TAXON:Neomarica Gracilis (Herb.) Sprague SCORE:4.0

Total Page:16

File Type:pdf, Size:1020Kb

TAXON:Neomarica Gracilis (Herb.) Sprague SCORE:4.0 TAXON: Neomarica gracilis (Herb.) SCORE: 4.0 RATING: Low Risk Sprague Taxon: Neomarica gracilis (Herb.) Sprague Family: Iridaceae Common Name(s): apostle plant Synonym(s): Basionym: Marica gracilis Herb. walking iris Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Apr 2018 WRA Score: 4.0 Designation: L Rating: Low Risk Keywords: Perennial Herb, Ornamental, Rhizomatous, Spreads Vegetatively, Arillate Seeds Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 y 407 Causes allergies or is otherwise toxic to humans 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Creation Date: 16 Apr 2018 (Neomarica gracilis (Herb.) Page 1 of 15 Sprague) TAXON: Neomarica gracilis (Herb.) SCORE: 4.0 RATING: Low Risk Sprague Qsn # Question Answer Option Answer Tolerates a wide range of soil conditions (or limestone 410 y=1, n=0 y conditions if not a volcanic island) 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 n 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n Geophyte (herbaceous with underground storage organs 504 y=1, n=0 n -- bulbs, corms, or tubers) Evidence of substantial reproductive failure in native 601 y=1, n=0 n habitat 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally 604 Self-compatible or apomictic 605 Requires specialist pollinators 606 Reproduction by vegetative fragmentation y=1, n=-1 y 607 Minimum generative time (years) Propagules likely to be dispersed unintentionally (plants 701 y=1, n=-1 n growing in heavily trafficked areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant 704 Propagules adapted to wind dispersal y=1, n=-1 n 705 Propagules water dispersed y=1, n=-1 n 706 Propagules bird dispersed y=1, n=-1 y 707 Propagules dispersed by other animals (externally) 708 Propagules survive passage through the gut y=1, n=-1 y 801 Prolific seed production (>1000/m2) Evidence that a persistent propagule bank is formed (>1 802 yr) 803 Well controlled by herbicides 804 Tolerates, or benefits from, mutilation, cultivation, or fire Effective natural enemies present locally (e.g. introduced 805 biocontrol agents) Creation Date: 16 Apr 2018 (Neomarica gracilis (Herb.) Page 2 of 15 Sprague) TAXON: Neomarica gracilis (Herb.) SCORE: 4.0 RATING: Low Risk Sprague Supporting Data: Qsn # Question Answer 101 Is the species highly domesticated? n Source(s) Notes Missouri Botanical Garden. 1945. Flora of Panama. Part III. [No evidence of domestication] "Mexico to northern Brazil, in wet Fascicle I. Annals of the Missouri Botanical Garden, 32(1): lowland forests and savannas." 1-105 102 Has the species become naturalized where grown? Source(s) Notes WRA Specialist. 2018. Personal Communication NA 103 Does the species have weedy races? Source(s) Notes WRA Specialist. 2018. Personal Communication NA Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet High tropical" for "tropical or subtropical" Source(s) Notes "Native USDA, ARS, Germplasm Resources Information Network. Southern America 2018. National Plant Germplasm System [Online BRAZIL: Brazil [Espirito Santo, Mato Grosso, Rio de Janeiro, Sao Database]. http://www.ars-grin.gov/npgs/index.html. Paulo]" [Accessed 16 Apr 2018] 202 Quality of climate match data High Source(s) Notes USDA, ARS, Germplasm Resources Information Network. 2018. National Plant Germplasm System [Online Database]. http://www.ars-grin.gov/npgs/index.html. [Accessed 16 Apr 2018] Creation Date: 16 Apr 2018 (Neomarica gracilis (Herb.) Page 3 of 15 Sprague) TAXON: Neomarica gracilis (Herb.) SCORE: 4.0 RATING: Low Risk Sprague Qsn # Question Answer 203 Broad climate suitability (environmental versatility) n Source(s) Notes "Hardiness: USDA Zone 8a: to -12.2 °C (10 °F) Dave's Garden. 2018. Walking Iris, Apostle Plant - USDA Zone 8b: to -9.4 °C (15 °F) Neomarica gracilis. USDA Zone 9a: to -6.6 °C (20 °F) https://davesgarden.com/guides/pf/go/2108/. [Accessed USDA Zone 9b: to -3.8 °C (25 °F) 16 Apr 2018] USDA Zone 10a: to -1.1 °C (30 °F) USDA Zone 10b: to 1.7 °C (35 °F) USDA Zone 11: above 4.5 °C (40 °F)" Tropicos.org. 2018. Missouri Botanical Garden. Collected from 10-1000 m elevation; at latitudes ranging from http://www.tropicos.org/. [Accessed 16 Apr 2018] 09°09'17"N to 23°46'39"S Native or naturalized in regions with tropical or 204 y subtropical climates Source(s) Notes USDA, ARS, Germplasm Resources Information Network. "Native 2018. National Plant Germplasm System [Online Southern America Database]. http://www.ars-grin.gov/npgs/index.html. BRAZIL: Brazil [Espirito Santo, Mato Grosso, Rio de Janeiro, Sao [Accessed 16 Apr 2018] Paulo]" Does the species have a history of repeated 205 y introductions outside its natural range? Source(s) Notes "Neomarica gracilis (Herb.) Sprague Iridaceae Total N° of Refs: 4 Habit: perennial Herb Preferred Climate/s: Subtropical, Tropical Randall, R.P. (2017). A Global Compendium of Weeds. 3rd Origin: C Am, N Am, S Am Major Pathway/s: Ornamental Dispersed Edition. Perth, Western Australia. R.P. Randall by: Humans, Escapee References: Gal pagos Islands-CN-1157, La Reunion-U-1321, Global-CD-1611, India-W-1977." Chong, K.Y., Tan, H.T.W. & Corlett, R.T. 2009. A Checklist of the Total Vascular Plant Flora of Singapore: Native, Naturalized and Cultivated Species. Raffles Museum of "Neomarica gracilis (Herb.) Sprague; Iridaceae; cultivated only" Biodiversity Research, National University of Singapore, Singapore Guerrero, A. M., Pozo, P., Chamorro, S., Guezou, A., & "Table I. List of introduced plant taxa recorded during the inventory Buddenhagen, C. E. (2008). Baseline data for identifying of plants on properties in Puerto Ayora , Galapagos (2002-2004)" potentially invasive plants in Puerto Ayora, Santa Cruz [Neomarica gracilis - Status = Cu: Cultivated (introduced, only found Island, Galapagos. Pacific Conservation Biology, 14(2), 93- in cultivation)] 107 Wong, M. 2008. Perennial Bedding Plants for Hawai͚i. OF- [Cultivated] "Walking iris is a plant that looks like an iris, with white 41. College of Tropical Agriculture and Human Resources, and purple flowers. The plant requires substantial shade. New plants Honolulu, HI will result where flowers once were." Global Register of Introduced and Invasive Species. 2018. Neomarica gracilis. http://griis.org/. [Accessed 16 Apr Present in India. No impacts confirmed 2018] 301 Naturalized beyond native range n Creation Date: 16 Apr 2018 (Neomarica gracilis (Herb.) Page 4 of 15 Sprague) TAXON: Neomarica gracilis (Herb.) SCORE: 4.0 RATING: Low Risk Sprague Qsn # Question Answer Source(s) Notes Chong, K.Y., Tan, H.T.W. & Corlett, R.T. 2009. A Checklist of the Total Vascular Plant Flora of Singapore: Native, Naturalized and Cultivated Species. Raffles Museum of "Neomarica gracilis (Herb.) Sprague; Iridaceae; cultivated only" Biodiversity Research, National University of Singapore, Singapore Guerrero, A. M., Pozo, P., Chamorro, S., Guezou, A., & "Table I. List of introduced plant taxa recorded during the inventory Buddenhagen, C. E. (2008). Baseline data for identifying of plants on properties in Puerto Ayora , Galapagos (2002-2004)" potentially invasive plants in Puerto Ayora, Santa Cruz [Neomarica gracilis - Status = Cu: Cultivated (introduced, only found Island, Galapagos. Pacific Conservation Biology, 14(2), 93- in cultivation)] 107 Randall, R.P. (2017). A Global Compendium of Weeds. 3rd No evidence Edition. Perth, Western Australia. R.P. Randall Wagner, W.L., Herbst, D.R.& Lorence, D.H. 2018. Flora of the Hawaiian Islands. Smithsonian Institution, No evidence to date Washington, D.C. http://botany.si.edu/. [Accessed 16 Apr 2018] 302 Garden/amenity/disturbance weed Source(s) Notes [Possible weed in flower beds] "On Jun 18, 2003, whoopinaggie from Dave's Garden. 2018. Walking Iris, Apostle Plant - Richmond, TX wrote: I have the walking iris in complete shade under Neomarica gracilis. a tree and it blooms and grows all over the place. I have never https://davesgarden.com/guides/pf/go/2108/. [Accessed fertilized it and have never seen it wilt despite the 95+ humid 16 Apr 2018] summers. It is actually starting the take over the flower bed and needs to be "weeded" out fairly often. " Weedbusters. 2011. Plant Me Instead! Northland. Neomarica gracilis recommended as an alternative to Aristea www.weedbusters.org.nz ecklonii Randall, R.P.
Recommended publications
  • Weed Risk Assessment for Iris Pseudacorus L. (Iridaceae)
    Weed Risk Assessment for Iris United States pseudacorus L. (Iridaceae) – Yellow Department of flag iris Agriculture Animal and Plant Health Inspection Service September 24, 2013 Version 1 Left: Iris pseudacorus flower. Right: A colony of Iris pseudacorus (source: Bugwood, 2013). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Iris pseudacorus Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)— specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it. As part of this analysis, we use a stochastic simulation to evaluate how much the uncertainty associated with the analysis affects the model outcomes.
    [Show full text]
  • Thrips Simplex Distinguishing Features Both Sexes Fully Winged
    Thrips simplex Distinguishing features Both sexes fully winged. Body and legs dark brown, tarsi and antennal segment III yellowish brown; fore wings brown, base paler. Antennae 8-segmented; III–IV with forked sense cone. Head with 2 pairs of ocellar setae; pair III small, arising just inside anterior margins of ocellar triangle; postocular setae pairs I & III slightly longer than ocellar setae III, postocular setae pair II minute. Pronotum with 2 pairs of posteroangular setae, outer pair slightly shorter than inner pair; posterior margin with 3–4 Female Head & pronotum pairs of setae. Metanotum reticulate medially, reticles elongate on posterior half, most reticles with faint internal markings; median setae short, arising behind anterior margin; campaniform sensilla absent. Fore wing first vein with about 7 setae on distal half; second vein with about 14 setae. Abdominal tergite II with 3 lateral marginal setae; tergites V–VIII with paired ctenidia, on VIII posteromesad to spiracles; tergite VIII posteromarginal comb of microtrichia complete but slightly irregular; pleurotergites without discal setae, but bearing ciliate microtrichia. Sternite II with 2 pairs of marginal setae, III–VII with 3 pairs; sternite II with 1–2 discal setae, III–VII with about 12 discal Meso & metanota setae in single row. Antenna Antenna Male smaller than female; tergite VIII with no posteromarginal comb; sternites III–VII with large transverse pore plate, discal setae arising laterally. Related species Metanotum The genus Thrips is the second largest genus in the Thysanoptera, and currently includes, worldwide, over 290 species. All members of genus Thrips lack ocellar setae I on the head, and they all have ctenidia on tergite VIII posteromesad to the spiracles.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0071096 A1 Yamada Et Al
    US 20100071096A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0071096 A1 Yamada et al. (43) Pub. Date: Mar. 18, 2010 (54) PLANT DISEASE AND INSECT DAMAGE Publication Classification CONTROL COMPOSITION AND PLANT (51) Int. Cl. DISEASE AND INSECT DAMAGE AOIH 5/10 (2006.01) PREVENTION METHOD AOIN 55/10 (2006.01) AOIN 25/26 (2006.01) (75) Inventors: Eiichi Yamada, Chiba (JP): AOIH 5/00 (2006.01) Ryutaro Ezaki, Shiga (JP); AOIH 5/02 (2006.01) Hidenori Daido, Chiba (JP) AOIH 5/08 (2006.01) AOIP3/00 (2006.01) Correspondence Address: BUCHANAN, INGERSOLL & ROONEY PC (52) U.S. Cl. ............................ 800/295: 514/63; 504/100 POST OFFICE BOX 1404 (57) ABSTRACT ALEXANDRIA, VA 22313-1404 (US) The invention provides a plant disease and insect damage control composition including, as active ingredients, dinote (73) Assignee: Mitsui Chemicals, Inc., Minato-ku furan and at least one fungicidal compound; and a plant (JP) disease and insect damage prevention method that includes applying Such a composition to a plant body, Soil, plant seed, (21) Appl. No.: 12/516,966 stored cereal, stored legume, stored fruit, stored vegetable, silage, stored flowering plant, or export/import timber. The (22) PCT Filed: Nov. 22, 2007 invention provides a new plant disease and insect damage (86). PCT No.: PCT/UP2007/072635 control composition and a plant disease and insect damage prevention method with very low toxicity to mammals and S371 (c)(1), fishes, the composition and method showing an effect against (2), (4) Date: May 29, 2009 plural pathogens and pest insects, including emerging resis tant pathogens and resistant pest insect, by application to a (30) Foreign Application Priority Data plant body, soil, plant seed, stored cereal, stored legume, stored fruit, stored vegetable, silage, stored flowering plant, Nov.
    [Show full text]
  • Thrips Setosus (Thysanoptera: Thripidae), the Japanese Flower Thrips, in Cultivation of Hydrangea in the Netherlands
    entomologische berichten 103 76 (3) 2016 Thrips setosus (Thysanoptera: Thripidae), the Japanese flower thrips, in cultivation of Hydrangea in the Netherlands Gijsbertus Vierbergen Antoon J.M. Loomans KEY WORDS First record, introduction, invasive species, minor pest, risks Entomologische Berichten 76 (3): 103-108 Thrips setosus Moulton, the Japanese flower thrips, has been found for the first time in the Netherlands. On September 30 2014, 22 females and 5 larvae of this species were detected on Hydrangea in a nursery at Kudelstaart. Until then, T. setosus had only been known from Japan and South Korea, where it is a polyphagous minor pest and with no known association with Hydrangea. Remarkably, interceptions in the international trade of plant products of this opportunistic species are very scarce, and this thrips has not been recorded as an invasive species. A survey carried out showed its presence in several Hydrangea nurseries in the Netherlands. However, the origin of the populations and the year of introduction into the country could not be established. Based on a short risk analysis it has been decided not to focus on elimination of the species, but to inform national and international organizations involved in plant protection about its occurrence. Details about its detection and identification, and the results of the survey, are presented. Introduction For diagnostic purposes he sent this material together with site Thrips (Thysanoptera) are known as plant pests worldwide, information to the National Reference Centre of the NVWA. especially in ornamentals and vegetables. Some species On the infested plant material, ten thrips females and five (e.g.
    [Show full text]
  • Patterns in Evolution in Characters That Define Iris Subgenera And
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 34 2006 Patterns in Evolution in Characters That Define rI is Subgenera and Sections Carol A. Wilson Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Wilson, Carol A. (2006) "Patterns in Evolution in Characters That Define rI is Subgenera and Sections," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 34. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/34 Aliso 22, pp. 425-433 © 2006, Rancho Santa Ana Botanic Garden PATTERNS OF EVOLUTION IN CHARACTERS THAT DEFINE IRIS SUBGENERA AND SECTIONS CAROL A. WILSON Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711-3157, USA (carol. wilson@ cgu. edu) ABSTRACT Subgeneric groups have been circumscribed in Iris based on a small number of morphological characters. Recent DNA sequence data has indicated that several of the subgenera, sections, and series that have previously been delineated are paraphyletic or polyphyletic. The evolution of characters that have traditionally been used to distinguish sub generic and sectional groups within Iris was investigated by mapping these characters on a phylogenetic tree based on matK sequence data. Results indicate that rhizomes are pleisomorphic for the genus and that three bulb types have arisen independently. My analysis shows that sepal beards, sepal crests, and seed arils show extensive homoplasy. Most of the homoplasy seen is associated with the circumscription of polyphyletic subgeneric groups such as the beardless subgenus Limniris. Some additional homoplasy is due to diversity within supported clades or the historical use of a single character in circumscribing more than one subgeneric group.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Iris Sibirica and Others Iris Albicans Known As Cemetery
    Iris Sibirica and others Iris Albicans Known as Cemetery Iris as is planted on Muslim cemeteries. Two different species use this name; the commoner is just a white form of Iris germanica, widespread in the Mediterranean. This is widely available in the horticultural trade under the name of albicans, but it is not true to name. True Iris albicans which we are offering here occurs only in Arabia and Yemen. It is some 60cm tall, with greyish leaves and one to three, strongly and sweetly scented, 9cm flowers. The petals are pure, bone- white. The bracts are pale green. (The commoner interloper is found across the Mediterranean basin and is not entitled to the name, which continues in use however. The wrongly named albicans, has brown, papery bracts, and off-white flowers). Our stock was first found near Sana’a, Yemen and is thriving here, outside, in a sunny, raised bed. Iris Sibirica and others Iris chrysographes Black Form Clumps of narrow, iris-like foliage. Tall sprays of darkest violet to almost black velvety flowers, Jun-Sept. Ht 40cm. Moist, well drained soil. Part shade. Deepest Purple which is virtually indistinguishable from black. Moist soil. Ht. 50cm Iris chrysographes Dykes (William Rickatson Dykes, 1911, China); Section Limniris, Series Sibericae; 14-18" (35-45 cm), B7D; Flowers dark reddish violet with gold streaks in the signal area giving it its name (golden writing); Collected by E. H. Wilson in 1908, in China; The Gardeners' Chronicle 49: 362. 1911. The Curtis's Botanical Magazine. tab. 8433 in 1912, gives the following information along with the color illustration.
    [Show full text]
  • Your Beautiful Flower Garden
    Chapter Three Your Beautiful Flower Garden Introduction Whether it’s one planter next to your door, or a show-stopping floral garden, flowers are a bonus of color and texture we can all appreciate. If you’re an experienced green thumb, or have read up on basic gardening in Chapter Two, you’ll know that, rather than insects and diseases, most plant problems are cultural—meaning that if you give plants what they need (proper soil, location and care), they’ll be healthy most of the time. Keep an eye on your garden. Noticing problems and identifying them early are essential steps toward a satisfying result. What follows are common cultural, disease, and insect problems, and their solutions. That’s a lot to cover. We’ll start with general concerns, then focus on specifics for annuals, tender perennials, biennials, and perennials. (Don’t worry if you see a plant in both the Perennial and Annual charts. Some, like verbena and geranium, can be perennial in warmer climates.) Later we’ll discuss hostas, roses, bulbs and peonies. Photo: Pixabay. Perennial, biennial, or annual? Perennials tend to come back In this chapter: over repeated years and expand each season. They may live three or four years, thirty or a hundred. Biennials need two years to Common Cultural (Abiotic) Problems complete their life cycle but because of re-seeding, some may of Annuals, Perennials, Bulbs, and seem to be perennial when they re-appear in the same spot for Groundcovers years. Annuals can, but rarely, make it through more than one IPM Solutions for Cultural (Abiotic) season depending on the climate, or come back from seed.
    [Show full text]
  • Dietes Iridioides Subsp. Angolensis from Angola and Dietes Bicolor Subsp
    Page 1 of 6 Original Research Two new subspecies of Dietes (Iridaceae: Iridoideae), Dietes iridioides subsp. angolensis from Angola and Dietes bicolor subsp. armeniaca from eastern South Africa, with notes and range extensions for Dietes butcheriana and Dietes iridioides Authors: Background: Recent collections of Dietes have extended the known geographical range and 1 Peter Goldblatt morphological variation in several species. John C. Manning1,2 Objectives: To describe additional taxa in Dietes to reflect the morphological and geographical Affiliations: variation in the species more accurately and to record significant range extensions. 1Research Centre for Plant Growth and Development, Method: Recent collections were compared with existing herbarium material and published University of KwaZulu-Natal, South Africa literature. Results: Two new subspecies in Dietes are described, viz. Dietes iridioides subsp. angolensis 2South African National Biodiversity Institute, Cape from Angola, constituting the first record of the species from that country, andDietes bicolor Town, South Africa subsp. armeniaca from eastern South Africa, which represents a range extension into southern KwaZulu-Natal. We also document a range extension for the local endemic Dietes butcheriana Correspondence to: from KwaZulu-Natal into the Eastern Cape and discuss an anomalous population of Peter Goldblatt D. iridioides, with long-lived flowers, from near Hankey in the Eastern Cape. Email: [email protected] Conclusions: The range extensions and new infraspecific taxa increase our understanding of the diversity of Dietes in southern and south tropical Africa. Postal address: PO Box 299, 63166 St. Louis, United States of America Introduction Dates: With five species in sub-Saharan Africa and one on Lord Howe Island (Australasia), Dietes Salisb.
    [Show full text]
  • New Perspectives on Medicinal Properties and Uses of Iris Sp
    Hop and Medicinal Plants, Year XXIV, No. 1-2, 2016 ISSN 2360 – 0179 print, ISSN 2360 – 0187 electronic NEW PERSPECTIVES ON MEDICINAL PROPERTIES AND USES OF IRIS SP. CRIŞAN Ioana, Maria CANTOR* Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania *corresponding author: [email protected] Abstract. Rhizomes from various Iris species have been used in traditional medicine to treat a variety of ailments since ancient times and many constituents isolated from different Iris species demonstrated potent biological activities in recent studies. All research findings besides the increasing demand for natural ingredients in cosmetics and market demand from industries like alcoholic beverages, cuisine and perfumery indicate a promising future for cultivation of irises for rhizomes, various extracts but most importantly for high quality orris butter. Romania is situated in a transitional continental climate with suitable conditions for hardy iris species and thus with good prospects for successful cultivation of Iris germanica, Iris florentina and Iris pallida in conditions of economic efficiency. Key words: Iris, medicinal plant, orris butter, rhizomes Introduction The common word “iris” that gave the name of the genus, originates from Greek designating “rainbow” presumably due to the wide variety of colors that these flowers can have (Cumo, 2013). The genus reunites about 300 species (Wang et al., 2010) with rhizomes or bulbs (Cantor, 2016). In Romanian wild flora can be met both naturalized and native species, some enjoying special protection, like Iris aphylla ssp. hungarica (Marinescu and Alexiu, 2013) that can be seen on the hills nearby Cluj-Napoca (Fig.
    [Show full text]
  • Nomenclatural Types of Iberian Irises (Iris and Related Genera, Iridaceae)
    Flora Montiberica 53: 49-62 (18-XII-2012). ISSN: 1988-799X NOMENCLATURAL TYPES OF IBERIAN IRISES (IRIS AND RELATED GENERA, IRIDACEAE) Manuel B. CRESPO VILLALBA CIBIO, Instituto de la Biodiversidad. Universidad de Alicante. P.O. Box 99. E-03080 Alicante. E-mail: [email protected] ABSTRACT: Nomenclatural types are reported for seventeen taxa belonging to Iris and six related genera, which are accepted in the forthcoming treatment of Iridaceae for Flora iberica. Among them, 13 lectotypes and one neotype are designated for the first time, and three previous typifications are briefly commented. Keywords: Iris, Chamaeiris, Juno, Limniris, Xiphion, Hermodactylus, Gynandriris, nomenclature, typi- fication, Iberian Peninsula. RESUMEN: Tipos nomenclaturales de lirios ibéricos (Iris y géneros relaciona- dos, Iridaceaae). Se presentan los tipos nomenclaturales de 17 táxones pertenecientes a Iris y otros seis géneros relacionados, que se aceptan en el tratamiento de las Iridace- ae para Flora iberica. De ellos, se designan por primera vez 13 lectótipos y un neótipo, y se comentan brevemente tres tipificaciones previas. Palabras clave: Iris, Chamaei- ris, Juno, Limniris, Xiphion, Hermodactylus, Gynandriris, nomenclatura, tipificación, Península Ibérica. INTRODUCTION others), whereas others were accepted as separate genera (cf. PARLATORE, 1860; Iridaceae will be included in the KLATT, 1864, 1866; BAKER, 1877; forthcoming volume XX of Flora iberica. VALENTINE, 1980; RODIONENKO, As a part of the editorial task, data on no- 1961, 2005, 2007, 2009; MAVRODIEV, menclatural types will be reported for all 2010; among others). accepted taxa in the family. Some of the In any case, important morphological species occurring in the Iberian Peninsula differences exist among those seven ag- have already been typified, though many gregates, which allow recognition of uni- irises are still in need of typification.
    [Show full text]
  • Parasitoids As Biological Control Agents of Thrips Pests Promotor: Prof
    Parasitoids as Biological Control Agents of Thrips Pests Promotor: Prof. dr. J.C. van Lenteren Hoogleraar in de Entomologie, Wageningen Universiteit Promotie Commissie: Prof. dr. L.E.M. Vet, Wageningen Universiteit, Wageningen Dr. B. Aukema, Plantenziektenkundige Dienst, Wageningen Dr. W.J. de Kogel, Plant Research International, Wageningen Prof. dr. H. Eijsackers, Vrije Universiteit, Amsterdam. Parasitoids as Biological Control Agents of Thrips Pests Antoon Loomans Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op maandag 8 september 2003 des namiddags te vier uur in de Aula Loomans, A.J.M. (2003) Parasitoids as Biological Control Agents of Thrips Pests Thesis Wageningen University – with references – with summaries in English, Dutch and Italian Subject headings / Thysanoptera / Frankliniella occidentalis / Hymenoptera / Ceranisus menes / Ceranisus americensis / biological control / ISBN : 90-5808-884-7 to Giorgio Nicoli aan Lois, Romi, Oskar, Viktor & Sofia Contents Chapter 1 Evaluation of hymenopterous parasitoids as biological control agents of 1 thrips pests in protected crops: introduction Chapter 2 Exploration for hymenopterous parasitoids of thrips 45 Chapter 3 Mass-rearing thrips and parasitoids 67 Chapter 4 Host selection by thrips parasitoids: effects of host age, host size and 79 period of exposure on behaviour and development Chapter 5 Host selection by Ceranisus menes and C. americensis: inter- and
    [Show full text]