Rhynchonellids from the Bagh Beds

Total Page:16

File Type:pdf, Size:1020Kb

Rhynchonellids from the Bagh Beds RHYNCHONELLIDS FROM THE BAGH BEDS. BY G. W. CI-IIPLONKER, M.Sc. (From the Department oJ Geology, Benares Hindu University, Benc~res.) Received March 10, 1938. (Communicated by Prof. L. Rama Rau, ~t.A., F.C.S.) Introd~fction. THE Rhynehonellids from the Bagh Beds now under investigation were first identified by Duncan 5,~2 with Rhynchonella depressa Sowerby (non d'Orbigny), from the Upper Green Sand of England and Europe. Later on Bose 7 reported, among the rhynchonellids collected by him from these strata, the presence of Rhynchonella plicatiloides Stoliczka, of the Trichinopoly and Ariyalur Groups (Turonian and Senonian) of Southern India. But till now these rhynchonellids were not examined critically with a view to studying their phylogeny, as was done by Buckmang, 1~ and others14,15.24.25.~6.s~ ,to.. in the-case of other rhynchonellid faunas, the results of which are summar- ised by Buckman TM and Thomson. 5~ The methods of securing the internal casts, by removing the tests of fossils, for exposing their internal characters such as the muscle marks, aiad of studying the brachiaI skeletons in serial sections, both transverse and longitudinal, by grinding down the burnt specimens are fully described by Buckman,l~ is Thomson 5~ and Muir- Wood." In the author's opinion, however, serial sections although helpful in a general way are not useful in separating closely allied forms. The absence of restorations of cardinalia or brachial features in spite of multi- tudinous serial sections figured, for example, by Muir-Wood and others, reduces their intrinsic value. The few serial sections here figured are given to show the general features of the internal characters, and not to indicate their distinctions from closely allied forms. The rhynchonellids described here were collected by the late Prof. K. K. Mathur and by the present writer from the neighbourhood of Chirakhan Oat. 22 ~ 22' 30", long. 75 ~ 7' 30"), Indore State, Central India, where these beds were first noticed by Col. Keatinge '7 who referred them to the Creta- ceous. Though rhynchonellids are reported to occur in both the Deola- Chirakhan Marl and the Coralline Limestones,~.~.2s, 40 their relative abund- ance in these different beds is uncertain; because the Limestones are so hard that the fossils contained in them are available only after weathering 300 Rhynchouellids from the Bag; Beds 301 of the rock; and thus they occur mixed up with the fossils from the Marl. The method of burning pieces of the Coralline Limestones, as was done by the Shan Navvy in case of Burma fossils, la might enable one to secure fossils from the Coralline Limestones themselves; but the process is not very desirable, because many of the external characters of the fossils are lost, as happened in the case of the Burma Brachiopoda? 3 Owing to this unfavourable nature of the Limestones, a collection of fossils could not be made bed by bed; and though the phylogeny of the present rhynchonellids could be studie:t, the possible evolutionary stages of their various characters cou'd not be traced successively from one bed to another. Measurements in Rhynchonellids. Since dimensions are often useful along with other characters, in ~eparating brachiopod, especially rhynehonellid and terebratulid species, it is essential that such factors should be.selected for nleasurements as are always obtainable, and that no other factors influence them. As beaks are not always preserved in fossil brachiopods, a measurement intended for the base-line would not be satisfactory if it included the beak; again, if the distance from the dorsal umbo to the middle point of the dorsal fold be chosen as the base-line measurement, species like Burmirhynchia depressa Buckman, ~s with feebly developed fold, cannot be adequately compared with species like Rhynchone3la acuta,la with much everted fold; because the increased dorsal throw of the fold does not necessarily mean an increase in length. So Buckman ~3 chose for the base-line measurement, the distance from the dorsal umbo to the anterior end of lateral comnfissure, i.e., AA' in Yigs. 1 and 2 ; all the other measurements which follow are expressed as percentages of the base-line, and are always in the same order as enumerated here. A second measurement, to express the rostration is taken from the beak to the anterior end of the lateral commissure, i.e., A'B in Figs. 1 and 2. AC in Figs. 1 and 2 measured from the dorsal umbo to the furthest point on the fold repre- sents the degree of protrusion of the fold. The fourth and fifth measure- ments are DD' in Fig. 3 for breadth and EE' in Fig. 3 for thickness. Yet another measurement A'C in Figs. 1 and 4 intended to express the extent of the dorsal projection of the fold may be taken in case of much everted folds as in Rhynchonella acuta; it is, however, not always necessary nor quite easy to take. As is evident from Fig. 2 the base-line AA' and the rostration A'B are measured in a direction of which the obliquity becomes more or less accen- tuated according to the breadth of the test and of the fold. So in the case of species with broad tests and relatively narrow folds and those with 302 G. W. Chiplonker narrow tests and relatively broad fold, the obliquity of the base-line AA' being variable in opposite directions, other dimensions which are reduced to i ~ M I c K ', c"~~ ~' , FIG 2 FIG.I E c FIC ~ rig 4 its percentages, will be affected in opposite senses and will give fairly approxi- mate values for species which may be quite different from each other. Thus, with such a variable base-line one cannot have a true comparison between different species. To give a true comparative significance to these measurements, the base-line must be chosen in a direction independent of all variations in the breadth of the test and of the fold. This is done by taking the base-line measurement along a perpendicular between the parallels passing through the dorsal umbo and through the anterior end of lateral commissure, i.e., A'F in Fig. 2. Similarly, the measurement for the degree of rostration should be taken along a perpendicular between the parallels pa~sing through the beak and through the anterior end of the lateral commissure, i.e., A'G in Fig. 2. While it thus gives a theoretically true base-line, the practical advantage gained is that the protrusion (or retraction) of the fold is expressed true to its value (i.e., above, below or equal to 100 as the case may be). The importance of taking measurements in the new way as described above was very keenly felt while working with the cretaceous rhychonellids with which the writer has been busy for some time past. According to the older system of measurement, which the writer followed in the beginning, the percentage value obtained for the protrusion of the fold was les~ than or equal to 100, unless the fold protruded beyond a certain limit, i.e., unless AC (in Fig. 2) subtended at A' an angle greater than that subtended by AA' at the point C. Thus in some individuals with a weakly developed fold, the percentage value of the protrusion would be equal to or less than 100, though the specimen, when viewed in profile, would actually show the R/~ync~o~ze//ids from t~e Ba~/z Beds 303 fold to be of a protrusive nature. It must, here, be clearly understood that a fold does not necessarily protrude beyond the anterior end of the lateral commissure, even if the percentage value of the protrusion is more than 100; because in such cases the dorsal throw of the fold has, to a certain extent, masked its protrusive nature. The case is too evident to be explained at any greater length and need only be illustrated by a comparative table giving the values as obtained by the two different methods of measurement. A few species from Namyau Beds of Burma, which are already described by Buckman, 13 are chosen for the purpose. The base-line chosen for the rhynchonellids is not suitable in the case of the terebratulids, because in the latter group the anterior end of the lateral commissure is not well defined ; so the base-line and rostration are measured from the middle point of the anterior margin to the dorsal umbo and to the beak respectively. TM It is obvious that the modification here proposed for measurement of the base-line and the rostration is not applicable to tere- bratulids. While working with British Chalk terebratulids, Dr. M. R. Sahni .2 found it useful to have a measurement (which might be used with advantage in rhynchonellids also) for the distance of highest point of the dorsal valve from the beak, i.e., KL in t~ig. 1 ; but since it includes the effect of a second factor, namely the rostration, which is always represented separately, specimens with low beak and the highest point of the dorsal valve away from its umbo, will give values fairly approximate to those of specimens with high beak and the highest point of the dorsal valve nearer the umbo. Moreover, it is not always that beak is preserved in fossils, especially in rhynchoneUids. So, if the distance of the highest point of the dorsal valve is measured from the dorsal umbo, i.e., from K to K', the effect of the second variable factor of the rostration will be eliminated, and as the dorsal umbo is preserved in most cases this measurement can always be obtained.
Recommended publications
  • G. Arthur Cooper
    G. ARTHUR COOPER SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 65 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.' This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropotogy Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the h/larine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the worid. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Mechanics Unlocks the Morphogenetic Puzzle of Interlocking Bivalved Shells
    Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells Derek E. Moultona,1 , Alain Gorielya , and Regis´ Chiratb aMathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom; and bCNRS 5276, LGL-TPE (Le Laboratoire de Geologie´ de Lyon: Terre, Planetes,` Environnement), Universite´ Lyon 1, 69622 Villeurbanne Cedex, France Edited by Sean H. Rice, Texas Tech University, Lubbock, TX, and accepted by Editorial Board Member David Jablonski November 11, 2019 (received for review September 24, 2019) Brachiopods and mollusks are 2 shell-bearing phyla that diverged tal events causing shell injuries. Yet, in all cases the interlocking from a common shell-less ancestor more than 540 million years ago. of the 2 shell edges is tightly maintained. These observations Brachiopods and bivalve mollusks have also convergently evolved imply that the interlocking pattern emerges as the result of epi- a bivalved shell that displays an apparently mundane, yet strik- genetic interactions modulating the behavior of the secreting ing feature from a developmental point of view: When the shell mantle during shell development. is closed, the 2 valve edges meet each other in a commissure that Here, we provide a geometric and mechanical explanation forms a continuum with no gaps or overlaps despite the fact that for this morphological trait based on a detailed analysis of the each valve, secreted by 2 mantle lobes, may present antisymmet- shell geometry during growth and the physical interaction of the ric ornamental patterns of varying regularity and size. Interlock- shell-secreting soft mantle with both the rigid shell edge and ing is maintained throughout the entirety of development, even the opposing mantle lobe.
    [Show full text]
  • Les Brachiopodes De La Collection Eudes-Deslongchamps Du Muséum De Gaillac (Tarn)
    Les Carnets natures, 2014, vol. 1 Les Brachiopodes de la collection Eudes-Deslongchamps Du muséum de Gaillac (Tarn) Yves ALMéRAS, Michel COUGNON, Bernard GUIBBERT & Philippe FAURé Yves Alméras : Université Claude-Bernard-Lyon 1, Département des Sciences de la Terre, Campus universitaire de la Doua, bâtiment Géode, 2 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France. E-mail : yves.almeras0827@ orange.fr Michel Cougnon : E-mail : [email protected] Bernard Guibbert : E-mail : [email protected] Philippe Fauré : Muséum d’Histoire naturelle de Toulouse, allées Jules Guesdes, F-31000 Toulouse. E-mail : [email protected] Résumé Les collections du Musée de Gaillac renferment un important fond de fossiles provenant du Jurassique de Normandie. Ceux-ci furent recueillis à la fin du 19ème siècle par le Dr. Philadelphe Thomas profitant de ses bonnes relations avec le paléontologue normand Eugène Eudes-Deslongchamps. On y trouve en particulier un important lot de Brachiopodes déterminés et étiquetés par cet éminent spécialiste des Brachiopodes jurassiques. La disparition de la collection originale du Musée de Caen sous les bombes des alliés en 1944 en fait toute la valeur car les collections du Musée de Gaillac renferment un certain nombre de topotypes (ou néotypes) éventuels. La présente publication donne une brève description des espèces de Brachiopodes jurassiques conservées à Gaillac. Ces descriptions sont précédées d’une synonymie précisant la diagnose originale de chaque espèce, ainsi que la référence à une récente publication, ce qui permet au lecteur de retrouver toutes les données relatives à ces espèces (variabilité morphologique, caractères internes, âges et répartitions géographiques, principales figurations par les auteurs successifs).
    [Show full text]
  • Talexirhynchia, a New Rhynchonellid Genus from the Jurassic Ethiopian Province of Jordan
    Talexirhynchia, a new rhynchonellid genus from the Jurassic Ethiopian Province of Jordan Howard R. Feldman, Mena Schemm- Gregory, Mark A. Wilson & Fayez Ahmad Paläontologische Zeitschrift Scientific Contributions to Palaeontology ISSN 0031-0220 Paläontol Z DOI 10.1007/s12542-013-0216-y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Pala¨ontol Z DOI 10.1007/s12542-013-0216-y RESEARCH PAPER Talexirhynchia, a new rhynchonellid genus from the Jurassic Ethiopian Province of Jordan Howard R. Feldman • Mena Schemm-Gregory • Mark A. Wilson • Fayez Ahmad Received: 30 May 2013 / Accepted: 28 November 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract A new genus and species of a rhynchonellide scattered on a limy substrate, such as shells and rocks, brachiopod from the Jurassic of Jordan, Talexirhynchia could have served as an attachment site for juveniles. With kadishi gen. et sp. nov., is described.
    [Show full text]
  • Potential Utility of Reflectance Spectroscopy in Understanding The
    www.nature.com/scientificreports OPEN Potential utility of refectance spectroscopy in understanding the paleoecology and depositional history of diferent fossils Swagata Chaudhuri1*, Arindam Guha2, Ajoy K. Bhaumik1 & Komal Pasricha3 The potential of refectance spectroscopy to infer the paleoecological and depositional evolution of diferent micro and macro invertebrate fossils has been evaluated by analyzing their refectance spectra within the spectral domain of 350–2500 nm using the FIELDSPEC3 spectroradiometer. Mineralogical information derived from the rapid and non-destructive spectral analysis has been substantiated using concurrent mineralogical data from conventional geochemical analyses. The diagnostic Fe-crystal feld efect induced spectral features are identifed on the representative spectra of diferent benthic foraminifera. These spectral features are resulted due to the incorporation of Fe during the biomineralization process. These features are absent in planktic foraminifera. The encrustation of Fe-oxides is inferred to be responsible for imprinting the Fe-crystal feld feature in the spectra of micro and macrofossils at 900–1200 nm. Vibrational spectral features of the Al–OH bond are also identifed. Both of these features are an indicator of post-depositional diagenetic history. The presence of Al and Fe in macrofossil shells is also believed to be related to ecological conditions as these elements are biogenically incorporated during shell formation. This study reveals the value of refectance spectroscopy to infer ecological behavior and post-depositional environment of diferent organisms. Refectance spectroscopy deals with the mineralogical analysis of spectral features of natural targets imprinted on their refectance spectra 1–5. It is a rapid, non-destructive analytical technique, which provides information about the mineralogy of rocks or any other natural constituents.
    [Show full text]
  • Palaeontology and Biostratigraphy of the Lower Cretaceous Qihulin
    Dissertation Submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Master of Science: Gang Li Born in: Heilongjiang, China Oral examination: 30 November 2001 Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes (Printed with the support of German Academic Exchange Service) Palaeontology and biostratigraphy of the Lower Cretaceous Qihulin Formation in eastern Heilongjiang, northeastern China Referees: Prof. Dr. Peter Bengtson Prof. Pei-ji Chen This manuscript is produced only for examination as a doctoral dissertation and is not intended as a permanent scientific record. It is therefore not a publication in the sense of the International Code of Zoological Nomenclature. Abstract The purpose of the study was to provide conclusive evidence for a chronostratigraphical assignment of the Qihulin Formation of the Longzhaogou Group exposed in Mishan and Hulin counties of eastern Heilongjiang, northeastern China. To develop an integrated view of the formation, all collected fossil groups, i.e. the macrofossils (ammonites and bivalves) and microfossils (agglutinated foraminifers and radiolarians) have been studied. The low-diversity ammonite fauna consists of Pseudohaploceras Hyatt, 1900, and Eogaudryceras Spath, 1927, which indicate a Barremian–Aptian age. The bivalve fauna consists of eight genera and 16 species. The occurrence of Thracia rotundata (J. de C: Sowerby) suggests an Aptian age. The agglutinated foraminifers comprise ten genera and 16 species, including common Lower Cretaceous species such as Ammodiscus rotalarius Loeblich & Tappan, 1949, Cribrostomoides? nonioninoides (Reuss, 1836), Haplophragmoides concavus (Chapman, 1892), Trochommina depressa Lozo, 1944. The radiolarians comprise ten genera and 17 species, where Novixitus sp., Xitus cf.
    [Show full text]
  • Lithology and Subdivisions of the Jurassic Stump Formation in Southeastern Idaho and Adjoining Areas
    Lithology and Subdivisions of the, . „ - nj,Jurassic ~ - -' - - - - Stump- - - - JL": •-Formation - - - - - in Southeastern Idaho and dning iGEOLOGlCAL SURVEY PROFESSIONAL PAPER 1035-C Lithology and Subdivisions of the Jurassic Stump Formation in Southeastern Idaho and Adjoining Areas By GEORGE N. PIPIRINGOS and RALPH W. IMLAY UNCONFORMITIES, CORRELATION, AND NOMENCLATURE OF SOME TRIASSIC AND JURASSIC ROCKS, WESTERN INTERIOR UNITED STATES GEOLOGICAL SURVEY PROFESSIONAL PAPER 1035-C Marked rapid lateral changes in lithology, fossil content, and thickness of the Stump Formation are due principally to erosion associated with the Cretaceous (K) and Jurassic (]-4) unconformities UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Pipiringos, George Nicholas, 1918- Lithology and subdivisions of the Jurassic stump formation in southeastern Idaho and adjoining areas. (Unconformities, correlation, and nomenclature of some Triassic and Jurassic rocks, western interior United States) (Geological Survey Professional Paper 1035-C) Bibliography: p. 25 1. Geology, Stratigraphic Jurassic. 2. Geology Idaho. 3. Geology The West. 4. Petrology Idaho. 5. Petrology-The West. I. Imlay, Ralph Willard, 1908-joint author. II. Title. HI. Series. IV. Series: United States Geological Survey Professional Paper 1035-C. QE681.P49 551.7'6 78-1687 For sale by the Superintendent of Documents, U.S. Government
    [Show full text]
  • Aubrecht Field Trip Guide 2012
    Journal of Alpine Geology, 54: 1-32, Wien 2012 Paleokarst, neptunian dykes, collapse breccias, mud-mounds and sedimentary unconformities By ROMAN A UBRECHT With 55 figures Field Trip Guide 29th IAS Meeting of Sedimentology Schladming, Austria Addresses of the Author: Department of Geology and Paleontology Faculty of Natural Sciences Comenius University Mlynska dolina - G 842 15 Bratislava Slovakia E-mail: [email protected] Geophysical Institute Slovak Academy of Sciences Dubravska cesta 9 SK-845 28 Bratislava Slovakia Journal of Alpine Geology 54 S. 1-32 Wien 2012 1 AUBRECHT: Paleokarst, neptunian dykes, collapse breccias, mud-mounds and sedimentary unconformities Content Abstract............................................................................................................................................................................2 1. Topics and area of the Field Trip.....................................................................................................................................2 2. Introduction..................................................................................................................................................................4 3. The field trip..................................................................................................................................................................4 3.1. Lower and Middle Miocene transgression on the shores of Vienna Basin and the pre-transgression paleokarst.........4 Stop 1: Devin Castle..............................................................................................................................................5
    [Show full text]
  • Brachiopodes Du Lias Et Du Dogger
    DOCUMENTS DES LABORATOIRES DE GÉOLOGIE DE LA FACULTÉ DES SCIENCES DE LYON N° 5 BRACHIOPODES DU LIAS ET DU DOGGER ESSAI BIBLIOGRAPHIQUE ET CRITIQUE DE PALEONTOLOGIE STRATIGRAPHIQUE par Y. ALMERAS Imprimerie Rhodanienne - LYON 1964 INTRODUCTION Lorsque l'on se propose d'étudier les Brachiopodes du Lias et du Dogger , on est surpris par le grand nombre d'espèces créées aussi bien que par le nombre d'ou­ vrages décrivant des Brachiopodes . Devant un sujet aussi vaste , devant des ef­ forts aussi dispersés , il m'a paru opportun de faire le point : dénombrer les es­ pèces nouvelles d'après les recherches bibliographiques , mettre sur fiches méca- nalytiques leurs diagnoses originales , établir les listes synonymiques critiques est le premier travail à effectuer et il a pour résultat l'obtention de la durée moyenne de vie pour chaque espèce (répartition stratigraphique) . Le . présent ouvrage comprend : - I - Bibliographie des Brachiopodes du Lias et du Dogger (essentielle­ ment en Europe occidentale) , aussi complète que possible . - II - Tableau de répartition stratigraphique des espèces de Brachiopodes (1), d'après la littérature citée au chapitre I. - III - Remarques accompagnant le tableau de répartition stratigraphique. Il s'agit de remarques (que l'on peut rapporter à telle ou telle espèce d'après un numéro mis entre parenthèses après le nom de chaque forme) ayant trait à la répartition stratigraphique elle-même , ou bien de remarques paléontologiques (va­ riabilité de l'espèce , interprétation de l'espèce par différents auteurs , création d'espèces sur des figures d'autres auteurs , changements intervenus dans la dé­ nomination générique de l'espèce) . - IV - Liste des taxons cités .
    [Show full text]
  • The Yellowstone Paleontological Survey
    E PALEONT ON O T LO S G W I O C L A L L E National Y Park The Yellowstone Service Department of the Interior Paleontological Survey SURVEY Vincent L. Santucci Yellowstone Center for Resources National Park Service Yellowstone National Park, Wyoming YCR-NR-98-1 1998 How to cite this document: Santucci, V. L. 1998. The Yellowstone Paleontological Survey. Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming,YCR-NR-98-1. Current address for Vincent L. Santucci is National Park Service, P.O. Box 592, Kemmerer, WY 83101. The Yellowstone Paleontological Survey To Lt. Col. Luke J. Barnett, III “Uncle by blood, brother in spirit!” Vincent L. Santucci Yellowstone Center for Resources National Park Service Yellowstone National Park, Wyoming YCR-NR-98-1 1998 Table of Contents Introduction .................................................................................................... 1 Stratigraphy .................................................................................................... 4 Fossil Chronology........................................................................................... 6 Taxonomy ..................................................................................................... 12 Localities ...................................................................................................... 15 Interpretation ................................................................................................ 19 Paleontological Resource Management.......................................................
    [Show full text]
  • (Bajocian-Oxfordian) Sundance Seaway in the Bighorn Basin Of
    COMMUNITY PALEOECOLOGY AND BIOGEOGRAPHY OF THE JURASSIC (BAJOCIAN-OXFORDIAN) SUNDANCE SEAWAY IN THE BIGHORN BASIN OF WYOMING AND MONTANA, U.S.A. by KRISTOPHER MICHAEL KUSNERIK (Under the Direction of Steven M. Holland) ABSTRACT The composition of marine communities is controlled by colonization of newly available habitat, development of community associations, and community variation in response to a gradient of environmental conditions. The Jurassic Sundance Seaway of the Bighorn Basin, Wyoming and Montana provides an ideal case study for determining the role of these factors on community composition and variation. The global provenance of taxa found in the Seaway support reconstructions depicting a single, northern entranceway. This, along with the Seaway’s length and shallow depth, likely caused restrictions on taxa able to enter the Seaway under normal conditions, leading to communities with low diversity and low evenness. Ordination analysis suggests the primary factor controlling community composition was a complex gradient related to water depth. Secondary factors include substrate, salinity, and a carbonate to siliciclastic transition. These patterns are typical of Jurassic marine communities globally. INDEX WORDS: Sundance Formation, Gypsum Spring Formation, fossils, quantitative analysis, ordination analysis COMMUNITY PALEOECOLOGY AND BIOGEOGRAPHY OF THE JURASSIC (BAJOCIAN-OXFORDIAN) SUNDANCE SEAWAY IN THE BIGHORN BASIN OF WYOMNG AND MONTANA, U.S.A. by KRISTOPHER MICHAEL KUSNERIK BS, The College of William & Mary, 2013 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2015 © 2015 Kristopher Michael Kusnerik All Rights Reserved COMMUNITY PALEOECOLOGY AND BIOGEOGRAPHY OF THE JURASSIC (BAJOCIAN-OXFORDIAN) SUNDANCE SEAWAY IN THE BIGHORN BASIN OF WYOMING AND MONTANA by KRISTOPHER MICHAEL KUSNERIK Major Professor: Steven M.
    [Show full text]
  • Mesozoic Litho- and Magneto-Stratigraphic Evidence from the Central Tibetan Plateau for Megamonsoon Evolution and Potential Evaporites
    Gondwana Research 37 (2016) 110–129 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Mesozoic litho- and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites Xiaomin Fang a,⁎, Chunhui Song b, Maodu Yan a, Jinbo Zan a, Chenglin Liu c, Jingeng Sha d,WeilinZhanga, Yongyao Zeng b, Song Wu b, Dawen Zhang a a CAS Center for Excellence in Tibetan Plateau Earth Sciences and Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China b School of Earth Sciences & Key Laboratory of Western China's Mineral Resources of Gansu Province, Lanzhou University, Lanzhou 730000, China c MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China d Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, No.39 East Beijing Road, Nanjing 210008, China article info abstract Article history: The megamonsoon was a striking event that profoundly impacted the climatic environment and related mineral Received 3 September 2015 sources (salts, coals and oil-gases) in the Mesozoic. How this event impacted Asia is unknown. Here, we firstly Received in revised form 19 May 2016 reported a Mesozoic stratigraphic sequence in the northern Qiangtang Basin, in the central Tibetan Plateau, Accepted 21 May 2016 based on lithofacies and chronologies of paleontology and magnetostratigraphy. How the planetary and Available online 02 July 2016 megamonsoon circulations controlled the Asian climate with time has been recorded. Using the basic principles Handling Editor: Z.M.
    [Show full text]