SBIR A02.07: VTOL to Transonic Aircraft
Total Page:16
File Type:pdf, Size:1020Kb
Acuity Technologies Proprietary SBIR A02.07: VTOL to Transonic Aircraft Final Technical Report July 24, 2006 Acuity Technologies Inc. Principal Investigator: Robert Clark 3475 Edison Way Unit P Menlo Park, CA 94025 650-369-6783 Issued by NASA Dryden Flight Research Center PO Box 273, Mailstop 1422 Edwards, California 93523-0273 Attn: Michelle L. Vial, (661) 276-3513 Contract No. NND06AA26C Effective Date: 1/26/2006 Technical Liaison Richard Maine 661-276-3316 [email protected] SBIR Rights Notice (Mar 1994) These SBIR data are furnished with SBIR rights under Contract No. NND06AA26C. For a period of 4 years after acceptance of all items to be delivered under this contract, the Government agrees to use these data for Government purposes only, and they shall not be disclosed outside the Government (including disclosure for procurement purposes) during such period without permission of the Contractor, except that, subject to the foregoing use and disclosure prohibitions, such data may be disclosed for use by support Contractors. After the aforesaid 4-year period the Government has a royalty-free license to use, and to authorize others to use on its behalf, these data for Government purposes, but is relieved of all disclosure prohibitions and assumes no liability for unauthorized use of these data by third parties. This Notice shall be affixed to any reproductions of these data, in whole or in part.” The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either express or implied, of NASA or the U.S. Government. Distribution limited to U.S. Government agencies only. Destroy by any means which prevents reproduction of this document. 1 Acuity Technologies Proprietary Acuity Technologies Proprietary Acuity Technologies Inc. Contract No. NND06AA26C VTOL to Transonic Aircraft Project Summary The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and aerodynamically complex. To our knowledge no cyclogyro has ever flown. We have demonstrated through simulation and rotor testing that with appropriately designed cyclogyro rotors and propulsion algorithms, aircraft can transition smoothly from low-speed and vertical flight to near-transonic forward flight. The cyclogyro is one of the most heavily studied subsonic aircraft concepts that has never flown. It is based on the principle that airfoils arranged with their spans parallel to an axis of powered rotation normal to aircraft direction of flight can be controlled in pitch so as to provide lift and/or thrust in any direction within a vertical plane, as shown above. This is not a new concept, and its potential for VTOL to high speed flight has long been recognized. In our Phase I work we have demonstrated though CFD simulations and through construction and tests of a working cyclogyro rotor that cycloidal drive can be an effective, practical aircraft lift and propulsion technique. We have obtained lift to power ratios as good as those for modern helicopters at matching area loading. The results of our work clearly show the potential and practicality of cycloidal propulsion. Continuation of this work through Phase 2 will result in construction of a flying cyclogyro controlled by a ground-based pilot, and initiation of manned prototype design. Cyclogyro applications include convenient commercial transportation, rapid disaster/rescue response, and flexible multi-mission defense vehicles with higher speed, lower noise, and better safety than today’s rotorcraft. 2 Acuity Technologies Proprietary Acuity Technologies Proprietary 1 Table of Contents 1 Table of Contents................................................................................................................................................3 2 Identification and Significance of the Innovation ...............................................................................................5 2.1 Program Tasks.............................................................................................................................5 Cyclogyro History...................................................................................................................................6 Rotor Flight Modes .................................................................................................................................7 The Challenge and Opportunity ..............................................................................................................8 3 Phase I Technical Objectives ..............................................................................................................................8 4 Phase I Work Plan...............................................................................................................................................9 4.1 Task 1. Rotor Simulation.............................................................................................................9 4.1.1 Work to Date .........................................................................................................................9 Simulation Conditions.....................................................................................................................9 Simulation Results.........................................................................................................................10 4.2 Task 2. Blade Weight, Loads and Bending..............................................................................17 4.3 Task 3: Phase 1 Rotor Blade Construction................................................................................19 4.4 Task 4: Rotor Design and Fabrication.......................................................................................20 4.4.1 Blade Control Concepts.......................................................................................................20 4.4.2 Task 5: Static Testing ..........................................................................................................21 4.5 Phase I Schedule........................................................................................................................21 5 Potential Applications .......................................................................................................................................21 5.1 Potential NASA Commercial Applications...............................................................................21 5.2 Potential Non-NASA NASA Commercial Applications...........................................................21 6 Contacts.............................................................................................................................................................21 6.1 Key Contractor Participants ......................................................................................................21 6.2 Key NASA Participants.............................................................................................................22 6.3 NASA and Non-NASA Advisors..............................................................................................22 7 Technical Activities ..........................................................................................................................................22 7.1 Cumulative Technical Activities...............................................................................................22 7.1.1 Phase I Technical Accomplishments...................................................................................22 7.1.2 Design Changes...................................................................................................................23 7.1.3 Blade Airfoil Design............................................................................................................23 7.1.4 CFD Work ...........................................................................................................................24 7.1.4.1 An Overview of Overflow 2 .......................................................................................25 7.1.4.1.1 Structured Grids, Boundary Conditions and X-ray cutting ....................................25 7.1.4.1.2 Moving Grids in Overflow .....................................................................................26 7.1.4.2 CFD Results................................................................................................................26 7.1.4.2.1 CFD Setup and Parameters.....................................................................................26 7.1.4.2.2 Graphical Summary................................................................................................27 7.1.4.3 FOMOCO Results.......................................................................................................32 7.1.4.3.1 Force Superposition and Blade Profile Optimization.............................................33 7.1.4.3.2 Forward Flight........................................................................................................38 7.1.5 Rotor and Test Stand Model................................................................................................41 7.1.5.1 Rotor Supports and Lift/Thrust Load Cells ................................................................43 7.1.6 Test Instrumentation and Parameter Measurement .............................................................45 7.1.7