Isolation and Sequence-Based Characterization of a Koala Symbiont: Lonepinella Koalarum
Isolation and sequence-based characterization of a koala symbiont: Lonepinella koalarum Katherine E. Dahlhausen1, Guillaume Jospin1, David A. Coil1, Jonathan A. Eisen1,2,3 and Laetitia G.E. Wilkins1 1 Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA 2 Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA 3 Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA ABSTRACT Koalas (Phascolarctos cinereus) are highly specialized herbivorous marsupials that feed almost exclusively on Eucalyptus leaves, which are known to contain varying concentrations of many different toxic chemical compounds. The literature suggests that Lonepinella koalarum, a bacterium in the Pasteurellaceae family, can break down some of these toxic chemical compounds. Furthermore, in a previous study, we identified L. koalarum as the most predictive taxon of koala survival during antibiotic treatment. Therefore, we believe that this bacterium may be important for koala health. Here, we isolated a strain of L. koalarum from a healthy koala female and sequenced its genome using a combination of short-read and long-read sequencing. We placed the genome assembly into a phylogenetic tree based on 120 genome markers using the Genome Taxonomy Database (GTDB), which currently does not include any L. koalarum assemblies. Our genome assembly fell in the middle of a group of Haemophilus, Pasteurella and Basfia species. According to average nucleotide identity and a 16S rRNA gene tree, the closest relative of our isolate is L. koalarum strain Y17189. Then, we annotated the gene sequences and compared them to 55 closely related, publicly available genomes.
[Show full text]