Handbook on the International Airways Volcano Watch (Iavw)

Total Page:16

File Type:pdf, Size:1020Kb

Handbook on the International Airways Volcano Watch (Iavw) Doc 9766-AN/968 HANDBOOK ON THE INTERNATIONAL AIRWAYS VOLCANO WATCH (IAVW) OPERATIONAL PROCEDURES AND CONTACT LIST SECOND EDITION — 2004 Approved by the Secretary General and published under his authority INTERNATIONAL CIVIL AVIATION ORGANIZATION DOCUMENT CHANGE RECORD ON THE WEB 2nd EDITION DATE SECTION PAGES AFFECTED 29.10.04 Appendix on operational procedures for the coordination and transfer of responsibility between VAACs for volcanic ash evens 25.10.04 Part 4: AFTN address for ASHTAMs/NOTAMs 14.9.04 Part 3: VAAC Montreal 1.9.04 Part 2: VAAC Toulouse 16.8.04 Part 2: VAACs Anchorage, London and Toulouse 29.7.04 Part 2: VAACs Buenos Aires, Tokyo and Washington; Part 3, 3.3; Part 5: Canada, Russian Federation 19.4.04 Parts 3 and 4: VAACs London and Tokyo 3.3.04 Part 2: VAAC Toulouse; Part 5:Argentina 22.1.04 Parts 3 and 4: VAAC Tokyo TABLE OF CONTENTS Page Part 1. Volcanoes active during the last 10 000 years . 1-1 Part 2. Volcanic ash advisory centres (VAACs) designated by ICAO and their responsibilities . 2-1 Part 3. Useful web sites . 3-1 3.1 Volcanic ash advisory centres . 3-1 3.2 Worldwide weekly volcanic activity reports . 3-1 3.3 Other sites . 3-2 Part 4. International Airways Volcano Watch — Operational procedures for the dissemination of information on volcanic eruptions and associated volcanic ash clouds in areas which could affect routes used by international flights, and necessary pre-eruption arrangements . 4-1 4.1 Pre-eruption procedures . 4-1 4.2 Action to be taken by the ACC in the event of a volcanic eruption . 4-2 4.3 Action to be taken by the NOF in the event of a volcanic eruption . 4-5 4.4 Action to be taken by the MWO in the event of a volcanic eruption . 4-7 4.5 Action to be taken by VAACs in the event of a volcanic eruption . 4-9 Table 4-1. WMO abbreviated headers for NOFs to use to send ASHTAMs or NOTAMs on volcanic activity to their associated VAAC . 4-12 Table 4-2. VAAC contact numbers . 4-15 Part 5. International airways volcano watch contact list . 5-1 5.1 Alphabetical listing . 5-1 5.2 List of States by ICAO Region . 5-2 (iii) Part 1 VOLCANOES ACTIVE DURING THE LAST 10 000 YEARS 180° 160° 140° 120° 100° 80° 60° 40° 20° 0° 20° 40° 60° 80° 100° 120° 140° 160° 180° JAN MAYEN #S 7 ° 0 0 ° 7 KOLBEINSEY RIDGE #S ANJUISKY #S TJORNES FRACTURE ZONE KRAFLA #S FREMRINAMUR BALAGAN-TAS #S #S ASKJA #S LOKI-FOGRUFJOLL #S KVERKFJOLL #S#S BARDARBUNGA #S#S#S GRIMSVOTN REYKJANES #S #S#S #S ESJUFJOLL REYKJANESHRYGGUR #S #S#S#S ORAEFAJOKULL VESTMANNAEYJAR HEKLA KATLA KRAKAGIGAR MUNDAFELL MOUNT WRANGELL #S EYJAFJOLL #S SPURR KATMAI #S REDOUBT MAGEIK #S ILIAMNA MARTIN #S AUGUSTINE NOVARUPTA KATMAI TRIDENT #S#S UKINREK MAARS #S#S CHIGINAGAK #S UGASHIK-PEULIK VENIAMINOF #S ANIAKCHAK #S SHEVELUCH ISKUT-UNUK RIVER GROUP #S USHKOVSKY AMAK #S#S KUPREANOF BEZYMIANNY #S TOLBACHIK #S KLIUCHEVSKOI SHISHALDIN #S#S PAVLOF PAVLOF SISTER KIZIMEN WESTDAHL FISHER TSEAX RIVER CONE #S KRONOTSKY #S #S#S#S ISANOTSKI KARYMSKY #S#S KRASHENINNIKOV BOGOSLOF #S AKUTAN MAKUSHIN VEER KORYAKSKY #S#S KIKHPINYCH #S#S VSEVIDOF #S#S MALY SEMIACHIK SEGUAM #S#S CARLISLE ZHUPANOVSKY #S AVACHINSKY ATKA #S#S OKMOK CLEVELAND GORELY SEMISOPOCHNOI #S#S #S#S#S KAGAMIL OPALA #S#S MUTNOVSKY #S#S#S#S AMUKTA ZHELTOVSKY #S KSUDACH KISKA #S#S#S YUNASKA KOSHELEV #S#S ILYINSKY LITTLE SITKIN #S EBEKO 5 ° GREAT SITKIN ALAID FUSS PEAK #S #S CHIKURACHKI-TATARINO 0 0 KANAGA NEMO PEAK #S KARPINSKY GROUP ° 5 TANAGA HARIMKOTAN #S TAO-RUSYR CALDERA GARELOI MOUNT BAKER #S #S UNNAMED WUDALIANCHI #S EKARMA SINARKA #S#S#S#SCHIRINKOTAN KASATOCHI GLACIER PEAK #S KETOI RASSHUA #S SARYCHEV PEAK RAIKOKE GORIASCHAIA SOPKA #S#S USHISHIR CALDERA ZAVARITZKI CALDERA #S PREVO PEAK UNNAMED #S #S MOUNT RAINIER UNNAMED #S#SCHIRPOI #S MOUNT ST HELENS #S #S ATSONUPURI #S#S KOLOKOL GROUP UNNAMED #S MOUNT HOOD SHIRETOKO-IWO-ZAN #S#S CHIRIP PENINSULA GROUP MEDVEZHIA NIPESOTSU-UPEPESANKE #S TIATIA GROZNY GROUP BARANSKY #S SOUTH SISTER TOKACHI #S#S BAITOUSHAN #S #S GOLOVNIN MENDELEEV USU #S#S AKAN LONGGANG GROUP TARUMAI #S#S KUTTARA MOUNT SHASTA #S #S E-SAN #S MEDICINE LAKE#S#S VESUVIO OSHIMA-OSHIMA #S #S KOMAGA-TAKE XIANJINDAO #S #S OSORE-YAMA PROSPECT PEAK #S LASSEN CAMPI FLEGREI #S#S #S IWAKI SAN JORGE IWATE #S#S AKITA-KOMAGA-TAKE AKITA-YAKE-YAMA FAYAL TERCEIRA STROMBOLI CHOKAI #S #S UNNAMED #S#S#S DON JOAO DE CASTRO BANK VULCANO #S KUSATSU-SHIRANE #S KURIKOMA FIELD #S #S #S #S #S ZAO PICO #S#S AGUA DE PAU #S ETNA #S METHANA NIIGATA-YAKE-YAMA #S ADATARA BANDAI AZUMA #S TATE-YAMA #S MONACO BANK FURNAS SICILY #S #S #S #S#S#S#S NIKKO-SHIRANE NASU SETE CIDADES SANTORINI HAKU-SAN #S#S ON-TAKE ASAMA AKAGI PANTELLERIA NISYROS KUNLUN VOLCANO GROUP #S YAKE-DAKE #S FUJI OSHIMA #S#S IZU-TOBU KUJU GROUP #S MIYAKE-JIMA ES SAFA #S #S ASO #S HACHIJO-JIMA UNZEN #S SAKURA-JIMA#S AOGA-SHIMA PINACATE PEAKS #S #S KIRISHIMA #S BAYONNAISE ROCKS IBUSUKI VOLCANO FIELD #S #S 3 ° SMITH ROCK KUCHINOERABU-JIMA #S KIKAI #S 0 0 LANZAROTE TORI-SHIMA NAKANO-SHIMA #S SUWANOSE-JIMA ° 3 LA PALMA #S #S #S OKINAWA-TORI-SHIMA TRES VIRGENES #S #S TENERIFE #S #S NISHINO-SHIMA HIERRO #S ZENGYU #S KAITOKU SEAMOUNT TENGCHONG #S #S UNNAMED #S KITA-IWO-JIMA #S IRIOMOTE-JIMA #S IWO-JIMA #S #S SHIN-IWO-JIMA UNNAMED #S UNNAMED #S MINAMI-HIYOSHI #S UNNAMED #S FUKUJIN VOLCANO CEBORUCO #S HALEAKALA #S MICHOACAN-GUANAJUATO #S FARALLON DE PAJAROS #S UNNAMED SUPPLY REEF #S HUALALAI #S#S MAUNALOA BARCENA #SCOMPLEX #S#S PICO DE ORIZABA #S BABUYAN CLARO #S ASUNCION #S POPOCATEPETL#S#S VOLCANO DE SAN MARTIN SABA #S#S DIDICAS #S AGRIGAN KILAUEA SOCORRO #S MOUNT LIAMUIGA JABAL YAR #S EL CHICHON #S #S#S CAMIGUIN DE BABUYANE ALAMAGAN #S MOUNT PAGAN TACANA SOUFRIERE HILLS #S #S GUGUAN PACAYA #S SOUFRIERE GUADELOUPE DJEBEL TEYR MOUNT PINATUBO SANTA MARIA FUEGO IZALCO MORNE PATATES #S MICOTRIN JEBEL ZUBAYR#S #S RUBY #S#S#S LAGUNA VERDE #S MONTAGNE PELEE FOGO #S #S #S HARRAS OF DHAMAR #S MAYON ALMOLONGA ACATENANGO #S#S CERRO NEGRO DALLOL #S TAAL #S #S#S#S#S QUALIBOU #S ERTA ALE #S#S #S IRIGA ATITLAN SAN MIGUEL #S#S MOMOTOMBO SOUFRIERE ST VINCENT #S DUBBI #S#S BULUSAN ILOPANGO COSIGUINA #S#S#S TELICA KICK-'EM-JENNY #S ALAYTA #S MANDA-INAKIR BARREN ISLAND #S MALINAO SAN SALVADOR SAN CRISTOBAL #S CONCEPCION ARDOUKOBA#S#S #S BILIRAN 1 ° SANTA ANA LAS PILAS #S#S MIRAVALLES DAMA ALI #S CANLAON 0 0 #S ILE DES CENDRES #S UNNAMED #S CONCHAGUITA MASAYA #S ARENAL ° 1 #S HIBOK-HIBOK RINCON DE LA VIEJA #S #S TURRIALBA FENTALE #S#S KONE BARVA TULLU MOJE #S #S CALAYO IRAZU LA YEGUADA RAGANG #S BARU OKU VOLCANO FIELD POAS #S #S BUD DAJO CERRO BRAVO RUIZ #S MOUNT CAMEROON PEUET SAGUE #S#S BUR NI TELONG BANUA WUHU AWU HUILA TOLIMA #S TONGKOKO API SIAU PINTA SANTA ISABEL#S SIBAYAK #S #S PURACE #S SOUTH ISLAND #S MAHAWU #S RUANG MAKIAN MARCHENA DONA JUANA #S GALERAS CUMBAL #S THE BARRIER LOKON-EMPUNG #S #S #S#S#SNEGRO DE MAYASQUER EMURUANGOGOLAK #S SORIKMARAPI #S#S #S IBU DUKONO VOLCANO WOLF #S#SGUAGUA PICHINCHA#S #S TANDIKAT SOPUTAN #S #S GAMKONORA FERNANDINA #S#S#S ANTISANA #S#S#S REVENTADOR LONGONOT MARAPI #S #S GAMALAMA SANTIAGO #S#S #S#S#S SUMACO UNNAMED #S NYAMURAGIRA #S OLKARIA TALANG #S COLO UNA UNA AMBANG ST ANDREW STRAIT RABAUL CHACANA #S TUNGURAHUA NYIRAGONGO #S#S KERINCI #S ULAWUN VOLCANO ALCEDO COTOPAXI #S #S BAM #S UNNAMED CERRO AZUL QUILOTOA SANGAY VISOKE #S#S#S CHYULU HILLS SUMBING #S LOLOBAU OL DOINYO LENGAI KABA #S#S DEMPO #S DAKATAUA SIERRA NEGRA GUNUNG BESAR #S BANDA API #S MANAM #S#S #S BAMUS MERU SUOH #S SALAK #S #S#S GEDE GUNUNGAPI WETAR SERUA KARKAR #S#S #S PAGO WITORI KRAKATAU #S #S #S LANGILA #S BAGANA KIARABERES-GAGAK #S#S#S#S#S#S#S BATU TARA #S#S#S NILA LONG ISLAND CEREME #S #S#S#S#S#S #S TEON RITTER ISLAND BILLY MITCHELL #S#S#S #S#S#S#S#S#S#S#S#S#S WURLALI LAMINGTON SAVO 1 ° GALUNGGUNG #S#S #S #S 0 KIEYO #S GUNTUR TENGGER INIELIKA #S VICTORY #S 0 SIRUNG LAMONGAN ° PAPANDAYAN EBULOBO KAVACHI #S TINAKULA 1 LEWOTOLO SEMERU WAIOWA KARTHALA #S TANGKUBANPARAHU GUNUNG RANAKAH ILIWERUNG SAVAI'I KELUT SANGEANG API ILIBOLENG #S ARJUNO-WELIRANG TAMBORA LEWOTOBI #S OFU-OLOSEGA MERBABU LEREBOLENG SORETIMEAT #S SABANCAYA MERAPI RINJANI GAUA CURACOA UBINAS BATUR IYA EGON AOBA #S #S #S #S SUNDORO KELIMUTU NIUAFO'OU EL MISTI #S#S TUTUPACA SUMBING AGUNG AMBRYM #S#S LOPEVI HUAYNAPUTINA #S RAUNG PALUWEH EAST EPI #S KUWAE LATE YUCAMANE COMPLEX #S FONUALEI GUALLATIRI #S SLAMET IJEN #S HOME REEF METIS SHOAL #S TRAITOR'S HEAD #S #S TOFUA ISLUGA YASUR #S #S OLCA-PARUMA #S FALCON ISLAND #S PITON DE FOURNAISE #S #S UNNAMED SAN PEDRO #S PUTANA #S MATTHEW ISLAND #S#S LASCAR #S HUNTER ISLAND ARACAR #S#S #S MONOWAI SEAMOUNT LLULLAILLACO UNNAMED #S UNNAMED 3 ° MACDONALD #S #S RAOUL ISLAND 0 0 #S BRIMSTONE ISLAND ° 3 TUPUNGATITO #S ROBINSON CRUSOE #S #S SAN JOSE TINGUIRIRICA#S#S MAIPO RUMBLE III CERRO QUIZAPU AZUL #S PLANCHON-PETEROA #S DESCABEZADO GRANDE NEVADOS DE CHILLAN #S AUCKLAND FIELD #S #S ANTUCO TRISTAN DA CUNHA #S WHITE ISLAND #S CALLAQUI #S VILLARRICA TARAWERA #S LLAIMA #S#S #S LONQUIMAY ST PAUL TONGARIRO #S #S MOCHO-CHOSHUENCO #S MOUNT EGMONT CARRAN-LOS VENADOS #S CORDON CAULLE RUAPEHU PUNTIGUIDO-CORDON CEN #S#S OSORNO CALBUCO HUEQUI MINCHINMAVIDA #S CERRO YANTELES #S CORCOVADO CERRO HUDSON #S MARION ISLAND #S LAUTARO #S 5 ° VOLCANO VIEDMA #S 0 0 ° 5 MONTE BURNEY #S HEARD VOLCANO #S BOUVET #S PROTECTOR SHOAL #S#S ZAVODOVSKI CANDLEMAS ISLAND #S MOUNT MICHAEL #S BRISTOL ISLAND #S PENGUIN #S DECEPTION ISLAND #S SEAL NUNATAKS GROUP #S BUCKLE ISLAND #S 180° 160° 140° 120° 100° 80° 60° 40° 20° 0° 20° 40° 60° 80° 100° 120° 140° 160° 180° VOLCANOES OF THE WORLD A 101x147 cm map, This Dynamic Planet, showing these volcanoes, earthquake epicenters, impact craters, plus tectonic
Recommended publications
  • Plant Diversity and Composition Changes Along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon
    diversity Article Plant Diversity and Composition Changes along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon Pablo Lozano 1,*, Omar Cabrera 2 , Gwendolyn Peyre 3 , Antoine Cleef 4 and Theofilos Toulkeridis 5 1 1 Herbario ECUAMZ, Universidad Estatal Amazónica, Km 2 2 vía Puyo Tena, Paso Lateral, 160-150 Puyo, Ecuador 2 Dpto. de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110-104 Loja, Ecuador; [email protected] 3 Dpto. de Ingeniería Civil y Ambiental, Universidad de los Andes, Cra. 1E No. 19a-40, 111711 Bogotá, Colombia; [email protected] 4 IBED, Paleoecology & Landscape ecology, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, The Netherlands; [email protected] 5 Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, P.O.Box, 171-5-231B Sangolquí, Ecuador; [email protected] * Correspondence: [email protected]; Tel.: +593-961-162-250 Received: 29 April 2020; Accepted: 29 May 2020; Published: 8 June 2020 Abstract: The paramo is a unique and severely threatened ecosystem scattered in the high northern Andes of South America. However, several further, extra-Andean paramos exist, of which a particular case is situated on the active volcano Sumaco, in the northwestern Amazon Basin of Ecuador. We have set an elevational gradient of 600 m (3200–3800 m a.s.l.) and sampled a total of 21 vegetation plots, using the phytosociological method. All vascular plants encountered were typified by their taxonomy, life form and phytogeographic origin. In order to determine if plots may be ensembled into vegetation units and understand what the main environmental factors shaping this pattern are, a non-metric multidimensional scaling (NMDS) analysis was performed.
    [Show full text]
  • Region 19 Antarctica Pg.781
    Appendix B – Region 19 Country and regional profiles of volcanic hazard and risk: Antarctica S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 19: Antarctica only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 19 Antarctica Pg.781 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 19: Antarctica Description Figure 19.1 The distribution of Holocene volcanoes through the Antarctica region. A zone extending 200 km beyond the region’s borders shows other volcanoes whose eruptions may directly affect Antarctica. Thirty-two Holocene volcanoes are located in Antarctica. Half of these volcanoes have no confirmed eruptions recorded during the Holocene, and therefore the activity state is uncertain. A further volcano, Mount Rittmann, is not included in this count as the most recent activity here was dated in the Pleistocene, however this is geothermally active as discussed in Herbold et al.
    [Show full text]
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Geothermal Map of Perú
    Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Geothermal Map of Perú Víctor Vargas & Vicentina Cruz Instituto Geológico Minero y Metalúrgico – INGEMMET. Av. Canadá Nº 1470. Lima 41. San Borja, Lima - Perú [email protected] [email protected] Keywords: Geothermal map, Eje Volcánico Sur, contribute in the development of this environmentally geothermal manifestations, volcanic rocks, deep faults, friendly resource, for electric power generation and direct Perú. uses ABSTRACT 1. INTRODUCTION The Andes Cordillera resulted from the interaction of the All over the world the major geothermal potential is Nazca Plate and the South American Plate. The subduction associated to discontinuous chains of Pio-Pleistocenic process occurring between both plates has controlled all volcanic centers that take part of the Pacific Fire Belt, and geological evolution of such territory since Mesozoic to Perú as a part of this, has a vast geothermal manifestation present time. In this context, magmatic and tectonic like hot springs, geysers, fumaroles etc. processes have allowed the development of geothermal environments with great resources to be evaluated and The Peruvian Geological Survey - INGEMMET- has subsequently developed making a sustainable exploitation traditionally been the first institution devoted to perform of them. geothermal studies that include the first mineral resources and thermal spring’s inventory. The first geothermal studies In consequence, Perú has a vast geothermal potential with were accomplished in the 70's starting with the first many manifestations at the surface as hot springs, geysers, inventory of mineral and thermal springs (Zapata, 1973). fumaroles, steam, etc., all over the country. The first The main purpose of those studies was the geochemical geothermal studies began in the 70's with the first inventory characterization of geothermal flows.
    [Show full text]
  • Relationship Between Static Stress Change and Volcanism. How and If Tectonic Earthquake Could Influence Volcanic Activity
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2014 RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR Daniele Alami Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons, and the Volcanology Commons Copyright 2014 Daniele Alami Recommended Citation Alami, Daniele, "RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR", Master's report, Michigan Technological University, 2014. https://doi.org/10.37099/mtu.dc.etds/770 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons, and the Volcanology Commons RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR. By Daniele Alami A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © 2013 Daniele Alami This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology Department of Geological & Mining Engineering & Sciences Report Co-Advisor: Gregory P.Waite Report Co-Advisor: Alessandro Tibaldi Committee Member: Simon Carn Department Chair: John Gierke 1 2 L'infinito non esiste, è solo un numero grande, e l'unico vero cuore è al centro della Terra. Vai davanti a un vulcano e poi dimmi, come ti senti? (Filippo Timi) 3 Università degli studi di Milano-Bicocca Facoltà di Scienze Matematiche, Fisiche e Naturali Dipartimento di Scienze e Tecnologie Geologiche Relationship between static stress changes and volcanism.
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • Patagonia Luxury Hiking Excursion
    Patagonia Luxury Hiking Excursion Please note that all of the itineraries listed in our web site are actual private tour itineraries we have prepared for clients over the past 12-18 months. By the very nature of what we do, each private tour itinerary is custom, exclusive and unique unto itself. Our over-riding goal is to create lifelong memories that you and your family will forever carry deep within your hearts. Overview Though our past hikes on the Milford Track (New Zealand), Inca Trail (Machu Picchu), Glacier (U.S.), and various areas of Switzerland and Austria were particularly memorable, we must confess that the hiking, horseback riding, and spectacular setting of, relatively inaccessible, Patagonia is unparalleled. The critical contrast is Patagonia’s pristine remoteness: no mass tourism or crowded hiking trails here! When hiking the wide range of areas in Patagonia, it is easy to see how this vast landscape still has hundreds of unnamed mountains, with many points inaccessible and unexplored. Located at the tip of the South American continent, the outstanding national parks (Torres del Paine!) and private reserves stretch across Chile and Argentina, divided by the Andes Mountains. The features of Patagonia are remarkable: wild rivers, muddy rainforests, glaciated peaks, granted monoliths, and vast steppes. This is a place for reflection, deep solitude, and unforgettable outdoor activities. Best Travel Time: Fall Winter Spring CHILE ARGENTINA Day 1 Temperature Range Temperature Range Fly to Santiago Highs: Mid 80’s Highs: Low 80’s Through our sister company, premium air provider Lows: Mid 50’s Lows: High 60’s TRAVNET, we may assist with your international airfare, as Area Area well as with mileage points conversion.
    [Show full text]
  • Triggering of Major Eruptions Recorded by Actively Forming Cumulates SUBJECT AREAS: Michael J
    Triggering of major eruptions recorded by actively forming cumulates SUBJECT AREAS: Michael J. Stock*, Rex N. Taylor & Thomas M. Gernon GEOCHEMISTRY PETROLOGY National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, U.K. SOLID EARTH SCIENCES VOLCANOLOGY Major overturn within a magma chamber can bring together felsic and mafic magmas, prompting de-volatilisation and acting as the driver for Plinian eruptions. Until now identification of mixing has been Received limited to analysis of lavas or individual crystals ejected during eruptions. We have recovered partially 15 August 2012 developed cumulate material (‘live’ cumulate mush) from pyroclastic deposits of major eruptions on Tenerife. These samples represent ‘‘frozen’’ clumps of diverse crystalline deposits from all levels in the Accepted developing reservoir, which are permeated with the final magma immediately before eruptions. Such events 17 September 2012 therefore record the complete disintegration of the magma chamber, leading to caldera collapse. Chemical variation across developing cumulus crystals records changes in melt composition. Apart from fluctuations Published reflecting periodic influxes of mafic melt, crystal edges consistently record the presence of more felsic 12 October 2012 magmas. The prevalence of this felsic liquid implies it was able to infiltrate the entire cumulate pile immediately before each eruption. Correspondence and he Las Can˜adas volcano on Tenerife, Canary Islands, generated at least seven major explosive eruptions requests for materials during the Quaternary1–3. These events resulted in widespread deposition of pyroclastic material, with an should be addressed to estimated volume of .130 km3 (ref. 1,4). Despite considerable scientific interest in the volcano and assoc- T 5 6 R.N.T.
    [Show full text]
  • Mesozoic to Tertiary Evolution of the Southwestern Proto-Pacific Gondwana Margin
    University of Sydney, PhD Thesis, Kayla T. Maloney, 2012. The University of Sydney School of Geosciences Mesozoic to Tertiary evolution of the southwestern proto-Pacific Gondwana margin Kayla T. Maloney 2012 Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sydney School of Geosciences Division of Geology and Geophysics Madsen Building (F09) Sydney, NSW, 2006 Australia University of Sydney, PhD Thesis, Kayla T. Maloney, 2012. i DECLARATION I declare that this thesis is less than 100,000 words in length, and that the work contained in this thesis has not been submitted for a higher degree at any other university or institution. Kayla T. Maloney August, 2012 PREFACE This PhD thesis consists of a collection of papers that are published or prepared for submission with international peer-reviewed journals appropriate to the discipline of geology. The publications form part of an integrated project and are presented in an order that represents the related elements of a connected thesis. The thesis contains an introductory section that provides an outline of the thesis, a summary of the contribution of the work to the field of geology, and a critical evaluation of the role of the thesis in informing further research in the field. Common themes in the papers are tied together and a discussion and conclusion of the whole thesis is presented at the end. No animal or ethical approvals were needed during the completion of this study. Data and interpretations in the thesis are the work of the author except where stated in the text.
    [Show full text]
  • Entidad Municipio Localidad Long Lat
    Entidad Municipio Localidad Long Lat Oaxaca Acatlán de Pérez Figueroa ARROYO DE ENMEDIO 963250 182951 Oaxaca Acatlán de Pérez Figueroa ARROYO DE PITA 962144 182335 Oaxaca Acatlán de Pérez Figueroa BARBASCO 963333 183504 Oaxaca Acatlán de Pérez Figueroa CAÑAMAZAL 962938 183357 Oaxaca Acatlán de Pérez Figueroa CERRO LAS ÁGUILAS 963256 182618 Oaxaca Acatlán de Pérez Figueroa COBAGAR 962601 182659 Oaxaca Acatlán de Pérez Figueroa DOÑA RUFINA (EL MIRADOR) 963101 183315 Oaxaca Acatlán de Pérez Figueroa EL ARBOLITO 962538 182627 Oaxaca Acatlán de Pérez Figueroa EL CARMEN 962521 182907 Oaxaca Acatlán de Pérez Figueroa EL CEDRO 962759 183401 Oaxaca Acatlán de Pérez Figueroa EL CONEJO 962716 183210 Oaxaca Acatlán de Pérez Figueroa EL DORADO 963053 183451 Oaxaca Acatlán de Pérez Figueroa EL PORVENIR 962841 183028 Oaxaca Acatlán de Pérez Figueroa ESPERANZA 962350 182613 Oaxaca Acatlán de Pérez Figueroa JOLIETTE 962239 182452 Oaxaca Acatlán de Pérez Figueroa LA ISLETA 962615 182858 Oaxaca Acatlán de Pérez Figueroa LA MAGDALENA 962834 182945 Oaxaca Acatlán de Pérez Figueroa LA MERCED 962428 182633 Oaxaca Acatlán de Pérez Figueroa LA OGADA 962748 183133 Oaxaca Acatlán de Pérez Figueroa LA PALMA 962600 182810 Oaxaca Acatlán de Pérez Figueroa LA RAYA 962159 182418 Oaxaca Acatlán de Pérez Figueroa LA REFORMA 962753 182904 Oaxaca Acatlán de Pérez Figueroa LAS CASITAS 962558 183104 Oaxaca Acatlán de Pérez Figueroa LAS FLORES 962959 183008 Oaxaca Acatlán de Pérez Figueroa LOS ALMENDROS 962809 183408 Oaxaca Acatlán de Pérez Figueroa LOS LIRIOS 963221 183319
    [Show full text]
  • Earthquake-Induced Landslides in Central America
    Engineering Geology 63 (2002) 189–220 www.elsevier.com/locate/enggeo Earthquake-induced landslides in Central America Julian J. Bommer a,*, Carlos E. Rodrı´guez b,1 aDepartment of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2BU, UK bFacultad de Ingenierı´a, Universidad Nacional de Colombia, Santafe´ de Bogota´, Colombia Received 30 August 2000; accepted 18 June 2001 Abstract Central America is a region of high seismic activity and the impact of destructive earthquakes is often aggravated by the triggering of landslides. Data are presented for earthquake-triggered landslides in the region and their characteristics are compared with global relationships between the area of landsliding and earthquake magnitude. We find that the areas affected by landslides are similar to other parts of the world but in certain parts of Central America, the numbers of slides are disproportionate for the size of the earthquakes. We also find that there are important differences between the characteristics of landslides in different parts of the Central American isthmus, soil falls and slides in steep slopes in volcanic soils predominate in Guatemala and El Salvador, whereas extensive translational slides in lateritic soils on large slopes are the principal hazard in Costa Rica and Panama. Methods for assessing landslide hazards, considering both rainfall and earthquakes as triggering mechanisms, developed in Costa Rica appear not to be suitable for direct application in the northern countries of the isthmus, for which modified approaches are required. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Landslides; Earthquakes; Central America; Landslide hazard assessment; Volcanic soils 1.
    [Show full text]
  • 1). RED VIAL NACIONAL La Red Vial Nacional Esta Compuesta Por Tres
    ANEXO 1). RED VIAL NACIONAL La Red Vial Nacional esta compuesta por tres (03) Ejes Longitudinales y veinte (20) Ejes Tranversales. a) EJES LONGITUDINALES La Red Vial Nacional Longitudinal esta compuesta por tres (03) Ejes (PE-1, PE-3 y PE-5), los mismos que se dividen con trayectorias norte y sur respectivamente. Dos (02) en la Longitudinal de la Costa cuyo “Km. 0+000” se encuentra en el Intercambio Vial Santa Anita (PE-1N para el Norte y PE-1S para el Sur). Dos (02) en la Longitudinal de la Sierra cuyo “Km. 0+000” se encuentra en la Repartición La Oroya (PE-3N para el Norte y PE-3S para el Sur) y Dos (02) en la Longitudinal de la Selva cuyo “Km. 0+000” se encuentra en el Puente Reither (PE-5N para el Norte y PE-5S para el Sur). Adicionalmente a los tres (03) ejes longitudinales decritos anteriormente, existen catorce (14) variantes y ventiseis (26) ramales, como se describe a continuación: a.1. Longitudinal de la costa o Eje Nº PE-1 Une la frontera norte con el Ecuador en cuatro puntos: Nvo. Pte.Internacional de La Paz (PE-1N), Pte. Internacional Aguas Verdes (PE-1N O ramal), El Alamor (PE-1N N ramal) y Pte. Macará (PE-1N L ramal), y en un punto con la frontera sur con Chile, en La Concordia (PE-1S). Inicia su recorrido en el Km.0+000 ubicado en el centro del I.V. Santa Anita, en el distrito de Ate, provincia de Lima, departamento de Lima. Hacia el norte la ruta se identifica con la letra “N”, siendo su denominación: “PE-1N”.
    [Show full text]