Breaking the Trade-Off Between Fast Control and Long Lifetime of A
Breaking the trade-off between fast control and long lifetime of a superconducting qubit S. Kono1, K. Koshino2, D. Lachance-Quirion3;4, A. F. van Loo1, Y. Tabuchi3, A. Noguchi5;6, and Y. Nakamura1;3 1Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan 2College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan 3Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan 4Institut quantique and Dpartement de physique, Universit de Sherbrooke, Sherbrooke, Qubec, J1K 2R1, Canada 5Komaba Institute for Science (KIS), The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan and 6PRESTO, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan (Dated: March 10, 2020) The rapid development in designs and fabrication techniques of superconducting qubits has made coherence times of qubits longer. In the near future, however, the radiative decay of a qubit into its control line will be a fundamental limitation, imposing a trade-off between fast control and long lifetime of the qubit. In this work, we successfully break this trade-off by strongly coupling another superconducting qubit along the control line. This second qubit, which we call a Josephson quantum filter (JQF), prevents the qubit from emitting microwave photons and thus suppresses its relaxation, while faithfully transmitting large-amplitude control microwave pulses due to the saturation of the quantum filter, enabling fast qubit control. We observe an improvement of the qubit relaxation time without a reduction of the Rabi frequency. This device could potentially help in the realization of a large-scale superconducting quantum information processor in terms of the heating of the qubit environment and the crosstalk between qubits.
[Show full text]