND CLEARING 14 3.1 Application of this section 14 3.2 When is a consent required for clearing? 14 3.3 What are the requirements when making an application for land clearing? 14 3.4 Clearing considerations 16 3.5 Noxious weed removal considerations 19 4.0 EXEMPTIONS 20 4.1 Works which do not need consent 20 4.2 Provide evidence for dangerous trees 20 5.0 VEGETATION MANAGEMENT PLANS 20 5.1 What is a vegetation management plan? 20 5.2 When is a vegetation management plan required? 20 5.3 What information is required in a vegetation management plan? 21 6 0 PENALTIES 21 6.1 Public land 21 6.2 Private land 21 7 0 SPECIES LISTS 22 7.1 Undesirable species 22 7.2 Significant species schedule 27 Map 1 Bateau Bay East area 38 Map 1A Bateau Bay East area 39 Map 1B Bateau Bay East area 40 Map 2 Willow Creek area 41 Map 3 Wyongah area 42 Map 3A Wyongah area 43 Map 3B Wyongah area 44 Map 4 Budgewoi East area 45 Tree Management – DCP 14 Page 2 DCP 14 TREE MANAGEMENT 2005 APPENDIX 1 OTHER LEGISLATION APPLYING TO TREE REMOVALS, VEGETATION MANAGEMENT AND CLEARING 46 APPENDIX 2 CLAUSE 28 OF WYONG SHIRE LOCAL ENVIRONMENTAL PLAN (WLEP) 1991 47 APPENDIX 3 SOURCES OF INFORMATION AND CONTACTS 49 Tree Management – DCP 14 Page 3 DCP 14 TREE MANAGEMENT 2005 1.0 INTRODUCTION 1.1 Where does this DCP apply? This DCP applies to all land within the Shire of Wyong except land zoned 1(f) Forestry zone and 8(a) National Parks zone.
    [Show full text]
  • Sagittaria Policy
    Declared Plant Policy This policy relates to natural resources management under section 9(1)(d) of the Landscape South Australia Act 2019 (the Act), enabling co-ordinated implementation and promotion of sound management programs and practices for the use, development or protection of natural resources of the State. Specifically, this policy provides guidance on the use and management of natural resources relating to the prevention or control of impacts caused by pest species of plants that may have an adverse effect on the environment, primary production or the community, as per object s7(1)(f) of the Act. sagittaria (Sagittaria platyphylla) Sagittaria is an emergent aquatic plant that is rare in South Australia. In the eastern States it is a problem weed that obstructs drains and irrigation channels. It resembles giant arrowhead, Sagittaria montevidensis, which is not known in South Australia, but is established in New South Wales and Victoria, and is the subject of a separate policy. Management Plan for Sagittaria Outcomes • Maintain waterways free of blockages by water weeds. • Maintain wetlands free of major weed threats. Objectives • Eradicate current infestations on the Murray and in dams in the Mount Lofty ranges • Prevent further introduction of sagittaria to waterways and wetlands. Best Practice Implementation • Any infestations of sagittaria discovered to be treated as incursions and destroyed. • To prevent introduction or spread, any sale and movement to be prohibited. • Regional landscape boards and Green Adelaide to inspect
    [Show full text]
  • Uneven Missing Data Skew Phylogenomic Relationships Within the Lories and Lorikeets
    GBE Uneven Missing Data Skew Phylogenomic Relationships within the Lories and Lorikeets 1, 1,2 3 4 BrianTilstonSmith *, William M Mauck III , Brett W Benz ,andMichaelJAndersen 2021 August 26 on user History Natural of Museum American by https://academic.oup.com/gbe/article/12/7/1131/5848646 from Downloaded 1Department of Ornithology, American Museum of Natural History, New York, New York 2New York Genome Center, New York, New York 3Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan 4Department of Biology and Museum of Southwestern Biology, University of New Mexico *Corresponding author: E-mail: [email protected]. Accepted: 26 May 2020 Abstract The resolution of the Tree of Life has accelerated with advances in DNA sequencing technology. To achieve dense taxon sampling, it is often necessary to obtain DNA from historical museum specimens to supplement modern genetic samples. However, DNA from historical material is generally degraded, which presents various challenges. In this study, we evaluated how the coverage at variant sites and missing data among historical and modern samples impacts phylogenomic inference. We explored these patterns in the brush-tongued parrots (lories and lorikeets) of Australasia by sampling ultraconserved elements in 105 taxa. Trees estimated with low coverage characters had several clades where relationships appeared to be influenced by whether the sample came from historical or modern specimens, which were not observed when more stringent filtering was applied. To assess if the topologies were affected by missingdata,weperformedanoutlieranalysisofsitesandloci,andadatareductionapproachwhereweexcludedsitesbasedondata completeness. Depending on the outlier test, 0.15% of total sites or 38% of loci were driving the topological differences among trees, and at these sites, historical samples had 10.9Â more missing data than modern ones.
    [Show full text]
  • Control of Delta Arrowhead (Sagittaria Platyphylla) in Australian Irrigation Channels with Long Exposure to Endothall Dipotassium Salt During Winter
    J. Aquat. Plant Manage. 53: 165–170 Control of delta arrowhead (Sagittaria platyphylla) in Australian irrigation channels with long exposure to endothall dipotassium salt during winter DANIEL CLEMENTS, TONY M. DUGDALE, KYM L. BUTLER, AND TREVOR D. HUNT* ABSTRACT ma, South Africa, and the former Soviet Union (Adair et al. 2012). Delta arrowhead is a perennial, monocotyledonous Delta arrowhead [Sagittaria platyphylla (Engelm.) J.G. Sm.] herb, which reproduces by seed (achenes) and vegetatively is an emergent, aquatic plant, originating from North via stolons and tubers (Jacobs 2011). There are two main leaf America, which has invaded aquatic environments in forms; the emergent, upright, petiolate leaf form and the Australia. The plant is particularly problematic in southeast submersed, phyllodial leaf form (Haynes and Hellquist Australia, where it invades earthen irrigation channels and 2000). The emergent, petiolate leaf form bears flowers and drains. Hydraulic capacity is subsequently reduced, leading grows to 150 cm tall and tends to occur in slow-moving to a reduction in the efficiency of water delivery. Options water bodies. Leaf size and shape is highly variable and for controlling delta arrowhead in irrigation channels and dependent on environmental and management factors. The drains are currently underdeveloped. Previous trials have submersed, phyllodial leaf form produces linear, strap-like indicated that a potential control option is to treat leaves and is typically found in deeper water than the irrigation channels that hold standing water during tem- emergent, petiolate leaf form. However, phyllodial plants perate winter conditions with the contact herbicide can transform into petiolate plants or remain phyllodial endothall. This article reports on a field experiment to indefinitely, depending on environmental conditions.
    [Show full text]
  • Flora of New Zealand Seed Plants
    FLORA OF NEW ZEALAND SEED PLANTS ALISMATACEAE K.A. FORD & P.D. CHAMPION Fascicle 7 – DECEMBER 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Ford, Kerry A. (Kerry Alison) Flora of New Zealand : seed plants. Fascicle 7, Alismataceae / K.A. Ford and P.D. Champion. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0- 947525-67-5 (pdf) ISBN 978-0-478-34762-3 (set) 1.Alismataceae -- New Zealand – Identification. I. Champion, P.D. II. Title. III. Manaaki Whenua – Landcare Research New Zealand Ltd. UDC 582.536 (931) DC 584.720993 DOI: 10.7931/jwc3-zg41 This work should be cited as: Ford K.A. & Champion P.D. 2020: Alismataceae. In: Wilton, A.D. (ed.) Flora of New Zealand — Seed Plants. Fascicle 7. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/jwc3-zg41 Date submitted: 12 Jun 2019; Date accepted: 4 Jun 2020; Date published: 2 January 2021 Cover image: Alisma lanceolatum. Flower showing acute petal apices. Contents Introduction..............................................................................................................................................1
    [Show full text]
  • Australia Comprehensive Target Species Custom Tour Trip Report
    AUSTRALIA COMPREHENSIVE TARGET SPECIES CUSTOM TOUR TRIP REPORT 23 AUGUST – 1 OCTOBER 2019 By Andy Walker The Endangered (BirdLife International) Mallee Emu-wren has a tiny global range, and we had excellent views of a pair while birdwatching in Victoria. www.birdingecotours.com [email protected] 2 | TRIP REPORT Australia, Aug-Oct 2019 Overview This 40-day custom birdwatching tour of Australia commenced in Adelaide, South Australia, on the 23rd of August 2019 and ended in Sydney, New South Wales, on the 1st of October 2019. The tour also visited the states and territories of Victoria, Northern Territory, and Queensland. A pelagic trip was taken off southern South Australia (Port MacDonnell). Unfortunately a planned pelagic trip off southern Queensland (Southport) was canceled due to illness. This custom birding tour route was South Australia (Adelaide to Port MacDonnell) - Victoria (circuit around the western section of the state) - New South Wales (a brief stop for parrots along the state border) -Victoria (remainder of the western circuit back to Melbourne) - Northern Territory (Alice Springs area) - Northern Territory (Darwin to Kakadu and back) - Queensland (circuit out of Brisbane) - New South Wales (circuit out of Sydney). Several areas visited on this tour feature in our Australia set departure tours (e.g. East Coast and Northern Territory tours). A list of target birds was provided for the tour (the clients’ third trip to Australia), and these became the focus of the tour route and birding, though new trip birds encountered were also enjoyed! A total of 421 bird species were seen (plus 5 species heard only), including many client target birds.
    [Show full text]
  • Resolving a Phylogenetic Hypothesis for Parrots: Implications from Systematics to Conservation
    Emu - Austral Ornithology ISSN: 0158-4197 (Print) 1448-5540 (Online) Journal homepage: http://www.tandfonline.com/loi/temu20 Resolving a phylogenetic hypothesis for parrots: implications from systematics to conservation Kaiya L. Provost, Leo Joseph & Brian Tilston Smith To cite this article: Kaiya L. Provost, Leo Joseph & Brian Tilston Smith (2017): Resolving a phylogenetic hypothesis for parrots: implications from systematics to conservation, Emu - Austral Ornithology To link to this article: http://dx.doi.org/10.1080/01584197.2017.1387030 View supplementary material Published online: 01 Nov 2017. Submit your article to this journal Article views: 51 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=temu20 Download by: [73.29.2.54] Date: 13 November 2017, At: 17:13 EMU - AUSTRAL ORNITHOLOGY, 2018 https://doi.org/10.1080/01584197.2017.1387030 REVIEW ARTICLE Resolving a phylogenetic hypothesis for parrots: implications from systematics to conservation Kaiya L. Provost a,b, Leo Joseph c and Brian Tilston Smithb aRichard Gilder Graduate School, American Museum of Natural History, New York, USA; bDepartment of Ornithology, American Museum of Natural History, New York, USA; cAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, Australia ABSTRACT ARTICLE HISTORY Advances in sequencing technology and phylogenetics have revolutionised avian biology by Received 27 April 2017 providing an evolutionary framework for studying natural groupings. In the parrots Accepted 21 September 2017 (Psittaciformes), DNA-based studies have led to a reclassification of clades, yet substantial gaps KEYWORDS remain in the data gleaned from genetic information.
    [Show full text]
  • Ecological Checklist of the Missouri Flora for Floristic Quality Assessment
    Ladd, D. and J.R. Thomas. 2015. Ecological checklist of the Missouri flora for Floristic Quality Assessment. Phytoneuron 2015-12: 1–274. Published 12 February 2015. ISSN 2153 733X ECOLOGICAL CHECKLIST OF THE MISSOURI FLORA FOR FLORISTIC QUALITY ASSESSMENT DOUGLAS LADD The Nature Conservancy 2800 S. Brentwood Blvd. St. Louis, Missouri 63144 [email protected] JUSTIN R. THOMAS Institute of Botanical Training, LLC 111 County Road 3260 Salem, Missouri 65560 [email protected] ABSTRACT An annotated checklist of the 2,961 vascular taxa comprising the flora of Missouri is presented, with conservatism rankings for Floristic Quality Assessment. The list also provides standardized acronyms for each taxon and information on nativity, physiognomy, and wetness ratings. Annotated comments for selected taxa provide taxonomic, floristic, and ecological information, particularly for taxa not recognized in recent treatments of the Missouri flora. Synonymy crosswalks are provided for three references commonly used in Missouri. A discussion of the concept and application of Floristic Quality Assessment is presented. To accurately reflect ecological and taxonomic relationships, new combinations are validated for two distinct taxa, Dichanthelium ashei and D. werneri , and problems in application of infraspecific taxon names within Quercus shumardii are clarified. CONTENTS Introduction Species conservatism and floristic quality Application of Floristic Quality Assessment Checklist: Rationale and methods Nomenclature and taxonomic concepts Synonymy Acronyms Physiognomy, nativity, and wetness Summary of the Missouri flora Conclusion Annotated comments for checklist taxa Acknowledgements Literature Cited Ecological checklist of the Missouri flora Table 1. C values, physiognomy, and common names Table 2. Synonymy crosswalk Table 3. Wetness ratings and plant families INTRODUCTION This list was developed as part of a revised and expanded system for Floristic Quality Assessment (FQA) in Missouri.
    [Show full text]
  • Molecular Phylogenetics Suggests a New Guinean Origin and Frequent
    Molecular Phylogenetics and Evolution 90 (2015) 34–48 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogenetics suggests a New Guinean origin and frequent episodes of founder-event speciation in the nectarivorous lories and lorikeets (Aves: Psittaciformes) q ⇑ Manuel Schweizer a, Timothy F. Wright b, Joshua V. Peñalba c, Erin E. Schirtzinger b, Leo Joseph d, a Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, CH 3005 Bern, Switzerland b Department of Biology, MSC 3AF, New Mexico State University, Las Cruces, NM 88003, USA c Research School of Biology, Australian National University, Building 116, Acton, Australian Capital Territory 0200, Australia d Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Australian Capital Territory 2601, Australia article info abstract Article history: The lories and lorikeets (Aves: Loriinae: Loriini) are a readily recognizable, discrete group of nectarivo- Received 19 January 2015 rous parrots confined to the Indo-Pacific region between Wallace’s Line and the Pitcairn Island group Revised 1 April 2015 in the central-east Pacific Ocean. We present the first phylogenetic analysis of all currently recognized Accepted 12 April 2015 genera in the group using two mitochondrial and five nuclear loci. Our analyses suggest a New Available online 28 April 2015 Guinean origin for the group at about 10 million years ago (95% HPD 4.8–14.8) but this origin must be interpreted within the context of that island’s complicated, recent geological history. That is, the origin Keywords: and early diversification of the group may have taken place as New Guinea’s Central Cordillera arose Lories and the final constituent terranes that form present-day New Guinea were accreted.
    [Show full text]
  • Plant Restoration.Pub
    TEXAS NEMO PROGRAM FACT SHEET Texas Coastal Watershed Program Texas A&M University System COASTAL RESTORATION SERIES Utilizing Local Native Plants in Coastal Prairie Wetland Restoration Freshwater coastal prairie wetlands once the original plant community. Local native covered large expanses of the Houston‐ fauna, especially black‐bellied whistling ducks, Galveston landscape. These prairie potholes, immediately congregate to the successfully characterized by a matrix of mima mounds and restored wetland basins—completing the low‐lying wet basins, provided important restoration cycle. The time needed to complete ecological services including habitat, lood the restoration from plant collection to inal control and water cleansing. Agriculture and establishment can stretch over several years. other types of development have Identifying largely erased these features Your Sources from the coastal Most of the material landscape, and utilized in the restoration of planting process these wetlands can will come from local be a dificult ditches, private process. sites where permission is Wetland attained, or public restoration road right‐of‐ways. involves more The guidance than replacing established for the what has been collection of prairie disturbed or plants within a 50‐ altered. It may mile radius of the involve the Pickerel Weed (Pontedaria cordata) is an excellent choice for establish- project site is an restoration of ment in the deeper sections of restored wetland basins. equally good ecological guideline for functions and values (Mitsch and Gosselink wetland plants (Tallgrass Restoration 2000). In the case of Sheldon Lake State Park, Handbook 1997). This close proximity to the the original wetland basins, which had been project site ensures the collected plant material plowed and illed for agricultural purposes, is adapted to local microclimates.
    [Show full text]
  • Missouriensis Volume 25, 2004 (2005)
    Missouriensis Volume 25, 2004 (2005) In this issue: The Flora and Natural History of Woods Prairie, a Nature Reserve in Southwestern Missouri Andrew L. Thomas, Sam Gibson, and Nels J. Holmberg ....... 1 Plant Changes for the 2005 “Missouri Species and Communities of Conservation Concern Checklist” Timothy E. Smith .......................................................................... 20 How Faster to Master the Aster Disaster: A Primer on the Changing Nomenclature of Missouri Asters George Yatskievych ...................................................................... 26 Journal of the Missouri Native Plant Society Missouriensis, Volume 25 2004 [2005] 1 THE FLORA AND NATURAL HISTORY OF WOODS PRAIRIE, A NATURE RESERVE IN SOUTHWESTERN MISSOURI Andrew L. Thomas Southwest Research Center, University of Missouri–Columbia 14548 Highway H, Mt. Vernon, MO 65712 Sam Gibson Department of Biology (retired) Missouri Southern State University, Joplin, MO 64801 Nels J. Holmberg 530 W Whiskey Creek Rd, Washington, MO 63090 Woods Prairie is a scenic and rare refuge of unplowed native tallgrass prairie on the northwestern fringe of the Ozarks bioregion in southwestern Missouri. This isolated 40-acre prairie remnant near the town of Mt. Vernon was part of a 1,700-acre homestead settled in 1836 by John Blackburn Woods of Tennessee. For four generations, the Woods family carefully managed the prairie while protecting it from the plow as all other nearby prairies were destroyed. By 1999, less than 40 acres of the original vast prairie remained, and John’s great granddaughter, Mary Freda (Woods) O’Connell, sold it to the Ozark Regional Land Trust (ORLT, Carthage, MO), to be protected in perpetuity as a nature reserve for public study and enjoyment. ORLT, a non-profit conservation organization founded in 1984 to protect the unique natural features of the Ozarks, completed the purchase on May 27, 1999 through a unique, complex scheme detailed in Thomas and Galbraith (2003).
    [Show full text]