Stable Isotopes Evidence of Recycled Subduction Fluids in the Hydrothermal/Volcanic Activity Across Nicaragua and Costa Rica

Total Page:16

File Type:pdf, Size:1020Kb

Stable Isotopes Evidence of Recycled Subduction Fluids in the Hydrothermal/Volcanic Activity Across Nicaragua and Costa Rica Journal of Volcanology and Geothermal Research 345 (2017) 172–183 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Stable isotopes evidence of recycled subduction fluids in the hydrothermal/volcanic activity across Nicaragua and Costa Rica Ramírez-Leiva A. a, Sánchez-Murillo R. a,⁎, Martínez-Cruz M. b, Calderón H. c, Esquivel-Hernández G. a, Delgado V. d,BirkelC.e,f,GazelE.g, Alvarado G.E. h,SoulsbyC.f a Stable Isotope Research Group, Chemistry School, Universidad Nacional, P.O. Box: 86-3000, Heredia, Costa Rica b Observatorio Sismológico y Vulcanológico de Costa Rica, Universidad Nacional, P.O. Box: 2346-3000, Heredia, Costa Rica c Institute of Geology and Geophysics, IGG-CIGEO, UNAN-Managua, P.O. Box: 4598, Nicaragua d Centro para la Investigación en Recursos Acuáticos de Nicaragua, CIRA, UNAN-Managua, P.O. Box: 4598, Nicaragua e Department of Geography, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica f Northern Rivers Institute, University of Aberdeen, P.O. Box: AB24 3UF, Aberdeen, Scotland g Earth and Atmospheric Science Department, Cornell University, P.O. Box: 14853-1504, Ithaca, NY, USA h Instituto Costarricense de Electricidad, P.O. Box: 10032-1000, San José, Costa Rica article info abstract Article history: The Central America volcanic front provides a unique opportunity to study hydrothermal inputs and their interac- Received 10 July 2017 tion and mixing with modern meteoric waters. The objectives of this study were to: a) characterize the isotopic Received in revised form 27 August 2017 composition (δ18O, δ2H, d-excess, and lc-excess) of hydrothermal/volcanic systems, b) analyze the influence of ki- Accepted 28 August 2017 netic fractionation and meteoric water inputs in the isotopic composition of hydrothermal waters, and c) estimate Available online 1 September 2017 the ‘andesitic water’ contribution (recycled subduction fluids) within the volcanic front of Nicaragua and Costa Rica. Hydrothermal evaporation lines are described as: δ2H=4.7·δ18O − 13.0 (Costa Rica) and δ2H=2.7·δ18O Keywords: − fi b Central America volcanic front 31.6 (Nicaragua). These regressions are signi cantly (p 0.001) deviated from their respective meteoric 2 18 2 18 Hydrothermal systems water lines: δ H = 7.6·δ O + 7.4 (Costa Rica) and δ H = 7.4·δ O + 5.2 (Nicaragua). The greater rainfall inputs Isotopic fractionation in Costa Rica with respect to Nicaragua, resulted in the attenuation of the evaporative effect as observed in the Recycled subduction fluids strong bimodal distribution of the hydrothermal waters, which can be divided in fluids: a) isotopically-close to me- Groundwater mixing teoric conditions and b) isotopically-altered by the interaction with recycled subduction fluids and kinetic fraction- ation. The latter is clearly depicted in the significantly (p b 0.001) low d-excess and lc-excess median values between Costa Rica (+5.10‰, −5.25‰)andNicaragua(−2.42‰, −10.65‰), respectively. Poor correlations be- tween δ18O/δ2H and the elevation gradient emphasize that the contribution of recycled subduction fluids and sub- sequent surface kinetic fractionation are the main drivers of the isotopic departure from the orographic distillation trend captured in the rainfall isoscapes. End-member mixing calculations resulted in a significant difference (p b 0.001) between the mean ‘andesitic water’ contribution to the hydrothermal systems of 15.3 ± 10.8 (%, ±1σ) (Nicaragua) and 19.7 ± 10.3 (%, ±1σ)(CostaRica).Thespectrumof‘andesitic water’ contribution largely reflects the degree of mixing with isotopically ‘pre-shifted’ recycled subduction fluids. The latter is supported by previous strong evidence of mantle-derived N2/He contributions across the volcanic front of Nicaragua and Costa Rica. © 2017 Elsevier B.V. All rights reserved. 1. Introduction Caribbean, Cocos, Nazca, and South American (Sak et al., 2009). Between the Cocos and Caribbean plates, convergence rate increases from The Central America subduction zone is a complex deformation re- 60 mm/year (NW) to −90 mm/year (SE) (DeMets, 2001; Peacock et gion characterized by a rapid (70–90 mm/year) convergence rate of al., 2005; Hoernle et al., 2008; Protti et al., 2012). Through this margin, young (15–25 Ma) oceanic lithosphere (DeMets, 2001; Peacock et al., deep earthquakes record the rupture at the interface of the Cocos-Carib- 2005; Hoernle et al., 2008), whereby the convergence rate and age of bean plates, defining a zone that marks the subducting Cocos plate up to the incoming lithosphere vary slightly along-strike (Protti et al., 1995; 250 km beneath Nicaragua and about 80 km beneath the Costa Rican DeMets, 2001), and mainly responds to the interaction of four plates: Volcanic front (Protti et al., 1995; Husen et al., 2003; Hoernle et al., 2008; Arroyo et al., 2009). Currently, the Costa Rica-Nicaragua subduction zone is a non-accret- ⁎ Corresponding author at: Stable Isotope Research Group, Chemistry School, Universidad Nacional, Campus Omar Dengo, P.O. Box: 86-3000, Heredia, Costa Rica. ing margin, which is described by subduction erosion (von Huene and E-mail address: [email protected] (R. Sánchez-Murillo). Scholl, 1991; Ranero and von Huene, 2000; von Huene et al., 2000). http://dx.doi.org/10.1016/j.jvolgeores.2017.08.013 0377-0273/© 2017 Elsevier B.V. All rights reserved. A. Ramírez-Leiva et al. / Journal of Volcanology and Geothermal Research 345 (2017) 172–183 173 The modern arc develops on a base of volcanic strata, which is related to (Alvarado, 2009), extending from NW with Orosí volcano (OR) to SE arc magmatism in Nicaragua and the Caribbean Oceanic Plateau in Costa with Turrialba volcano (TU) (Fig. 1). The volcanic front of Costa Rica is Rica (Denyer and Gazel, 2009 and references therein) The maximum el- divided into two main cordilleras (i.e. mountain ranges): Guanacaste evation of volcanoes along Central America decreases from Guatemala Volcanic Cordillera (GVC), which is a NW-trending chain of volcanoes (Tajamulco volcano: 4220 m a.s.l.) to Nicaragua (San Cristóbal volcano: (Orosí, OR; Rincón de la Vieja, RV; Miravalles, MV; and Tenorio, TE; 1745 m a.s.l.) with a decrease in crustal thickness (50 km to b35 km) Alvarado, 2009) and the Central Volcanic Cordillera (CVC) (Platanar, and variations in the basement geology from continental to oceanic PA; Poás, PO; Barva, BA; Irazú, IR; and Turrialba, TU). Between GVC dominated characteristics, whereas in Costa Rica, volcanoes elevation and CVC, two twin isolated volcanoes exist: Arenal (AR) and Chato increases (Irazú volcano: 3432 m a.s.l.) (45 km) near the amagmatic (not shown in Fig. 1, it is located next to AR) (Carr and Stoiber, 1990; gap, then decreases (25 km) beneath central Panamá (La Yeguada vol- Herrstrom et al., 1995; Husen et al., 2003; Alvarado, 2009)(Fig. 1). cano: 1297 m a.s.l.) (Leeman et al., 1994). The composition of the The GVC is considered a geothermal province with particular geo- lavas in Nicaragua are typical of arc volcanoes (Feigenson and Carr, chemical signatures (Giggenbach and Corrales, 1992; Molina and 1993; Saginor et al., 2011; Saginor et al., 2013; Gazel et al., 2015), but Martí, 2016), which are transitional between an isotopically depleted the volcanic front lavas in Costa Rica are well-known for their enriched mantle source and a high subduction signal characteristic of the Nicara- ocean island basalt - like (OIB-like) signature (e.g., Reagan and Gill, guan volcanoes as well as the enriched mantle source and limited sub- 1989; Feigenson et al., 2004; Gazel et al., 2009). Recent studies have duction signal characteristic of the central Costa Rican volcanoes (Carr provided convincing geochemical (i.e. rare trace elements) evidence and Stoiber, 1990; Herrstrom et al., 1995; Gazel et al., 2015). Multiple that this anomalous OIB-like signature in the volcanic front is derived hydrothermal systems have been identified at the slopes (mainly Pacific from the interaction of the mantle wedge with the Galapagos Hotspot facing slopes) of AR, RV, and MV volcanoes. In addition, PO, IR, and TU tracks subducting beneath Costa Rica and Panama (Hoernle et al., volcanoes have hydrothermal systems with fluid discharge temperature 2008; Gazel et al., 2011, 2015). close to 90 °C (Giggenbach and Corrales, 1992; Fehn et al., 2002; Marini This geochemical scenario in Nicaragua and Costa Rica offers the nec- et al., 2003; Zimmer et al., 2004; Moya et al., 2005; López et al., 2006; essary heat and decompression cooling for storing fluids (i.e., meteoric Phillips-Lander et al., 2014). water, sea water, magmatic water or mixed fluids including gas vents; Nicaragua (130,700 km2) is located between the Caribbean plate to Molina and Martí, 2016) within fractured volcanic aquifers, which ulti- the east, and the Cocos plate to the west (Arengi and Hodgson, 2000). mately constitute the main energy transport mechanism for surface hy- The active volcanic front (developed 350 ka ago; Carr et al., 2007; drothermal manifestations. This hydrothermal upwelling provides heat, Brasse et al., 2015) is located in western Nicaragua (within the Cordille- dissolved gases, and minerals to maintain a broad spectrum of ecosys- ra Los Marrabios), and it is represented by a great variety of volcanic for- tems across the Pacific and Caribbean slopes of Costa Rica and Nicaragua, mations (i.e., active volcanoes, explosion craters, and scoria cones), but also sustain a large set of hot-spring tourist activities and moderate along which
Recommended publications
  • Article in Press + Model
    ARTICLE IN PRESS + MODEL Journal of Volcanology and Geothermal Research xx (2006) xxx–xxx www.elsevier.com/locate/jvolgeores The 1968 andesitic lateral blast eruption at Arenal volcano, Costa Rica ⁎ Guillermo E. Alvarado a, , Gerardo J. Soto a, Hans-Ulrich Schmincke b, Louise L. Bolge c, Mari Sumita b a Observatorio Sismológico y Vulcanológico de Arenal y Miravalles (OSIVAM), Instituto Costarricense de Electricidad (ICE), Apdo. 10032-1000, Costa Rica b SFB 574, University of Kiel and Leibniz Institute for Marine Science (IFM-Geomar), Wischhofstrasse 1-3, 24148 Kiel, Germany c Boston University, Department Earth Sciences, 685 Commonwealth Ave., Boston, MA 02215, USA Received 6 June 2005; accepted 28 March 2006 Abstract The magmatic andesitic eruption of Arenal volcano on July 29–31, 1968, after centuries of dormancy, produced three new fissural craters (A, B and C) on its western flank and a multilayered pyroclastic deposit emplaced by complex transport mechanisms. The explosions were initially triggered by a volatile oversaturated (4–7 wt.% H2O) magma. Several lines of evidences suggest a small blast surge, where a wood-rich pyroclastic deposit was emplaced as a ground layer, followed by several units of coarse-grained (MdΦ between −0.65 and −5.40) tephra deposits (LU: lapilli units, DAU: double ash units). LU-1, -2, -3, DAU-1 and -2 consist of unconsolidated and well- to poorly sorted vesiculated bombs and lapilli of andesite, some blocks, ash and shredded wood. The individual units are possibly correlated with the major explosions of July 29. The thickness of the deposits decreases with the distance from the volcano from 5.6 m to a few centimeters.
    [Show full text]
  • Geohazard Supersites and Natural Laboratories Initiative
    Versión 1.0, 14 de octubre de 2015 www.earthobservations.org/gsnl.php Geohazard Supersites and Natural Laboratories Initiative A.1 Proposal Title: Volcano-tectonic Geohazard Interaction within the Nicaraguan Depression Volcanoes: Cosiguina, San Cristóbal, Telica, Cerro Negro, Momotombo, Península de Chiltepe, Masaya and Concepción A.2 Supersite Coordinator Email (Organization only) [email protected] Name: Iris Valeria Surname: Cruz Martínez Position: Director General of Geology and Geophysics Personal website: <In case a personal web page does not exist, please provide a CV below this table> Institución: Instituto Nicaragüense de Estudios Territoriales-INETER- Nicaragua Type of institution Government (Government, Education, other): The institution's web address: https://www.ineter.gob.ni/ Address: Front of Solidarity Hospital City: Managua Postal Code/Postal Code: 2110 Managua, Nicaragua Country: Nicaragua Province, Territory, State or Managua County: Phone number: Tel. +505-22492761 Fax +505-22491082 1 Versión 1.0, 14 de octubre de 2015 A.3 Core Supersite Team Email (Organization only) [email protected] Name: Federico Vladimir Surname: Gutiérrez Corea Position: Director of the Nicaraguan Institute of Territorial Studies-INETER- Nicaragua Personal website: http://www.vlado.es/ http://uni.academia.edu/FedericoVLADIMIRGutierrez/Curriculu mVitae Institution: Nicaraguan Institute of Territorial Studies-INETER-Nicaragua Type of institution Government (Government, Education, others): Institution's web address: https://www.ineter.gob.ni/
    [Show full text]
  • La Fortuna Travel Guide
    La Fortuna Travel Guide Coherent and soli Marv often soliloquising some harassment uncannily or cocoons rallentando. Dichroscopic Ernst coalescing his Clermont-Ferrand beeswax darkly. Nymphomania and relational Agamemnon typings her totalisers galls or creolizing bitter. This place with luxury on la fortuna If he do bargain to naked up this goal anyway, exercise obedience and respect the area. Yes, there is half for everyone here. Just freight in the Observatory and the roadside would find happy and provide directions. We grieve along swift river at about another hour, rule which white spot turtles lying out at the banks to collaborate some saw, a completely unexpected river otter playing in wine water, and with second sloth of river trip. It is whether simple to soon to La Fortuna, and there art a host different options. It team be difficult to decide, under a refrigerator, which hotel will better meet your requirements, which and why, at Costa Rica Rios, we bake here well help you. Set tube in the Costa Rican rain forests, Sarapiquí River, declared as Nation. Specific Costa Rican creatures you depart look forward go seeing include iguanas, coati mundi, and colorful toucans. Lake Arenal to the divide, and the Cano Negro Wildlife head to convince north. Uber will amplify available complicate the return them by changing your pickup point. Arenal region, Costa Rica. How was able visit? La Paz Waterfall Gardens for breathtaking scenery and lots of photo opps! Never find new blog posts and receive LE Travels monthly newsletter by subscribing below. Your password was changed successfully. But offspring are a number of waterfalls and canyons here.
    [Show full text]
  • Entidad Municipio Localidad Long Lat
    Entidad Municipio Localidad Long Lat Oaxaca Acatlán de Pérez Figueroa ARROYO DE ENMEDIO 963250 182951 Oaxaca Acatlán de Pérez Figueroa ARROYO DE PITA 962144 182335 Oaxaca Acatlán de Pérez Figueroa BARBASCO 963333 183504 Oaxaca Acatlán de Pérez Figueroa CAÑAMAZAL 962938 183357 Oaxaca Acatlán de Pérez Figueroa CERRO LAS ÁGUILAS 963256 182618 Oaxaca Acatlán de Pérez Figueroa COBAGAR 962601 182659 Oaxaca Acatlán de Pérez Figueroa DOÑA RUFINA (EL MIRADOR) 963101 183315 Oaxaca Acatlán de Pérez Figueroa EL ARBOLITO 962538 182627 Oaxaca Acatlán de Pérez Figueroa EL CARMEN 962521 182907 Oaxaca Acatlán de Pérez Figueroa EL CEDRO 962759 183401 Oaxaca Acatlán de Pérez Figueroa EL CONEJO 962716 183210 Oaxaca Acatlán de Pérez Figueroa EL DORADO 963053 183451 Oaxaca Acatlán de Pérez Figueroa EL PORVENIR 962841 183028 Oaxaca Acatlán de Pérez Figueroa ESPERANZA 962350 182613 Oaxaca Acatlán de Pérez Figueroa JOLIETTE 962239 182452 Oaxaca Acatlán de Pérez Figueroa LA ISLETA 962615 182858 Oaxaca Acatlán de Pérez Figueroa LA MAGDALENA 962834 182945 Oaxaca Acatlán de Pérez Figueroa LA MERCED 962428 182633 Oaxaca Acatlán de Pérez Figueroa LA OGADA 962748 183133 Oaxaca Acatlán de Pérez Figueroa LA PALMA 962600 182810 Oaxaca Acatlán de Pérez Figueroa LA RAYA 962159 182418 Oaxaca Acatlán de Pérez Figueroa LA REFORMA 962753 182904 Oaxaca Acatlán de Pérez Figueroa LAS CASITAS 962558 183104 Oaxaca Acatlán de Pérez Figueroa LAS FLORES 962959 183008 Oaxaca Acatlán de Pérez Figueroa LOS ALMENDROS 962809 183408 Oaxaca Acatlán de Pérez Figueroa LOS LIRIOS 963221 183319
    [Show full text]
  • Universidad Nacional Autónoma De Nicaragua
    UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA CENTRO DE INVESTIGACIONES Y ESTUDIOS DE LA SALUD ESCUELA DE SALUD PÚBLICA DE NICARAGUA MAESTRIA EN EPIDEMIOLOGIA 2003 - 2004 INFORME DE TESIS PARA OPTAR AL TITULO DE MAESTRO EN EPIDEMIOLOGIA Factores Socioculturales relacionados a la Vulnerabilidad ante la Amenaza Volcánica en la comunidad de San José del Sur, Isla de Ometepe, Rivas 2004 AUTORES Ronnie José Avendaño Guzmán, MD José Isidro Alvarado Pasos, MD Pedro José Bejarano Martínez, MD TUTOR José Ramón Espinoza, MD Especialista en Medicina Interna MsC. Salud Pública Rivas, 2004 DEDICATORIA El presente trabajo está dedicado a la población del municipio de Moyogalpa, Isla de Ometepe, especialmente a la comunidad de San José del Sur, la cual es una comunidad que se encuentra en alta vulnerabilidad por la amenaza del volcán Concepción, y que con sus esfuerzos han sabido convivir con el volcán. AGRADECIMIENTOS Queremos agradecer en primer lugar a Dios nuestro señor por darnos la vida y compartir con nosotros nuestras dificultades y nuestras victorias. En segundo lugar a nuestros padres, hermanos, que con sus esfuerzos hemos podido alcanzar los escalones que tiene la vida, siendo éste uno más que no lo podríamos lograr sin el apoyo de ellos. A nuestras esposas e hijos, por su comprensión, y el tiempo que no les hemos dedicado para poder estudiar. A nuestro docentes por transmitirnos sus conocimientos y el tiempo que compartieron con nosotros. A nuestro tutor el Dr. José Ramón Espinoza, por el apoyo incondicional y sus consejos para poder lograr nuestros objetivos. A nuestros compañeros de estudio por poder compartir las clases y darnos apoyo cuando lo necesitábamos.
    [Show full text]
  • Earthquake-Induced Landslides in Central America
    Engineering Geology 63 (2002) 189–220 www.elsevier.com/locate/enggeo Earthquake-induced landslides in Central America Julian J. Bommer a,*, Carlos E. Rodrı´guez b,1 aDepartment of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2BU, UK bFacultad de Ingenierı´a, Universidad Nacional de Colombia, Santafe´ de Bogota´, Colombia Received 30 August 2000; accepted 18 June 2001 Abstract Central America is a region of high seismic activity and the impact of destructive earthquakes is often aggravated by the triggering of landslides. Data are presented for earthquake-triggered landslides in the region and their characteristics are compared with global relationships between the area of landsliding and earthquake magnitude. We find that the areas affected by landslides are similar to other parts of the world but in certain parts of Central America, the numbers of slides are disproportionate for the size of the earthquakes. We also find that there are important differences between the characteristics of landslides in different parts of the Central American isthmus, soil falls and slides in steep slopes in volcanic soils predominate in Guatemala and El Salvador, whereas extensive translational slides in lateritic soils on large slopes are the principal hazard in Costa Rica and Panama. Methods for assessing landslide hazards, considering both rainfall and earthquakes as triggering mechanisms, developed in Costa Rica appear not to be suitable for direct application in the northern countries of the isthmus, for which modified approaches are required. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Landslides; Earthquakes; Central America; Landslide hazard assessment; Volcanic soils 1.
    [Show full text]
  • NICARAGUA A) Cap Gracias SAN FRANCISCO S Vi a Dios Plus De 100 000 Hab
    86° DULCE NOMBRE 85° vers PUERTO LEMPIRA 84° 83° Capitale d'État DE CULMÍ Route principale 15° NICARAGUA (plus de 900 000 hab.) ) Cap Gracias S via SAN FRANCISCO go a Dios Plus de 100 000 hab. Autre route DE LA PAZ (Se AUASBILA oco 82° A Río C Lagune Plus de 50 000 hab. Waní Piste I Kum Santa sabel Bilwascarma PA Bismuna Tara L R Waspam Plus de 20 000 hab. Voie ferrée A Siksayali Leimus G Krasa 940 R JUTICALPA ío Plus de 10 000 hab. Aéroport, aérodrome U Cayo Muerto GUCI U Raití l E a p n T e ku g r a as Cocoland Ninayeri Cayos Morrison Dennis Autre localité Volcan actif b uc W vers vers o m at Rí a P D y ío Punta Cayos Miskitos Ocotal Chef-lieu de département Terrain inondable a R Santa Marta Gorda M u Riío G Wawa Lagune Cayos Londres o ia) Cayos Nasa Limite de département í ov y Páhara R g a e c 991 N S o ( Yulú The Witties E SANTA MARÍA o B 1 3 c o Maniwatla MANAGUA CARAZO TEGUCIGALPA o í 1210 Tuapí GUA R Teotecacinte LAS TROJES o C DANLÍ Rí Bonanza Bilwi 14° 2 MASAYA 4 GRANADA R MAYA O Jalapa (ex-Puerto Cabezas) O A R í 0 50 km C I Mina la Rosita o Lagune Karatá v. L NUEVA Wamblán Ku LAS MANOS E ka Barra de Wawa 1326 B ATLA N T IQ UE- N ORD la s 2107 y Santa María SEGOVIA A Siuna (Région autonome) a vers SAN FRANCISCO Murra J I N OTE G A S H Pic Mogotón I Wani o Dipilto ( SANTA ROSA DE LIMA El Jícaro R Baká í o t Wiwilí San José E Saslaya Lagune de Ocotal Ba M Quilalí de Bocay R m Wounta vers 1650 NACAOME 1750 i SALVADOR ban ca Kilambé È a e I R L t MADR Z D SAN MIGUEL lu Somoto ío Kuikuina Limbaika e L u SAN SALVADOR SAN SAN LORENZO
    [Show full text]
  • 1). RED VIAL NACIONAL La Red Vial Nacional Esta Compuesta Por Tres
    ANEXO 1). RED VIAL NACIONAL La Red Vial Nacional esta compuesta por tres (03) Ejes Longitudinales y veinte (20) Ejes Tranversales. a) EJES LONGITUDINALES La Red Vial Nacional Longitudinal esta compuesta por tres (03) Ejes (PE-1, PE-3 y PE-5), los mismos que se dividen con trayectorias norte y sur respectivamente. Dos (02) en la Longitudinal de la Costa cuyo “Km. 0+000” se encuentra en el Intercambio Vial Santa Anita (PE-1N para el Norte y PE-1S para el Sur). Dos (02) en la Longitudinal de la Sierra cuyo “Km. 0+000” se encuentra en la Repartición La Oroya (PE-3N para el Norte y PE-3S para el Sur) y Dos (02) en la Longitudinal de la Selva cuyo “Km. 0+000” se encuentra en el Puente Reither (PE-5N para el Norte y PE-5S para el Sur). Adicionalmente a los tres (03) ejes longitudinales decritos anteriormente, existen catorce (14) variantes y ventiseis (26) ramales, como se describe a continuación: a.1. Longitudinal de la costa o Eje Nº PE-1 Une la frontera norte con el Ecuador en cuatro puntos: Nvo. Pte.Internacional de La Paz (PE-1N), Pte. Internacional Aguas Verdes (PE-1N O ramal), El Alamor (PE-1N N ramal) y Pte. Macará (PE-1N L ramal), y en un punto con la frontera sur con Chile, en La Concordia (PE-1S). Inicia su recorrido en el Km.0+000 ubicado en el centro del I.V. Santa Anita, en el distrito de Ate, provincia de Lima, departamento de Lima. Hacia el norte la ruta se identifica con la letra “N”, siendo su denominación: “PE-1N”.
    [Show full text]
  • Fall 2018 Course: BSPA-UB-45: Sustainability Impact Consulting in Costa Rica Tues
    Fall 2018 Course: BSPA-UB-45: Sustainability Impact Consulting in Costa Rica Tues. & Thurs. 9:30-10:45am, 10/25 – 12/13 Travel in Costa Rica January 5-12, 2019 Sustainability= People Planet Profits (for all) Meeting the needs of the present without compromising the ability of future generations to meet their own needs. Course Goals • Some of the most forward-thinking businesses interested in taking care of the environment and society can be found in the beautiful country of Costa Rica. • Stern students will have the opportunity to work with small businesses in Costa Rica to help further develop their innovative sustainability programs. • Since agriculture and tourism are Costa Rica’s top sources of domestic revenue, students will work with tropical fruit, chocolate and hotel companies, as well as other entities, to generate future sustainable growth and community development. • Potential student projects include business and marketing plans for agricultural production, eco-tourism and environmental education for youth. • This 3 credit course counts towards Stern's Co-Concentration in Sustainable Business, as a Global Business Elective or as a General Stern Elective. • The course includes a 8 day trip to Costa Rica in January 2019 during which students will test their hypothesis on the ground with local partners and become immersed in Costa Rican culture. COURSE AT- A - GLANCE 10/25- 12/13,Tue/Thur,9:30- 10:45am CONTENT DELIVERABLES Introduction to Costa Rica & Homework 15% Sustainability Themes Short responses to study questions Sustainable Agriculture Tropics & Costa Rica Participation 25% In class & during trip Sustainable Tourism Globally & in Costa Rica SIC Project 40% - group Sustainable Strategy & Reflection Essay 20% Decision-Making Tools 5 page individual essay reflecting on your experiences & future Group Project Prep Pre-Departure Presentations aspirations COSTA RICA NORTHERN PLAINS .
    [Show full text]
  • Origin, Composition and Evolution of Fumarolic Fluids of Subduction Zone Volcanoes in Nicaragua
    Origin, composition and evolution of fumarolic fluids of subduction zone volcanoes in Nicaragua Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Kristin Garofalo Kiel 2006 Referent: PD. Dr. Thor H Hansteen Korreferent: Prof. Dr. Peter Stoffers Tag der mündlichen Prüfung: 12 Juni 2006 Zum Druck genehmigt: Kiel, den .................. Der Dekan Hiermit erkläre ich, dass die vorliegende Abhandlung, abgesehen von der Beratung durch meine akademischen Lehrer, nach Inhalt und Form meine eigene Arbeit darstellt. Ferner habe ich weder diese noch eine ähnliche Arbeit an einer anderen Abteilung oder Hochschule im Rahmen eines Prüfungsverfahrens vorgelegt. Kristin Garofalo Preface This thesis comprises three independent manuscripts that are prepared for submission to international journals. They may therefore be subject to revision. Each publication contains its own abstract, introduction, sampling and analytical methods description, data presentation, discussion, conclusion, and reference list. The three papers are: The fumarolic gas discharges at Mombacho Volcano (Nicaragua): presence of magmatic gas species and implications for a volcanic surveillance. In revision for publication in Bulletin of Volcanology K. Garofalo, F. Tassi, O. Vaselli, A. Delgado-Huertas, M. Frische, T.H. Hansteen, D. Tedesco, R.J. Poreda, W. Strauch Past and present chemical and isotopic composition of high temperature fumarolic gases of Momotombo volcano, Nicaragua. To be submitted to Journal of Volcanology and Geothermal Research K. Garofalo, F. Tassi, O. Vaselli, A. Delgado-Huertas, M. Frische, T.H. Hansteen, D. Tedesco, R.J. Poreda Geochemistry and flux estimation of magma-derived volatile trace elements from the high-temperature fumarolic field of Momotombo volcano (Nicaragua).
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]
  • Volcanism and Geochemistry in Central America: Progress and Problems M
    Volcanism and Geochemistry in Central America: Progress and Problems M. J. Carr1, M.D. Feigenson1, L. C. Patino2 and J.A. Walker3 1Department of Geological Sciences, Rutgers University 2Department of Geological Sciences, Michigan State University 3Department of Geology and Environmental Geosciences, Northern Illinois University Most Central American volcanoes occur in an impressive volcanic front that trends parallel to the strike of the subducting Cocos Plate. The volcanic front is a chain, made of right-stepping, linear segments, 100 to 300 Km in length. Volcanoes cluster into centers, whose spacing is random but averages about 27 Km. These closely spaced, easily accessible volcanic centers allow mapping of geochemical variations along the volcanic front. Abundant back-arc volcanism in southeast Guatemala and central Honduras allow two cross-arc transects. Several element and isotope ratios (e.g. Ba/La, U/Th, B/La, 10Be/9Be, 87Sr/86Sr) that are thought to signal subducted marine sediments or altered MORB consistently define a chevron pattern along the arc, with its maximum in Nicaragua. Ba/La, a particularly sensitive signal, is 130 at the maximum in Nicaragua but decreases out on the limbs to 40 in Guatemala and 20 in Costa Rica, which is just above the nominal mantle value of 15. This high amplitude regional variation, roughly symmetrical about Nicaragua, contrasts with the near constancy, or small gradient, in several plate tectonic parameters such as convergence rate, age of the subducting Cocos Plate, and thickness and type of subducted sediment. The large geochemical changes over relatively short distances make Central America an important margin for seeking the tectonic causes of geochemical variations; the regional variation has both a high amplitude and structure, including flat areas and gradients.
    [Show full text]