Viruses, Infections and Protection

Total Page:16

File Type:pdf, Size:1020Kb

Viruses, Infections and Protection Viruses, infections and protection www.pandPanasdao Sftowftawraer.ec. omSoluciones Antivirus para Empresas. December 2003 © Panda Software Viruses, infections and protection Virus epidemics in 2003 and antivirus protection At present, a large number of computers around the world lack adequate antivirus protection, as shown by the virus epidemics throughout the year 2003 caused, in most cases, by ‘old’ malicious codes. In contrast with the situation in the past (when some malicious codes were able to spread very quickly but then disappeared shortly after), this year, infections have been mostly caused by viruses whose proliferation has not diminished so rapidly. Actually, they have managed to persist long after antivirus vendors had an antidote against them. This is one of the conclusions that can be extracted from the ranking of the Top Ten viruses most frequently detected by Panda ActiveScan -Panda Software's free online scanner- in 2003. Top Ten viruses most frequently detected by Panda ActiveScan in 2003 Virus % of infections First appeared W32/Bugbear.B 11.21% June 2003 W32/Klez.I 8.59% April 2002 Trj/PSW.Bugbear.B 6.45% June 2003 W32/Blaster 5.32% August 2003 W32/Parite.B 5.1% November 2001 W32/Mapson@MM 4.73% June 2003 W32/EnerKaz 4.42% December 2002 Trj/JS.NoCLose 3.59% January 2003 W32/Bugbear 3.43% September 2002 W32/Bugbear.B.Dam 2.52% June 2003 Bugbear.B (11.21%) tops this ranking largely due to its ability to spread massively by e-mail, and the way that it exploits a vulnerability in Internet Explorer to run automatically. The country most affected by Bugbear,B during 2003 was Portugal, followed closely by El Salvador and Guatemala. W32/Bugbear.B % of infections in the country Most affected countries Portugal 21.88 El Salvador 20.86 Guatemala 20.12 Costa Rica 19.61 Belgium 18.42 www.pandasoftware.com Page 1 Viruses, infections and protection Second on the list is Klez.I (8.59% of infections). In this case, Guatemala, USA and Costa Rica were the countries most affected by this malicious code. Even though Klez.I appeared in April 2002, it has continued to cause incidents. There are several reasons for this: its capacity to run automatically, its use of ‘social engineering’ techniques to trick users, and its ability to go unnoticed so that users do not know their computers are actually infected by it. W32/Klez.I % of infections in the country Most affected countries Guatemala 12.55 USA 12.44 Costa Rica 10.59 Ecuador 10.59 Spain 10.03 Closely linked to the worm Bugbear.B is the Trojan PSW.Bugbear.B (6.45%), which ranks third on the list. This Trojan has been especially virulent in Portugal, Costa Rica and El Salvador. Trj/PSW.Bugbear.B % of infections in the country Most affected countries Portugal 14.78 Costa Rica 12.45 El Salvador 11.44 Guatemala 11.36 Italy 10.39 Fourth place is occupied by Blaster (5.32%). This worm first appeared in August, and thanks to its capacity to exploit a security flaw recently discovered in some versions of Windows operating systems, was able to unleash a worldwide epidemic particularly devastating in Hungary, Switzerland and Germany. W32/Blaster % of infections in the country Most affected countries Hungary 11.19 Switzerland 10.38 Germany 8.91 Portugal 8.78 Norway 8.36 www.pandasoftware.com Page 2 Viruses, infections and protection The polymorphic Parite.B virus (5.1%) is another infamous protagonist of this 2003 Top Ten. Although it hasn’t caused a large epidemic, it has managed to stay in most of the lists of viruses most frequently detected ever since it appeared in November 2001. It has been notably persistent in Germany, the Dominican Republic and Sweden. W32/Parite.B % of infections in the country Most affected countries Germany 11.80 Dominican Republic 10.87 Sweden 10.09 Poland 8.12 Israel 7.89 Sixth on the list is Mapson (4.73%), a worm which can spread via e-mail, MSN Messenger and P2P applications and spread widely in countries like Peru, Mexico and Venezuela. W32/Mapson@MM % of infections in the country Most affected countries Peru 13.31 Mexico 11.97 Venezuela 10.87 Bolivia 10.42 Panama 9.67 Next comes Enerkaz (3.59%), a worm which was first detected in December 2002 and uses several means of propagation. It had a special impact in the United Kingdom, France and Germany. W32/EnerKaz % of infections in the country Most affected countries United Kingdom 7.25 France 7.00 Germany 6.96 Holland 6.56 Canada 6.09 www.pandasoftware.com Page 3 Viruses, infections and protection Eighth place was taken by NoClose (3.59%), one of the few Trojans on the list, which affected chiefly Australia, Canada and Guatemala. Trj/JS.NoCLose % of infections in the country Most affected countries Australia 6.99 Canada 6.27 Guatemala 6.01 USA 5.96 Bolivia 5.15 The ranking is completed by W32/Bugbear (3.43%) -the first virus in the Bugbear family to be discovered- and one of its minor variants, Bugbear.B.Dam (2.52%). In both cases the largest number of incidents took place in Uruguay and Australia. W32/Bugbear % of infections in the country Most affected countries Uruguay 8.20 Australia 7.90 Ecuador 6.71 Argentina 6.17 France 5.66 W32/Bugbear.B.Dam % of infections in the country Most affected countries Uruguay 6.77 Australia 6.07 Ecuador 5.82 Guatemala 5.72 Costa Rica 5.59 www.pandasoftware.com Page 4 Viruses, infections and protection Unprotected computers = "Persistent" viruses As soon as a new virus is detected, antivirus developers get straight down to work to offer users an antidote. Taking this into account, it is highly significant that Bugbear.B -which appeared in June 2003- and Klez.I -which dates back to April 2002- are the two viruses that have caused the largest number of infections this year. The presence of Bugbear.B and Klez.I in the 2003 ranking of viruses most frequently detected -compiled with data collected by Panda ActiveScan-, clearly indicates that there is a large number of computers that lack antivirus protection, or the one they have has not been updated for a long time. This conclusion is also backed up by the following facts: - The presence of Parite.B in the ranking. This virus has appeared in the list of viruses most frequently detected ever since it first appeared in November 2001. - The absence from the list of the most recent viruses. Another important fact is the prominence of the Bugbear family, as four members of the family are found in the Top Ten ranking, which is topped by Bugbear.B. The main consequence of the fact that a large number of computers lack adequate protection is the existence of a significant number of viruses “attacking” both protected and unprotected computers, as shown by the graphs below. These show the evolution of the impact (% of infected PCs), around the world, of the five viruses that top the ranking of the Top Ten viruses most frequently detected by Panda ActiveScan in 2003. www.pandasoftware.com Page 5 Viruses, infections and protection Additionally, many malicious codes in the 2003 Top Ten -such as Bugbear.B, Klez,I, Blaster, etc.- take advantage of vulnerabilities in the software installed on computers, which indicates that many users have not installed security patches released by vendors to fix those flaws. Due to this, worms like Klez.I, which exploits vulnerabilities found and fixed months ago, continue to infect computers. www.pandasoftware.com Page 6 Viruses, infections and protection The problem behind the problem The main reasons given by users to explain why their computers don’t have protection are: - They don’t use the Internet much or only connect to sites they already know. They only exchange mail with friends and relatives. - They don’t know much about the issue or don’t care much about it. - They think antivirus programs are expensive, believe they are protected in some way or prefer to take the chance. In short, it is important that users know the risks posed by computer viruses, take preventive protection measures, and become aware of the importance of having an effective antivirus properly updated. Only in that way will they be able to minimize the information and productivity losses virus infections can cause and which result in significant economic losses, as shown in the table below: Economic losses caused by virus infections (*) DateMalicious codeLosses (million euros) May 2000 I love you 10,000 Year 2001 Code Red 2,970 Year 2001 Sircam 1,304 January 2003 Slammer More than 705 (*) Source: Computer Economics www.pandasoftware.com Page 7.
Recommended publications
  • A the Hacker
    A The Hacker Madame Curie once said “En science, nous devons nous int´eresser aux choses, non aux personnes [In science, we should be interested in things, not in people].” Things, however, have since changed, and today we have to be interested not just in the facts of computer security and crime, but in the people who perpetrate these acts. Hence this discussion of hackers. Over the centuries, the term “hacker” has referred to various activities. We are familiar with usages such as “a carpenter hacking wood with an ax” and “a butcher hacking meat with a cleaver,” but it seems that the modern, computer-related form of this term originated in the many pranks and practi- cal jokes perpetrated by students at MIT in the 1960s. As an example of the many meanings assigned to this term, see [Schneier 04] which, among much other information, explains why Galileo was a hacker but Aristotle wasn’t. A hack is a person lacking talent or ability, as in a “hack writer.” Hack as a verb is used in contexts such as “hack the media,” “hack your brain,” and “hack your reputation.” Recently, it has also come to mean either a kludge, or the opposite of a kludge, as in a clever or elegant solution to a difficult problem. A hack also means a simple but often inelegant solution or technique. The following tentative definitions are quoted from the jargon file ([jargon 04], edited by Eric S. Raymond): 1. A person who enjoys exploring the details of programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn only the minimum necessary.
    [Show full text]
  • Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G
    Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G. van Eeten, Delft University of Technology https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/asghari This paper is included in the Proceedings of the 24th USENIX Security Symposium August 12–14, 2015 • Washington, D.C. ISBN 978-1-939133-11-3 Open access to the Proceedings of the 24th USENIX Security Symposium is sponsored by USENIX Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere and Michel J.G. van Eeten Delft University of Technology Abstract more sophisticated C&C mechanisms that are increas- ingly resilient against takeover attempts [30]. Research on botnet mitigation has focused predomi- In pale contrast to this wealth of work stands the lim- nantly on methods to technically disrupt the command- ited research into the other side of botnet mitigation: and-control infrastructure. Much less is known about the cleanup of the infected machines of end users. Af- effectiveness of large-scale efforts to clean up infected ter a botnet is successfully sinkholed, the bots or zom- machines. We analyze longitudinal data from the sink- bies basically remain waiting for the attackers to find hole of Conficker, one the largest botnets ever seen, to as- a way to reconnect to them, update their binaries and sess the impact of what has been emerging as a best prac- move the machines out of the sinkhole. This happens tice: national anti-botnet initiatives that support large- with some regularity. The recent sinkholing attempt of scale cleanup of end user machines.
    [Show full text]
  • Undergraduate Report
    UNDERGRADUATE REPORT Attack Evolution: Identifying Attack Evolution Characteristics to Predict Future Attacks by MaryTheresa Monahan-Pendergast Advisor: UG 2006-6 IINSTITUTE FOR SYSTEMSR RESEARCH ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government. ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol- ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center. Web site http://www.isr.umd.edu Attack Evolution 1 Attack Evolution: Identifying Attack Evolution Characteristics To Predict Future Attacks MaryTheresa Monahan-Pendergast Dr. Michel Cukier Dr. Linda C. Schmidt Dr. Paige Smith Institute of Systems Research University of Maryland Attack Evolution 2 ABSTRACT Several approaches can be considered to predict the evolution of computer security attacks, such as statistical approaches and “Red Teams.” This research proposes a third and completely novel approach for predicting the evolution of an attack threat. Our goal is to move from the destructive nature and malicious intent associated with an attack to the root of what an attack creation is: having successfully solved a complex problem. By approaching attacks from the perspective of the creator, we will chart the way in which attacks are developed over time and attempt to extract evolutionary patterns. These patterns will eventually
    [Show full text]
  • CONTENTS in THIS ISSUE Fighting Malware and Spam
    MARCH 2008 Fighting malware and spam CONTENTS IN THIS ISSUE 2 COMMENT EVASIVE ACTION Home (page) renovations Pandex has attracted very little attention from the media and generated little 3 NEWS discussion between malware Botherders herded researchers and among the 29A folds general populace. Chandra Prakash and Adam Thomas provide an overview of the Pandex operation and take an in-depth look at VIRUS PREVALENCE TABLE 3 the underlying code that has allowed this malware to evade detection for so long. 4 MALWARE ANALYSIS page 4 Pandex: the botnet that could PACKING A PUNCH In the fi nal part of the series on exepacker 9 FEATURE blacklisting, Robert Neumann takes a look at how all the processing and analysis techniques are put Exepacker blacklisting part 3 into practice in a real-life situation. page 9 15 CONFERENCE REPORT AVG TURNS 8 Black Hat DC and CCC 24C3 John Hawes gets his hands on a preview version of the latest offering from AVG. 18 PRODUCT REVIEW page 18 AVG Internet Security 8 22 END NOTES & NEWS This month: anti-spam news and events, and Ken Simpson considers the implications of rising spam volume despite increasing accuracy of content fi lters. ISSN 1749-7027 COMMENT ‘It is hoped that within all sizes of business. It is hoped that the comment facility will promote discussion among visitors and that the comment facility in some cases the more knowledgeable of VB’s readers will promote will be able to guide and assist those less well versed in discussion among the complexities of anti-malware technologies.
    [Show full text]
  • Lexisnexis® Congressional Copyright 2003 Fdchemedia, Inc. All Rights
    LexisNexis® Congressional Copyright 2003 FDCHeMedia, Inc. All Rights Reserved. Federal Document Clearing House Congressional Testimony September 10, 2003 Wednesday SECTION: CAPITOL HILL HEARING TESTIMONY LENGTH: 4090 words COMMITTEE: HOUSE GOVERNMENT REFORM SUBCOMMITTEE: TECHNOLOGY, INFORMATION POLICY, INTERGOVERNMENTAL RELATIONS, AND CENSUS HEADLINE: COMPUTER VIRUS PROTECTION TESTIMONY-BY: RICHARD PETHIA, DIRECTOR AFFILIATION: CERT COORDINATION CENTER BODY: Statement of Richard Pethia Director, CERT Coordination Center Subcommittee on Technology, Information Policy, Intergovernmental Relations, and the Census Committee on House Government Reform September 10, 2003 Introduction Mr. Chairman and Members of the Subcommittee: My name is Rich Pethia. I am the director of the CERTO Coordination Center (CERT/CC). Thank you for the opportunity to testify on the important issue of cyber security. Today I will discuss viruses and worms and the steps we must take to protect our systems from them. The CERT/CC was formed in 1988 as a direct result of the first Internet worm. It was the first computer security incident to make headline news, serving as a wake-up call for network security. In response, the CERT/CC was established by the Defense Advanced Research Projects Agency at Carnegie Mellon University's Software Engineering Institute, in Pittsburgh. Our mission is to serve as a focal point to help resolve computer security incidents and vulnerabilities, to help others establish incident response capabilities, and to raise awareness of computer security issues and help people understand the steps they need to take to better protect their systems. We activated the center in just two weeks, and we have worked hard to maintain our ability to react quickly.
    [Show full text]
  • Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone
    Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone Thomas Dübendorfer, Arno Wagner, Theus Hossmann, Bernhard Plattner ETH Zurich, Switzerland [email protected] DIMVA 2005, Wien, Austria Agenda 1) Introduction 2) Flow-Level Backbone Traffic 3) Network Worm Blaster.A 4) E-Mail Worm Sobig.F 5) Conclusions and Outlook © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -2- 1) Introduction Authors Prof. Dr. Bernhard Plattner Professor, ETH Zurich (since 1988) Head of the Communication Systems Group at the Computer Engineering and Networks Laboratory TIK Prorector of education at ETH Zurich (since 2005) Thomas Dübendorfer Dipl. Informatik-Ing., ETH Zurich, Switzerland (2001) ISC2 CISSP (Certified Information System Security Professional) (2003) PhD student at TIK, ETH Zurich (since 2001) Network security research in the context of the DDoSVax project at ETH Further authors: Arno Wagner, Theus Hossmann © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -3- 1) Introduction Worm Analysis Why analyse Internet worms? • basis for research and development of: • worm detection methods • effective countermeasures • understand network impact of worms Wasn‘t this already done by anti-virus software vendors? • Anti-virus software works with host-centric signatures Research method used 1. Execute worm code in an Internet-like testbed and observe infections 2. Measure packet-level traffic and determine network-centric worm signatures on flow-level 3. Extensive analysis of flow-level traffic of the actual worm outbreaks captured in a Swiss backbone © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -4- 1) Introduction Related Work Internet backbone worm analyses: • Many theoretical worm spreading models and simulations exist (e.g.
    [Show full text]
  • Computer Security CS 426 Lecture 15
    Computer Security CS 426 Lecture 15 Malwares CS426 Fall 2010/Lecture 15 1 Trapdoor • SttitittSecret entry point into a system – Specific user identifier or password that circumvents normal security procedures. • Commonlyyy used by developers – Could be included in a compiler. CS426 Fall 2010/Lecture 15 2 Logic Bomb • Embedded in legitimate programs • Activated when specified conditions met – E.g., presence/absence of some file; Particular date/time or particular user • When triggered, typically damages system – Modify/delete files/disks CS426 Fall 2010/Lecture 15 3 Examppgle of Logic Bomb • In 1982 , the Trans-Siber ian Pipe line inc iden t occurred. A KGB operative was to steal the plans fhititdtltditfor a sophisticated control system and its software from a Canadian firm, for use on their Siberi an pi peli ne. The CIA was tippe d o ff by documents in the Farewell Dossier and had the company itlibbithinsert a logic bomb in the program for sabotage purposes. This eventually resulted in "the most monu mental non-nu clear ex plosion and fire ever seen from space“. CS426 Fall 2010/Lecture 15 4 Trojan Horse • Program with an overt Example: Attacker: (expected) and covert effect Place the following file cp /bin/sh /tmp/.xxsh – Appears normal/expected chmod u+s,o+x /tmp/.xxsh – Covert effect violates security policy rm ./ls • User tricked into executing ls $* Trojan horse as /homes/victim/ls – Expects (and sees) overt behavior – Covert effect performed with • Victim user’s authorization ls CS426 Fall 2010/Lecture 15 5 Virus • Self-replicating
    [Show full text]
  • MODELING the PROPAGATION of WORMS in NETWORKS: a SURVEY 943 in Section 2, Which Set the Stage for Later Sections
    942 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 2, SECOND QUARTER 2014 Modeling the Propagation of Worms in Networks: ASurvey Yini Wang, Sheng Wen, Yang Xiang, Senior Member, IEEE, and Wanlei Zhou, Senior Member, IEEE, Abstract—There are the two common means for propagating attacks account for 1/4 of the total threats in 2009 and nearly worms: scanning vulnerable computers in the network and 1/5 of the total threats in 2010. In order to prevent worms from spreading through topological neighbors. Modeling the propa- spreading into a large scale, researchers focus on modeling gation of worms can help us understand how worms spread and devise effective defense strategies. However, most previous their propagation and then, on the basis of it, investigate the researches either focus on their proposed work or pay attention optimized countermeasures. Similar to the research of some to exploring detection and defense system. Few of them gives a nature disasters, like earthquake and tsunami, the modeling comprehensive analysis in modeling the propagation of worms can help us understand and characterize the key properties of which is helpful for developing defense mechanism against their spreading. In this field, it is mandatory to guarantee the worms’ spreading. This paper presents a survey and comparison of worms’ propagation models according to two different spread- accuracy of the modeling before the derived countermeasures ing methods of worms. We first identify worms characteristics can be considered credible. In recent years, although a variety through their spreading behavior, and then classify various of models and algorithms have been proposed for modeling target discover techniques employed by them.
    [Show full text]
  • The Blaster Worm: Then and Now
    Worms The Blaster Worm: Then and Now The Blaster worm of 2003 infected at least 100,000 Microsoft Windows systems and cost millions in damage. In spite of cleanup efforts, an antiworm, and a removal tool from Microsoft, the worm persists. Observing the worm’s activity can provide insight into the evolution of Internet worms. MICHAEL n Wednesday, 16 July 2003, Microsoft and continued to BAILEY, EVAN Security Bulletin MS03-026 (www. infect new hosts COOKE, microsoft.com/security/incident/blast.mspx) more than a year later. By using a wide area network- FARNAM O announced a buffer overrun in the Windows monitoring technique that observes worm infection at- JAHANIAN, AND Remote Procedure Call (RPC) interface that could let tempts, we collected observations of the Blaster worm DAVID WATSON attackers execute arbitrary code. The flaw, which the during its onset in August 2003 and again in August 2004. University of Last Stage of Delirium (LSD) security group initially This let us study worm evolution and provides an excel- Michigan uncovered (http://lsd-pl.net/special.html), affected lent illustration of a worm’s four-phase life cycle, lending many Windows operating system versions, including insight into its latency, growth, decay, and persistence. JOSE NAZARIO NT 4.0, 2000, and XP. Arbor When the vulnerability was disclosed, no known How the Blaster worm attacks Networks public exploit existed, and Microsoft made a patch avail- The initial Blaster variant’s decompiled source code re- able through their Web site. The CERT Coordination veals its unique behavior (http://robertgraham.com/ Center and other security organizations issued advisories journal/030815-blaster.c).
    [Show full text]
  • Computer Viruses, in Order to Detect Them
    Behaviour-based Virus Analysis and Detection PhD Thesis Sulaiman Amro Al amro This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Software Technology Research Laboratory Faculty of Technology De Montfort University May 2013 DEDICATION To my beloved parents This thesis is dedicated to my Father who has been my supportive, motivated, inspired guide throughout my life, and who has spent every minute of his life teaching and guiding me and my brothers and sisters how to live and be successful. To my Mother for her support and endless love, daily prayers, and for her encouragement and everything she has sacrificed for us. To my Sisters and Brothers for their support, prayers and encouragements throughout my entire life. To my beloved Family, My Wife for her support and patience throughout my PhD, and my little boy Amro who has changed my life and relieves my tiredness and stress every single day. I | P a g e ABSTRACT Every day, the growing number of viruses causes major damage to computer systems, which many antivirus products have been developed to protect. Regrettably, existing antivirus products do not provide a full solution to the problems associated with viruses. One of the main reasons for this is that these products typically use signature-based detection, so that the rapid growth in the number of viruses means that many signatures have to be added to their signature databases each day. These signatures then have to be stored in the computer system, where they consume increasing memory space. Moreover, the large database will also affect the speed of searching for signatures, and, hence, affect the performance of the system.
    [Show full text]
  • Code Red Worm Propagation Modeling and Analysis ∗
    Code Red Worm Propagation Modeling and Analysis ∗ Cliff Changchun Zou Weibo Gong Don Towsley Dept. Electrical & Dept. Electrical & Dept. Computer Science Computer Engineering Computer Engineering Univ. Massachusetts Univ. Massachusetts Univ. Massachusetts Amherst, MA Amherst, MA Amherst, MA [email protected] [email protected] [email protected] ABSTRACT the Internet has become a powerful mechanism for propa- The Code Red worm incident of July 2001 has stimulated gating malicious software programs. Worms, defined as au- activities to model and analyze Internet worm propagation. tonomous programs that spread through computer networks In this paper we provide a careful analysis of Code Red prop- by searching, attacking, and infecting remote computers au- agation by accounting for two factors: one is the dynamic tomatically, have been developed for more than 10 years countermeasures taken by ISPs and users; the other is the since the first Morris worm [30]. Today, our computing in- slowed down worm infection rate because Code Red rampant frastructure is more vulnerable than ever before [28]. The propagation caused congestion and troubles to some routers. Code Red worm and Nimda worm incidents of 2001 have Based on the classical epidemic Kermack-Mckendrick model, shown us how vulnerable our networks are and how fast we derive a general Internet worm model called the two- a virulent worm can spread; furthermore, Weaver presented factor worm model. Simulations and numerical solutions some design principles for worms such that they could spread of the two-factor worm model match the observed data of even faster [34]. In order to defend against future worms, we Code Red worm better than previous models do.
    [Show full text]
  • Symantec Internet Security Threat Report
    Symantec Internet EXECUTIVE SUMMARY Symantec Internet Security Threat Report September 2003 EXECUTIVE EDITOR Executive Summary Linda McCarthy Symantec Office of the CTO The Symantec Internet Security Threat Report provides a six-month update about Internet threat MANAGER, DEVELOPMENT activity1. It includes analysis of network-based attacks, a review of known vulnerabilities, and David Ahmad Symantec Security Response highlights of malicious code. This summary of that report can alert executives to impending threats and current trends. SENIOR THREAT ANALYST Cori Lynn Arnold Symantec Managed Security With over 20,000 sensors monitoring network activity in over 180 countries, Symantec has Services established one of the most comprehensive sources of Internet threat data in the world, giving SENIOR MANAGER, ANALYSIS Symantec's analysts a superior source of attack data from which to spot important trends. OPERATIONS These trends educate executives about potential threats and exposures, and using the data Brian Dunphy Symantec Managed Security can help them identify weaknesses in their own security architecture or policies. Services In August 2003, the Win32.Blaster blended threat rapidly spread worldwide, and several other SENIOR MANAGER, DEVELOPMENT Oliver Friedrichs highly severe worms followed. In only eight days the pace and frequency of these threats created Symantec Security Response havoc for systems administrators as well as for PC home users, with an estimated cost of damages 2 RESEARCH FELLOW running up to $2 billion . This report
    [Show full text]