Symantec Internet Security Threat Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A the Hacker
A The Hacker Madame Curie once said “En science, nous devons nous int´eresser aux choses, non aux personnes [In science, we should be interested in things, not in people].” Things, however, have since changed, and today we have to be interested not just in the facts of computer security and crime, but in the people who perpetrate these acts. Hence this discussion of hackers. Over the centuries, the term “hacker” has referred to various activities. We are familiar with usages such as “a carpenter hacking wood with an ax” and “a butcher hacking meat with a cleaver,” but it seems that the modern, computer-related form of this term originated in the many pranks and practi- cal jokes perpetrated by students at MIT in the 1960s. As an example of the many meanings assigned to this term, see [Schneier 04] which, among much other information, explains why Galileo was a hacker but Aristotle wasn’t. A hack is a person lacking talent or ability, as in a “hack writer.” Hack as a verb is used in contexts such as “hack the media,” “hack your brain,” and “hack your reputation.” Recently, it has also come to mean either a kludge, or the opposite of a kludge, as in a clever or elegant solution to a difficult problem. A hack also means a simple but often inelegant solution or technique. The following tentative definitions are quoted from the jargon file ([jargon 04], edited by Eric S. Raymond): 1. A person who enjoys exploring the details of programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn only the minimum necessary. -
Undergraduate Report
UNDERGRADUATE REPORT Attack Evolution: Identifying Attack Evolution Characteristics to Predict Future Attacks by MaryTheresa Monahan-Pendergast Advisor: UG 2006-6 IINSTITUTE FOR SYSTEMSR RESEARCH ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government. ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol- ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center. Web site http://www.isr.umd.edu Attack Evolution 1 Attack Evolution: Identifying Attack Evolution Characteristics To Predict Future Attacks MaryTheresa Monahan-Pendergast Dr. Michel Cukier Dr. Linda C. Schmidt Dr. Paige Smith Institute of Systems Research University of Maryland Attack Evolution 2 ABSTRACT Several approaches can be considered to predict the evolution of computer security attacks, such as statistical approaches and “Red Teams.” This research proposes a third and completely novel approach for predicting the evolution of an attack threat. Our goal is to move from the destructive nature and malicious intent associated with an attack to the root of what an attack creation is: having successfully solved a complex problem. By approaching attacks from the perspective of the creator, we will chart the way in which attacks are developed over time and attempt to extract evolutionary patterns. These patterns will eventually -
CONTENTS in THIS ISSUE Fighting Malware and Spam
MARCH 2008 Fighting malware and spam CONTENTS IN THIS ISSUE 2 COMMENT EVASIVE ACTION Home (page) renovations Pandex has attracted very little attention from the media and generated little 3 NEWS discussion between malware Botherders herded researchers and among the 29A folds general populace. Chandra Prakash and Adam Thomas provide an overview of the Pandex operation and take an in-depth look at VIRUS PREVALENCE TABLE 3 the underlying code that has allowed this malware to evade detection for so long. 4 MALWARE ANALYSIS page 4 Pandex: the botnet that could PACKING A PUNCH In the fi nal part of the series on exepacker 9 FEATURE blacklisting, Robert Neumann takes a look at how all the processing and analysis techniques are put Exepacker blacklisting part 3 into practice in a real-life situation. page 9 15 CONFERENCE REPORT AVG TURNS 8 Black Hat DC and CCC 24C3 John Hawes gets his hands on a preview version of the latest offering from AVG. 18 PRODUCT REVIEW page 18 AVG Internet Security 8 22 END NOTES & NEWS This month: anti-spam news and events, and Ken Simpson considers the implications of rising spam volume despite increasing accuracy of content fi lters. ISSN 1749-7027 COMMENT ‘It is hoped that within all sizes of business. It is hoped that the comment facility will promote discussion among visitors and that the comment facility in some cases the more knowledgeable of VB’s readers will promote will be able to guide and assist those less well versed in discussion among the complexities of anti-malware technologies. -
Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone
Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone Thomas Dübendorfer, Arno Wagner, Theus Hossmann, Bernhard Plattner ETH Zurich, Switzerland [email protected] DIMVA 2005, Wien, Austria Agenda 1) Introduction 2) Flow-Level Backbone Traffic 3) Network Worm Blaster.A 4) E-Mail Worm Sobig.F 5) Conclusions and Outlook © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -2- 1) Introduction Authors Prof. Dr. Bernhard Plattner Professor, ETH Zurich (since 1988) Head of the Communication Systems Group at the Computer Engineering and Networks Laboratory TIK Prorector of education at ETH Zurich (since 2005) Thomas Dübendorfer Dipl. Informatik-Ing., ETH Zurich, Switzerland (2001) ISC2 CISSP (Certified Information System Security Professional) (2003) PhD student at TIK, ETH Zurich (since 2001) Network security research in the context of the DDoSVax project at ETH Further authors: Arno Wagner, Theus Hossmann © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -3- 1) Introduction Worm Analysis Why analyse Internet worms? • basis for research and development of: • worm detection methods • effective countermeasures • understand network impact of worms Wasn‘t this already done by anti-virus software vendors? • Anti-virus software works with host-centric signatures Research method used 1. Execute worm code in an Internet-like testbed and observe infections 2. Measure packet-level traffic and determine network-centric worm signatures on flow-level 3. Extensive analysis of flow-level traffic of the actual worm outbreaks captured in a Swiss backbone © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -4- 1) Introduction Related Work Internet backbone worm analyses: • Many theoretical worm spreading models and simulations exist (e.g. -
Computer Viruses, in Order to Detect Them
Behaviour-based Virus Analysis and Detection PhD Thesis Sulaiman Amro Al amro This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Software Technology Research Laboratory Faculty of Technology De Montfort University May 2013 DEDICATION To my beloved parents This thesis is dedicated to my Father who has been my supportive, motivated, inspired guide throughout my life, and who has spent every minute of his life teaching and guiding me and my brothers and sisters how to live and be successful. To my Mother for her support and endless love, daily prayers, and for her encouragement and everything she has sacrificed for us. To my Sisters and Brothers for their support, prayers and encouragements throughout my entire life. To my beloved Family, My Wife for her support and patience throughout my PhD, and my little boy Amro who has changed my life and relieves my tiredness and stress every single day. I | P a g e ABSTRACT Every day, the growing number of viruses causes major damage to computer systems, which many antivirus products have been developed to protect. Regrettably, existing antivirus products do not provide a full solution to the problems associated with viruses. One of the main reasons for this is that these products typically use signature-based detection, so that the rapid growth in the number of viruses means that many signatures have to be added to their signature databases each day. These signatures then have to be stored in the computer system, where they consume increasing memory space. Moreover, the large database will also affect the speed of searching for signatures, and, hence, affect the performance of the system. -
Chapter 3: Viruses, Worms, and Blended Threats
Chapter 3 Chapter 3: Viruses, Worms, and Blended Threats.........................................................................46 Evolution of Viruses and Countermeasures...................................................................................46 The Early Days of Viruses.................................................................................................47 Beyond Annoyance: The Proliferation of Destructive Viruses .........................................48 Wiping Out Hard Drives—CIH Virus ...................................................................48 Virus Programming for the Masses 1: Macro Viruses...........................................48 Virus Programming for the Masses 2: Virus Generators.......................................50 Evolving Threats, Evolving Countermeasures ..................................................................51 Detecting Viruses...................................................................................................51 Radical Evolution—Polymorphic and Metamorphic Viruses ...............................53 Detecting Complex Viruses ...................................................................................55 State of Virus Detection.........................................................................................55 Trends in Virus Evolution..................................................................................................56 Worms and Vulnerabilities ............................................................................................................57 -
Combating Spyware in the Enterprise.Pdf
www.dbebooks.com - Free Books & magazines Visit us at www.syngress.com Syngress is committed to publishing high-quality books for IT Professionals and delivering those books in media and formats that fit the demands of our cus- tomers. We are also committed to extending the utility of the book you purchase via additional materials available from our Web site. SOLUTIONS WEB SITE To register your book, visit www.syngress.com/solutions. Once registered, you can access our [email protected] Web pages. There you will find an assortment of value-added features such as free e-booklets related to the topic of this book, URLs of related Web site, FAQs from the book, corrections, and any updates from the author(s). ULTIMATE CDs Our Ultimate CD product line offers our readers budget-conscious compilations of some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to extend your reference library on key topics pertaining to your area of exper- tise, including Cisco Engineering, Microsoft Windows System Administration, CyberCrime Investigation, Open Source Security, and Firewall Configuration, to name a few. DOWNLOADABLE EBOOKS For readers who can’t wait for hard copy, we offer most of our titles in download- able Adobe PDF form. These eBooks are often available weeks before hard copies, and are priced affordably. SYNGRESS OUTLET Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt books at significant savings. SITE LICENSING Syngress has a well-established program for site licensing our ebooks onto servers in corporations, educational institutions, and large organizations. -
Email Worm Modeling and Defense
Email Worm Modeling and Defense CliffC.Zou∗,DonTowsley†, Weibo Gong∗ ∗Department of Electrical & Computer Engineering †Department of Computer Science University of Massachusetts, Amherst, MA 01003 {czou, gong}@ecs.umass.edu, [email protected] Abstract— Email worms constitute one of the major Internet little differences in terms of the propagation dynamics of email security problems. In this paper, we present an email worm worms. model that accounts for the behaviors of email users by con- Based on the above email worm model, we study the ef- sidering email checking time and the probability of opening email attachments. Email worms spread over a logical network fectiveness of “selective immunization defense”, i.e., selecting defined by email address relationship, which plays an important some most connected email users’ computers to make them role in determining the spreading dynamics of an email worm. immune to an email worm. The results explain why selective Our observations suggest that the node degrees of an email immunization defense against email worm propagation is quite network are heavy-tailed distributed. We compare email worm effective for a power law topology but not so good for the other propagation on three topologies: power law, small world and random graph topologies; and then study how the topology two topologies. affects immunization defense on email worms. The impact of The rest of the paper is organized as follows. Section II the power law topology on the spread of email worms is mixed: surveys related work. Section III presents the email worm email worms spread more quickly on a power law topology than propagation model. -
Contents in This Issue
NOVEMBER 2005 The International Publication on Computer Virus Prevention, Recognition and Removal CONTENTS IN THIS ISSUE 2 COMMENT Virus Bulletin WHEN IRISH EYES ARE thanks the sponsors Is the boot on the other foot? SMILING of VB2005: A busy conference schedule, 3 NEWS combined with the famous warmth Microsoft assists Nigeria in fight against and hospitality of the Irish and a high-tech crime drop or two of the local ‘water’ were Errata – Windows 2003 Server a recipe for success for VB2005 in comparative review Dublin last month. page 14 3 VIRUS PREVALENCE TABLE LANGUAGE LOGGING 4 VIRUS ANALYSIS Using components of Windows multilingual Criss-cross support, it is possible to create a file that will capture keystrokes on a target system while using FEATURES the OS to protect that file from removal or deletion. Masaki Suenaga explains how an IME could be 6 IME as a possible keylogger used as a keylogger. 11 The false positive disaster: anti-virus vs. page 6 WinRar & co. THE TROUBLE WITH WINRAR 13 LETTERS Andreas Marx reports on his extensive false positive testing of anti-virus software. 14 CONFERENCE REPORT page 11 In Dublin’s fair city 16 PRODUCT REVIEW NOD32 for Windows NT/2000/XP/2003/x64 with centralized management This month: anti-spam news and events and 20 END NOTES & NEWS John Graham-Cumming looks at measuring and marketing spam filter accuracy. ISSN 0956-9979 COMMENT ‘It adds insult to the voices of those of us on the systems administrators’ side, which was equal in its representation on the panel.) injury when the So, putting aside the reporting of the subject, I’d like to major media outlets touch again on why accurate reporting is an issue for misrepresent the those of us on the administration side. -
Who Wrote Sobig? Copyright 2003-2004 Authors Page 1 of 48
Who Wrote Sobig? Copyright 2003-2004 Authors Page 1 of 48 Who Wrote Sobig? Version 1.0: 19-August-2003. Version 1.1: 25-August-2003. Version 1.2: 19-November-2003. Version 1.3: 17-July-2004. This sanitized variation for public release. Scheduled for release: 1-November-2004. This document is Copyright 2003-2004 by the authors. The PGP key included within this document identifies the authors. Who Wrote Sobig? Copyright 2003-2004 Authors Page 2 of 48 Table of Contents Table of Contents................................................................................................................................................... 2 1 About This Document..................................................................................................................................... 3 2 Overview........................................................................................................................................................ 5 3 Spam and Virus Release History..................................................................................................................... 6 3.1 Identifying Tools .................................................................................................................................... 6 3.2 Identifying Individuals and Specific Groups ............................................................................................ 6 3.3 Identifying Open Proxies and Usage........................................................................................................ 8 3.4 -
THE CONFICKER MYSTERY Mikko Hypponen Chief Research Officer F-Secure Corporation Network Worms Were Supposed to Be Dead. Turns O
THE CONFICKER MYSTERY Mikko Hypponen Chief Research Officer F-Secure Corporation Network worms were supposed to be dead. Turns out they aren't. In 2009 we saw the largest outbreak in years: The Conficker aka Downadup worm, infecting Windows workstations and servers around the world. This worm infected several million computers worldwide - most of them in corporate networks. Overnight, it became as large an infection as the historical outbreaks of worms such as the Loveletter, Melissa, Blaster or Sasser. Conficker is clever. In fact, it uses several new techniques that have never been seen before. One of these techniques is using Windows ACLs to make disinfection hard or impossible. Another is infecting USB drives with a technique that works *even* if you have USB Autorun disabled. Yet another is using Windows domain rights to create a remote jobs to infect machines over corporate networks. Possibly to most clever part is the communication structure Conficker uses. It has an algorithm to create a unique list of 250 random domain names every day. By precalcuting one of these domain names and registering it, the gang behind Conficker could take over any or all of the millions of computers they had infected. Case Conficker The sustained growth of malicious software (malware) during the last few years has been driven by crime. Theft – whether it is of personal information or of computing resources – is obviously more successful when it is silent and therefore the majority of today's computer threats are designed to be stealthy. Network worms are relatively "noisy" in comparison to other threats, and they consume considerable amounts of bandwidth and other networking resources. -
Virus Bulletin, January 2003
ISSN 0956-9979 13666614 JANUARY 2003 THE INTERNATIONAL PUBLICATION ON COMPUTER VIRUS PREVENTION, RECOGNITION AND REMOVAL Editor: Helen Martin CONTENTS Technical Consultant: Matt Ham Technical Editor: Jakub Kaminski COMMENT If Not Now, Then When? 2 Consulting Editors: VIRUS PREVALENCE TABLE 3 Nick FitzGerald, Independent consultant, NZ Ian Whalley, IBM Research, USA NEWS Richard Ford, Independent consultant, USA 1. Lessons to be Learned 3 Edward Wilding, Data Genetics, UK 2. A Happy New Year 3 LETTERS 4 IN THIS ISSUE: VIRUS ANALYSIS IM a Hot Rod(ok) 5 • Conventional wisdom: Nick FitzGerald reports on recent efforts to extend and formalise the CARO Virus Naming FEATURES Convention. See p.7. 1. A Virus by Any Other Name • It’s the quiet ones you have to watch. Although consid- – Virus Naming Updated 7 ered a ‘minor’ curiosity when it made its initial appearance, 2. Are You Being [Opa]Serv[ed]? 10 W32/Opaserv is fast becoming a major headache. Martin 3. Infected or Affected, Overton looks at the spread of what some consider to be the Mobile Users Are Being Plagued 14 ‘quiet twin’ of Klez. See p.10. INSIGHT • Upwardly mobile? Analyst IDC forecasts the number of Hooked on a Feeling 16 wireless SMS messages soaring from 1.4 billion messages in 2002 to a whopping 42 billion in 2006. However, users PRODUCT REVIEW of SMS devices are increasingly being victimized by both Ahnlab V3Net for Windows Server SE 18 spam and email worms. Mary Landesman investigates the dark side of SMS text messaging that could derail the gravy END NOTES AND NEWS 24 train.