Uncovering New Players and New Roles in Microbial Anoxic Carbon Transformations

Total Page:16

File Type:pdf, Size:1020Kb

Uncovering New Players and New Roles in Microbial Anoxic Carbon Transformations Uncovering New Players and New Roles in Microbial Anoxic Carbon Transformations Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Lindsey Marie Solden Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee: Professor Kelly Wrighton, Adviser Professor Jeffrey Firkins Professor Venkat Gopalan Professor Daniel Wozniak Copyrighted by Lindsey Marie Solden 2018 Abstract Organic carbon in anoxic ecosystems flows in a cascade from complex plant material to more labile sugars, and ultimately to short-chain fatty acids (SCFA) and gasses like carbon dioxide and methane. Microbial communities, groups of microorganisms that interact with one another, facilitate this process. Microbial anaerobic carbon degradation is exemplified in ruminants. These animals harness energy from plant material using the power of interacting microorganisms, which break down plant carbon into SCFA under largely anoxic conditions in the rumen. Because microbial SCFA can provide up to 80% of the animal’s energy, understanding microbial carbon degradation mechanisms in the rumen is important for many agricultural industries including the production of meat, milk, leather, and wool. Beyond domesticated ruminants, there are over 75 million wild ruminants that are fundamental members in ecosystems from Alaska to Australia. Furthermore, the microbial enzymes that break down plant material in the rumen have industrial applications for modifying enzymatic cocktails in biofuel production. The research presented here uses cultivation-independent and laboratory approaches to assign carbon degradation capabilities to specific members of the microbial community in the moose rumen. Moose, animals that naturally forage on woody biomass, were selected to provide access to natural rumen microbial communities that are especially adapted to a high lignocellulose diet. We sampled rumen fluid from moose in the spring, summer, and winter, along a seasonal gradient in lignocellulose. Rumen fluid was sampled via the rumen cannula, offering access into the active microbial interactions ii mediating complex carbon degradation. From these rumen fluid samples, we performed high-throughput shotgun metagenomics and metaproteomics, coupled to multiple methods for metabolite quantification (1H NMR, sequential fiber analyses, and carbohydrate microarray polymer profiling (CoMPP)). We binned hundreds of genomes, resulting in 77 unique (~>80% complete) genomes. A majority of these genomes (71%) belong to novel genera, families, and orders. Five of these genomes belong to an uncultivated, Bacteroidetes family, the BS11, which represent the first ever genomic representatives from this family. A newly resolved genus in this family was the most enriched member on a high lignocellulose diet and was found to ferment hemicellulose sugars. To uncover interactions between these microorganisms and determine their functional role, we mapped metaproteomics data to the unique genome data. This revealed most of the carbon degradation enzymes were encoded within polysaccharide utilization loci from uncultivated Bacteroidetes genomes. We then characterized the carbon metabolite chemistry focusing primarily on carbohydrate polymers and sugars of using CoMPP and 1H NMR. Linking our proteomes to metabolomics, we discovered that proteins from only seven Bacteroidetes genomes were processing all plant polymers detected, suggesting that a few generalist microorganisms are responsible for most of the carbon degradation in the rumen. One of these highly active Bacteroidetes genomes contained protospacer linkages to viral genomes, indicating that immunity against viral predation that may be required for some organisms to sustain carbon degradation in the rumen. iii Finally, winter rumen fluid with elevated condensed tannins was used to enrich for tannin-degrading microorganisms. From these reactors, we isolated a Streptococcus sp. that can degrade Sorghum condensed tannins (CT) in the presence of glucose. Label- free proteomics was performed to evaluate the dynamic proteome when the isolate was grown in the presence or absence of CT. CT lead to the enrichment of many proteins annotated as tannase enzyme, transcriptional regulators for phenolic metabolism, putative enzymes involved in phenolic metabolism, stress response proteins, and proteins originating from prophage. Cumulatively, this dissertation research examines the rumen on multiple scales, to identify microbial community and viral interactions, microorganism physiology, and the putative enzymes that facilitate how carbon flows through the rumen. iv Acknowledgments This body of work would not have been possible without the help, guidance, and support from so many people. First and foremost, I would like to thank my PhD advisor Dr. Kelly Wrighton. It has been an honor to be one of her first graduate students. Kelly has provided every possible opportunity to learn, grow, and challenge myself. She has taught me both consciously and unconsciously how to navigate being a female academic scientist. Her passion and intense enthusiasm for her research is both motivational and inspiring and I hope to emulate her in the future. I appreciate all of her time spent teaching me how to design experiments, manage scientific collaborations, and communicate findings in talks and writing. I am indebted for her patience, generosity, mentorship, and most importantly friendship. I would not be the scientist or person I am today without her. I truly cannot thank her enough. I also would like to thank my graduate committee, Dr. Jeffrey Firkins, Dr. Daniel Wozniak and Dr. Venkat Gopalan, for making themselves available for helpful discussions, critical comments, and for sharing the most precious of all resources, time. I would also like to thank Dr. Barbara Wolfe for providing support, career development opportunities, and mentorship. Finally, I am especially indebted to my family, friends, and lab members who have provided me with kind words, friendship, and love. All of v you are essential in my amazing support system, and I wouldn’t be where I am today without you. I am incredibly lucky. vi Vita 2009………………………………………..Mentor High School 2013………………………………………..B.S. Microbiology, The Ohio State University 2013 to present …………………… ............ Graduate Teaching/Research Associate, Department of Microbiology, The Ohio State University Publications Naas AE, Solden LM, Norbeck AD, Brewer H, Hagem LH, Heggenes IM, McHardy AC, Mackie RI, Pasa-Tolic L, Arntzen MO, Eijsink VGH, Koropatkin NM, Hess M, Wrighton KC, Pope PB. (2018) “Candidatus Paraporphyromonas polyenzymogenes” encodes multi-modular cellulases linked to the type IX secretion system. Microbiome 6 (44). Solden LM, Wrighton KC. (2017) Finding life’s missing pieces. Nature Microbiology 2, 1458-1459. Angle JA, Morin T, Solden LM, Narrowe A, Smith G, Borton MA, Rey-Sanchez C, Daly RA, Mirfenderesgi G, Hoyt DW, Riley W, Miller CS, Bohrer G, Wrighton KC. (2017) Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature Comm 8: 1567. Solden LM, Hoyt DE, Collins WB, Plank JE, Daly RA, Hildebrand E, Beavers TJ, Wolfe R, Nicora CD, Purvine SO, Carstensen M, Lipton MA, Spalinger DE, Firkins JL, Wolfe BA, Wrighton KC. (2017) New roles in hemicellulose degradation for the uncultivated Bacteroidetes family BS11. The ISME J 11(3): 691. Borton MA, Sabag-Daigle A, Wu J, Solden LM, O’Banion BS, Daly RA, Wolfe R, Gonzalez JF, Wysocki VH, Ahmer BMM, Wrighton KC. (2017) Chemical and pathogen induced inflammation disrupt the murine intestinal microbiome. Microbiome 5.47. vii Faulkner MJ, Wenner BA, Solden LM, Weiss WP (2017). Source of supplemental dietary copper, zinc, and manganese affects fecal microbial relative abundance in lactating dairy cows. J Dairy Science 100 (2): 1037-1044. Solden LM, Lloyd K, Wrighton KC. (2016). The Bright Side of Microbial Dark Matter: Lessons learned from the uncultivated majority. Current Opinions in Microbiology, 31: 217-226. Fields of Study Major Field: Microbiology viii Table of Contents Abstract ............................................................................................................................... ii Acknowledgments ............................................................................................................... v Vita .................................................................................................................................... vii List of Tables ................................................................................................................... xiii List of Figures .................................................................................................................. xiv Chapter 1: Introduction ....................................................................................................... 1 1.1 Rumen microbial membership and community genomics ................................................ 1 1.2 Rumen viruses are currently undersampled ...................................................................... 6 1.3 The first ecosystems perspective on the rumen microbiome ............................................ 8 Chapter 2: New roles in rumen hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11 ................................................................................................. 9 2.1 Introduction ........................................................................................................................
Recommended publications
  • Mobile Genetic Elements in Streptococci
    Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G.
    [Show full text]
  • Validation of the Asaim Framework and Its Workflows on HMP Mock Community Samples
    Validation of the ASaiM framework and its workflows on HMP mock community samples The ASaiM framework and its workflows have been tested and validated on two mock metagenomic data of an artificial community (with 22 known microbial strains). The datasets are available on EBI metagenomics database (project accession number: SRP004311). First we checked that the targeted abundances (based on number of PCR product) from both mock datasets were similar to the effective abundance (by mapping reads on reference genomes). Second, taxonomic and functional results produced by the ASaiM framework have been extensively analyzed and compared to expectations and to results obtained with the EBI metagenomics pipeline (S. Hunter et al. 2014). For these datasets, the ASaiM framework produces accurate and precise taxonomic assignations, different functional results (gene families, pathways, GO slim terms) and results combining taxonomic and functional information. Despite almost 1.4 million of raw metagenomic sequences, these analyses were executed in less than 6h on a commodity computer. Hence, the ASaiM framework and its workflows are proven to be relevant for the analysis of microbiota datasets. 1Data On EBI metagenomics database, two mock community samples for Human Microbiome Project (HMP) are available. Both samples contain a genomic mixture of 22 known microbial strains. Relative abundance of each strain has been targeted using the number of PCR product of their respective 16S sequences (Table 1). In first sample (SRR072232), the targeted 16S copies of the strains vary by up to four orders of magnitude between the strains (Table 1), whereas in second sample (SRR072233) the same 16S copy number is targeted for each strain (Table 1).
    [Show full text]
  • Identification of Functional Lsrb-Like Autoinducer-2 Receptors
    Swarthmore College Works Chemistry & Biochemistry Faculty Works Chemistry & Biochemistry 11-15-2009 Identification Of unctionalF LsrB-Like Autoinducer-2 Receptors C. S. Pereira Anna Katherine De Regt , '09 P. H. Brito Stephen T. Miller Swarthmore College, [email protected] K. B. Xavier Follow this and additional works at: https://works.swarthmore.edu/fac-chemistry Part of the Biochemistry Commons Let us know how access to these works benefits ouy Recommended Citation C. S. Pereira; Anna Katherine De Regt , '09; P. H. Brito; Stephen T. Miller; and K. B. Xavier. (2009). "Identification Of unctionalF LsrB-Like Autoinducer-2 Receptors". Journal Of Bacteriology. Volume 191, Issue 22. 6975-6987. DOI: 10.1128/JB.00976-09 https://works.swarthmore.edu/fac-chemistry/52 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Chemistry & Biochemistry Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. Identification of Functional LsrB-Like Autoinducer-2 Receptors Catarina S. Pereira, Anna K. de Regt, Patrícia H. Brito, Stephen T. Miller and Karina B. Xavier J. Bacteriol. 2009, 191(22):6975. DOI: 10.1128/JB.00976-09. Published Ahead of Print 11 September 2009. Downloaded from Updated information and services can be found at: http://jb.asm.org/content/191/22/6975 http://jb.asm.org/ These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES This article cites 65 articles, 29 of which can be accessed free on September 10, 2014 by SWARTHMORE COLLEGE at: http://jb.asm.org/content/191/22/6975#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ JOURNAL OF BACTERIOLOGY, Nov.
    [Show full text]
  • Appendix III: OTU's Found to Be Differentially Abundant Between CD and Control Patients Via Metagenomeseq Analysis
    Appendix III: OTU's found to be differentially abundant between CD and control patients via metagenomeSeq analysis OTU Log2 (FC CD / FDR Adjusted Phylum Class Order Family Genus Species Number Control) p value 518372 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium prausnitzii 2.16 5.69E-08 194497 Firmicutes Clostridia Clostridiales Ruminococcaceae NA NA 2.15 8.93E-06 175761 Firmicutes Clostridia Clostridiales Ruminococcaceae NA NA 5.74 1.99E-05 193709 Firmicutes Clostridia Clostridiales Ruminococcaceae NA NA 2.40 2.14E-05 4464079 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides NA 7.79 0.000123188 20421 Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus NA 1.19 0.00013719 3044876 Firmicutes Clostridia Clostridiales Lachnospiraceae [Ruminococcus] gnavus -4.32 0.000194983 184000 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium prausnitzii 2.81 0.000306032 4392484 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides NA 5.53 0.000339948 528715 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium prausnitzii 2.17 0.000722263 186707 Firmicutes Clostridia Clostridiales NA NA NA 2.28 0.001028539 193101 Firmicutes Clostridia Clostridiales Ruminococcaceae NA NA 1.90 0.001230738 339685 Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus NA 3.52 0.001382447 101237 Firmicutes Clostridia Clostridiales NA NA NA 2.64 0.001415109 347690 Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira NA 3.18 0.00152075 2110315 Firmicutes Clostridia
    [Show full text]
  • Comparison of the Fecal Microbiota of Horses with Intestinal Disease and Their Healthy Counterparts
    veterinary sciences Article Comparison of the Fecal Microbiota of Horses with Intestinal Disease and Their Healthy Counterparts Taemook Park 1,2, Heetae Cheong 3, Jungho Yoon 1, Ahram Kim 1, Youngmin Yun 2,* and Tatsuya Unno 4,5,* 1 Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; [email protected] (T.P.); [email protected] (J.Y.); [email protected] (A.K.) 2 College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea 3 College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea; [email protected] 4 Faculty of Biotechnology, School of Life Sciences, SARI, Jeju 63243, Korea 5 Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea * Correspondence: [email protected] (Y.Y.); [email protected] (T.U.); Tel.: +82-64-754-3376 (Y.Y.); +82-64-754-3354 (T.U.) Abstract: (1) Background: The intestinal microbiota plays an essential role in maintaining the host’s health. Dysbiosis of the equine hindgut microbiota can alter the fermentation patterns and cause metabolic disorders. (2) Methods: This study compared the fecal microbiota composition of horses with intestinal disease and their healthy counterparts living in Korea using 16S rRNA sequencing from fecal samples. A total of 52 fecal samples were collected and divided into three groups: horses with large intestinal disease (n = 20), horses with small intestinal disease (n = 8), and healthy horses (n = 24). (3) Results: Horses with intestinal diseases had fewer species and a less diverse bacterial population than healthy horses.
    [Show full text]
  • Streptococcaceae
    STREPTOCOCCACEAE Instructor Dr. Maytham Ihsan Ph.D Vet Microbiology 1 STREPTOCOCCACEAE Genus: Streptococcus and Enterocccus Streptococcus and Enterocccus genera, are Gram‐positive ovoid (lanceolate) cocci, approximately 1 μm in diameter, that tend to occur in singles, pairs & chains (rosary‐like) may be long or short. Streptococcus species occur as commensals on skin, upper & lower respiratory tract and mucous membranes; some may act as opportunistic pathogens causing pyogenic infections. Enteroccci spp. are enteric opportunistic & can be found in the intestinal tract of many animlas & humans. Growth & Culture Characteristics • Most streptococci are facultative anaerobes and catalase‐negative. • They are non‐motile and oxidase‐negative and do not form spores & susceptible to desiccation. • They are fastidious bacteria and require the addition of blood or serum to culture media. They grow at temperature ranging from 37°C to 42°C. Group D (Enterocooci), are considered thermophilic & can gorw at 45°C or even higher. • Colonies are small about 1 mm in size, smooth, translucent & may be greyish. • Streptococcus pneumoniae (pneumococcus or diplococcus) occurs as slightly pear‐shaped cocci in pairs. Pathogenic strains have thick capsules and produce mucoid colonies or flat colonies with smooth borders & a central concavity “draughtsman colonies” aer 48‐72 hrs on blood agar. These bacteria cause pneumonia in humans and rats. 2 • Some of streptococci grow on MacConkey like: Enterococcus faecalis, Strept. bovis, Sterpt. uberis & strept. lactis producing very tiny colonies like pin‐point appearance aer 48 hrs of incubaon at 37°C. • Streptococci genera grow slowly in broth media, sometimes forming faint opacity; whereas others with a fluffy deposit adherent to the side of the tube.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
    antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,
    [Show full text]
  • Bacterial Diversity and Functional Analysis of Severe Early Childhood
    www.nature.com/scientificreports OPEN Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India Balakrishnan Kalpana1,3, Puniethaa Prabhu3, Ashaq Hussain Bhat3, Arunsaikiran Senthilkumar3, Raj Pranap Arun1, Sharath Asokan4, Sachin S. Gunthe2 & Rama S. Verma1,5* Dental caries is the most prevalent oral disease afecting nearly 70% of children in India and elsewhere. Micro-ecological niche based acidifcation due to dysbiosis in oral microbiome are crucial for caries onset and progression. Here we report the tooth bacteriome diversity compared in Indian children with caries free (CF), severe early childhood caries (SC) and recurrent caries (RC). High quality V3–V4 amplicon sequencing revealed that SC exhibited high bacterial diversity with unique combination and interrelationship. Gracillibacteria_GN02 and TM7 were unique in CF and SC respectively, while Bacteroidetes, Fusobacteria were signifcantly high in RC. Interestingly, we found Streptococcus oralis subsp. tigurinus clade 071 in all groups with signifcant abundance in SC and RC. Positive correlation between low and high abundant bacteria as well as with TCS, PTS and ABC transporters were seen from co-occurrence network analysis. This could lead to persistence of SC niche resulting in RC. Comparative in vitro assessment of bioflm formation showed that the standard culture of S. oralis and its phylogenetically similar clinical isolates showed profound bioflm formation and augmented the growth and enhanced bioflm formation in S. mutans in both dual and multispecies cultures. Interaction among more than 700 species of microbiota under diferent micro-ecological niches of the human oral cavity1,2 acts as a primary defense against various pathogens. Tis has been observed to play a signifcant role in child’s oral and general health.
    [Show full text]
  • Wedding Higher Taxonomic Ranks with Metabolic Signatures Coded in Prokaryotic Genomes
    Wedding higher taxonomic ranks with metabolic signatures coded in prokaryotic genomes Gregorio Iraola*, Hugo Naya* Corresponding authors: E-mail: [email protected], [email protected] This PDF file includes: Supplementary Table 1 Supplementary Figures 1 to 4 Supplementary Methods SUPPLEMENTARY TABLES Supplementary Tab. 1 Supplementary Tab. 1. Full prediction for the set of 108 external genomes used as test. genome domain phylum class order family genus prediction alphaproteobacterium_LFTY0 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Unknown candidatus_nasuia_deltocephalinicola_PUNC_CP013211 Bacteria Proteobacteria Gammaproteobacteria Unknown Unknown Unknown candidatus_sulcia_muelleri_PUNC_CP013212 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales NA Candidatus Sulcia deinococcus_grandis_ATCC43672_BCMS0 Bacteria Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae Deinococcus devosia_sp_H5989_CP011300 Bacteria Proteobacteria Unknown Unknown Unknown Unknown micromonospora_RV43_LEKG0 Bacteria Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae Micromonospora nitrosomonas_communis_Nm2_CP011451 Bacteria Proteobacteria Betaproteobacteria Nitrosomonadales Nitrosomonadaceae Unknown nocardia_seriolae_U1_BBYQ0 Bacteria Actinobacteria Actinobacteria Corynebacteriales Nocardiaceae Nocardia nocardiopsis_RV163_LEKI01 Bacteria Actinobacteria Actinobacteria Streptosporangiales Nocardiopsaceae Nocardiopsis oscillatoriales_cyanobacterium_MTP1_LNAA0 Bacteria Cyanobacteria NA Oscillatoriales
    [Show full text]
  • Marine Sediments Illuminate Chlamydiae Diversity and Evolution
    Supplementary Information for: Marine sediments illuminate Chlamydiae diversity and evolution Jennah E. Dharamshi1, Daniel Tamarit1†, Laura Eme1†, Courtney Stairs1, Joran Martijn1, Felix Homa1, Steffen L. Jørgensen2, Anja Spang1,3, Thijs J. G. Ettema1,4* 1 Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden 2 Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway 3 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, The Netherlands 4 Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, The Netherlands. † These authors contributed equally * Correspondence to: Thijs J. G. Ettema, Email: [email protected] Supplementary Information Supplementary Discussions ............................................................................................................................ 3 1. Evolutionary relationships within the Chlamydiae phylum ............................................................................. 3 2. Insights into the evolution of pathogenicity in Chlamydiaceae ...................................................................... 8 3. Secretion systems and flagella in Chlamydiae .............................................................................................. 13 4. Phylogenetic diversity of chlamydial nucleotide transporters. ....................................................................
    [Show full text]
  • How Do Pesticides Influence Gut Microbiota? a Review
    International Journal of Environmental Research and Public Health Review Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review Federica Giambò 1,†, Michele Teodoro 1,† , Chiara Costa 2,* and Concettina Fenga 1 1 Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; [email protected] (F.G.); [email protected] (M.T.); [email protected] (C.F.) 2 Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy * Correspondence: [email protected]; Tel.: +39-090-2212052 † Equally contributed. Abstract: In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function. Keywords: gut microbiota; microbial community; pesticides; occupational exposure; dysbiosis Citation: Giambò, F.; Teodoro, M.; Costa, C.; Fenga, C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. 1. Introduction Int. J. Environ. Res. Public Health 2021, 18, 5510. https://doi.org/10.3390/ In recent years, the demand for food has risen significantly in relation to the world ijerph18115510 population’s increase.
    [Show full text]