Pergande) (Thysanoptera: Thripidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes
Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna, 2019 DISCLAIMER The material in this document has been supplied by the authors. The views expressed remain the responsibility of the authors and do not necessarily reflect those of the government(s) or the designating Member State(s). In particular, the FAO, IAEA, nor any other organization or body sponsoring the development of this document can be held responsible for any material reproduced in the document. The proper citation for this document is: FAO/IAEA. 2019. Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes, A. Villaseñor, S. Flores, S. E. Campos, J. Toledo, P. Montoya, P. Liedo and W. Enkerlin (eds.), Food and Agriculture Organization of the United Nations/International Atomic Energy Agency. Vienna, Austria. 43 pp. Use of Entomopathogenic Fungi for Fruit Fly Control in Area- wide SIT Programmes Antonio Villaseñor IAEA/IPCS Consultant San Pedro La Laguna, Nayarit, México Salvador Flores Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Sergio E. Campos Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Jorge Toledo El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México Pablo Montoya Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Pablo Liedo El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México Walther Enkerlin Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna, 2019 FOREWORD Effective fruit fly control requires an integrated pest management approach which may include the use of area-wide sterile insect technique (SIT). -
Introduction to Mycology
INTRODUCTION TO MYCOLOGY The term "mycology" is derived from Greek word "mykes" meaning mushroom. Therefore mycology is the study of fungi. The ability of fungi to invade plant and animal tissue was observed in early 19th century but the first documented animal infection by any fungus was made by Bassi, who in 1835 studied the muscardine disease of silkworm and proved the that the infection was caused by a fungus Beauveria bassiana. In 1910 Raymond Sabouraud published his book Les Teignes, which was a comprehensive study of dermatophytic fungi. He is also regarded as father of medical mycology. Importance of fungi: Fungi inhabit almost every niche in the environment and humans are exposed to these organisms in various fields of life. Beneficial Effects of Fungi: 1. Decomposition - nutrient and carbon recycling. 2. Biosynthetic factories. The fermentation property is used for the industrial production of alcohols, fats, citric, oxalic and gluconic acids. 3. Important sources of antibiotics, such as Penicillin. 4. Model organisms for biochemical and genetic studies. Eg: Neurospora crassa 5. Saccharomyces cerviciae is extensively used in recombinant DNA technology, which includes the Hepatitis B Vaccine. 6. Some fungi are edible (mushrooms). 7. Yeasts provide nutritional supplements such as vitamins and cofactors. 8. Penicillium is used to flavour Roquefort and Camembert cheeses. 9. Ergot produced by Claviceps purpurea contains medically important alkaloids that help in inducing uterine contractions, controlling bleeding and treating migraine. 10. Fungi (Leptolegnia caudate and Aphanomyces laevis) are used to trap mosquito larvae in paddy fields and thus help in malaria control. Harmful Effects of Fungi: 1. -
What Are Fungi?
Medical Mycology (BIOL 4849) Summer 2007 Dr. Cooper What are Fungi? Fungi in the Tree of Life • Living organisms on earth first arose about 3.5 billion years ago – Prokaryotic – Anaerobic • Oldest fossils of fungi are about 460 million years old • Coincides with the rapid expansion of multi-cellular organisms • Major multicellular eukaryotes are divided into Kingdoms – Animals – Plants – Fungi • Each of these three kingdoms differ in their basic cellular structure and mode of nutrition (defined by Whittaker, 1969) – Plants - photosynthetic, cellulosic cell walls – Animals - digestive systems, wall-less cells – Fungi - absorptive nutrition, chitinous walls • The estimates for the expansion of multicellular organisms are based upon phylogenetic analyses of Carl Woese – Examined ribosomal RNA (rRNA) • Present in prokaryotes and eukaryotes • Relatively stable, but changes occur over time; thereby acting as a chronometer – Distinguished three separate groups (Domains) of living organisms • Domains - rRNA sequence differences correlate with differences in cellular structure and physiology – Bacteria - “true bacteria” – Archaea - “ancient prokaryotes” – Eucarya - eukaryotes • Taxonomic grouping of “Kingdom” lies beneath that of “Domain” • Though the fossil evidence suggests fungi were present on earth about 450 million years ago, aquatic fungi (Phylum Chytridiomycota) most likely were present about a million years before this time Page 1 of 15 Copyright © 2007 Chester R. Cooper, Jr. Medical Mycology (BIOL 4849) Lecture 1, Summer 2007 • About -
Entomopathogenic Fungi and Bacteria in a Veterinary Perspective
biology Review Entomopathogenic Fungi and Bacteria in a Veterinary Perspective Valentina Virginia Ebani 1,2,* and Francesca Mancianti 1,2 1 Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy; [email protected] 2 Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy * Correspondence: [email protected]; Tel.: +39-050-221-6968 Simple Summary: Several fungal species are well suited to control arthropods, being able to cause epizootic infection among them and most of them infect their host by direct penetration through the arthropod’s tegument. Most of organisms are related to the biological control of crop pests, but, more recently, have been applied to combat some livestock ectoparasites. Among the entomopathogenic bacteria, Bacillus thuringiensis, innocuous for humans, animals, and plants and isolated from different environments, showed the most relevant activity against arthropods. Its entomopathogenic property is related to the production of highly biodegradable proteins. Entomopathogenic fungi and bacteria are usually employed against agricultural pests, and some studies have focused on their use to control animal arthropods. However, risks of infections in animals and humans are possible; thus, further studies about their activity are necessary. Abstract: The present study aimed to review the papers dealing with the biological activity of fungi and bacteria against some mites and ticks of veterinary interest. In particular, the attention was turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and, regarding ticks, also pets. -
The Bee Line May 2018 Newsletter of the Oregon State Beekeepers Association
Volume 43 Number 4 The Bee Line May 2018 Newsletter of the Oregon State Beekeepers Association USING FUNGI TO IMPROVE HONEY BEE HEALTH Nicholas Naeger and Jennifer Han, Washington State University The Washington State University bee research team has been developing new tools to help bees and beekeepers tackle the current disease issues. In addition to breeding honey bees well suited to the Pacific Northwest and continuing our honey bee disease and diagnostics work, the WSU team has been investigating novel uses of fungi for the improvement of bee health. IN THIS ISSUE . Fungi are perhaps the most hidden and overlooked group in the vast web of life that Fungi for Good Health 1 stretches across this planet. More closely related to animals than they are to plants President’s Message 2 or bacteria, fungi have been called the unseen orchestrators of ecosystems. Many fungi Saying Goodbye 3 spend the vast majority of their lives hidden from view underground or inside plant Bee Events 5 material, and many other fungi like yeasts never grow large enough to be seen with the naked eye. They are vital decomposers allowing for faster recycling of nutrients Regional News 5 back into the food web, and most land plants develop associations with symbiotic Keeping Bees in May 11 fungi in their roots. Microscopic fungi are used in commercial industry to make Classified Ad 14 products as diverse as soft drinks, antibiotics, and blue jeans, and perhaps they will Board & Affiliated Assns 15 play a role in helping bees combat honey bee viruses and Varroa mites. -
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
Biology of Fungi, Lecture 2: the Diversity of Fungi and Fungus-Like Organisms
Biology of Fungi, Lecture 2: The Diversity of Fungi and Fungus-Like Organisms Terms You Should Understand u ‘Fungus’ (pl., fungi) is a taxonomic term and does not refer to morphology u ‘Mold’ is a morphological term referring to a filamentous (multicellular) condition u ‘Mildew’ is a term that refers to a particular type of mold u ‘Yeast’ is a morphological term referring to a unicellular condition Special Lecture Notes on Fungal Taxonomy u Fungal taxonomy is constantly in flux u Not one taxonomic scheme will be agreed upon by all mycologists u Classical fungal taxonomy was based primarily upon morphological features u Contemporary fungal taxonomy is based upon phylogenetic relationships Fungi in a Broad Sense u Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style u At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria u The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships u These relationships are: Q Kingdom Fungi - true fungi Q Kingdom Straminipila - “water molds” Q Kingdom Mycetozoa - “slime molds” u Kingdom Fungi (Mycota) Q Phylum: Chytridiomycota Q Phylum: Zygomycota Q Phylum: Glomeromycota Q Phylum: Ascomycota Q Phylum: Basidiomycota Q Form-Phylum: Deuteromycota (Fungi Imperfecti) Page 1 of 16 Biology of Fungi Lecture 2: Diversity of Fungi u Kingdom Straminiplia (Chromista) -
Metarhizium Brunneum
Evaluating the efficacy of the entomopathogenic fungi Metarhizium brunneum against Varroa destructor, a common honey bee pest Jennifer Han1, Nick Naeger2, Brandon Hopkins2, Paul Stamets3, Steve Sheppard2, Lori Carris1 1Department of Plant Pathology, Washington State University, 2Department of Entomology, Washington State University, 3Fungi Perfecti Introduction Results Normalized Mite Fall The European honey bee (Apis mellifera) is the most important agricultural crop pollinator in Control Pre-Conidial Sporulating 0.16 the United States, contributing over $15 billion to the agricultural economy. Honey bees are * 0.14 facing a variety of dangers, however, the most common reported cause for colony loss is Varroa * destructor, an ectoparasitic mite. Although synthetic chemical acaricides are available for 0.12 varroa control, there are documented cases of mites resistant to these chemicals. 0.1 0.08 Metarhizium brunneum is a common soil-borne entomopathogenic fungi. It is commercially 0.06 available, EPA registered, and determined safe for human contact. Although previous studies 0.04 have shown M. brunneum can infect and kill varroa without harming the honey bee, virulence 0.02 varies between strains and application methods. Additionally, conidia, the infectious agent, 0 Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 quickly loses viability at high temperatures; bees maintain an internal hive temperature around P-value Control vs. 35℃ which is much higher than the optimum growth temperature for M. brunneum. 0.27 0.15 *0.03 *0.01 0.14 0.37 Sticky board with mites and MEA agar Sporulating Control vs. debris 0.93 0.32 0.51 0.22 0.59 0.67 Objective Pre-Conidial 1. -
Classification of the Fungi Lmperfecti
Proceedings of the Iowa Academy of Science Volume 63 Annual Issue Article 28 1956 Classification of the ungiF lmperfecti Roger D. Goos State University of Iowa Let us know how access to this document benefits ouy Copyright ©1956 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Goos, Roger D. (1956) "Classification of the ungiF lmperfecti," Proceedings of the Iowa Academy of Science, 63(1), 311-320. Available at: https://scholarworks.uni.edu/pias/vol63/iss1/28 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Goos: Classification of the Fungi lmperfecti Classification of the Fungi lmperfecti By RocER D. Goos In recent years, some dissatisfaction has been expressed concern ing the commonly used classification of the Fungi Imperfecti. The discontent with the present system has arisen from the fact that the characteristics used to delimit taxa (i.e. spore color and sep tation, arrangement of the conidiophores, etc.) often results in the separation of morphologically similar genera, while at the same time placing together what seem to be unrelated genera. The present system was proposed by Saccardo when the major interest in the Fungi Imperfecti was in their role as plant pathogens. Now these fungi are being studied more intensively than ever be fore, not only as plant pathogens, but also with reference to the other roles which they play in nature. -
NK003-20170612006.Pdf
BioControl (2010) 55:89–102 DOI 10.1007/s10526-009-9238-5 Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors Jason Baverstock • Helen E. Roy • Judith K. Pell Received: 20 July 2009 / Accepted: 5 October 2009 / Published online: 29 October 2009 Ó International Organization for Biological Control (IOBC) 2009 Abstract The behavioural response of an insect to Keywords Entomopathogenic fungi Á a fungal pathogen will have a direct effect on the Attraction Á Avoidance Á Transmission Á efficacy of the fungus as a biological control agent. In Vectoring Á Autodissemination this paper we describe two processes that have a significant effect on the interactions between insects and entomopathogenic fungi: (a) the ability of target Introduction insects to detect and avoid fungal pathogens and (b) the transmission of fungal pathogens between host A co-evolutionary arms race occurs between insects insects. The behavioural interactions between insects and their pathogens. Whereas selection on the and entomopathogenic fungi are described for a pathogen is for greater exploitation of the host, variety of fungal pathogens ranging from commer- selection on the host is for greater exclusion of the cially available bio-pesticides to non-formulated pathogen (Bush et al. 2001; Roy et al. 2006). The naturally occurring pathogens. The artificial manip- evolution of this behaviour and a description of some ulation of insect behaviour using dissemination of the diverse interactions that occur between arthro- devices to contaminate insects with entomopatho- pods and fungi have recently been described in a genic fungi is then described. The implications of review by Roy et al. -
BEAUVERIA and OTHER FUNGI: TOOLS to HELP MANAGE COFFEE BERRY BORER, NOT MAGIC BULLETS Stefan T
BEAUVERIA AND OTHER FUNGI: TOOLS TO HELP MANAGE COFFEE BERRY BORER, NOT MAGIC BULLETS Stefan T. Jaronski USDA Agricultural Research Service Northern Plains Research Laboratory Sidney, Montana Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer. 1 What I hope to tell you today 1. Some basic information about these fungi 2. Issues facing successful use of fungi 3. Thoughts about usefulness of Beauveria for CBB management (vs. control!) 2 Entomopathogenic Ascomycetes / Hyphomycetes Our Cast of Characters Beauveria bassiana & B. brongniartti Metarhizium anisopliae & M. acridum Lecanicillium longisporium, L muscarium, L sp. (Verticillium lecanii) Hirsutella thompsoni Isaria (Paecilomyces) fumosorosea & I. farinosus Nomuraea rileyi Aschersonia aleyrodis These fungi have been commercialized somewhere, at sometime. This is the primary “cast of characters” While historically all these fungi were classed in the Deuteromycetes, the Fungi Imperfecti, recent molecular tools have allowed scientist to associate these species with “perfect” stages all are the imperfect, assexual stages of Ascomycetes. My comments today will be generally restricted to the fungus Beauveria bassiana (in white) because that is the one in which you are most interested. 3 Mycoinsecticides: 110 active, commercial products in 2006 L. longisporium L. muscarium H. thompsonii 3% I. farinosus 2% 1% 1% I. fumosorosea 6% M. acridum 3% B. bassiana 40% M. anisopliae 39% B. brongniartii 5% Faria and Wraight Biological Control 43 (2007) 237–256 These fungi have been commercialized in a lot of countries and there are a lot of fungal products. -
Western Flower Thrips Control in Strawberry
FACTSHEET 14/15 Soft Fruit Projects SF 80, SF 90 and Defra Horticulture LINK Project HL01107 Scott Raffle, AHDB Horticulture, Jude Bennison, ADAS, Jean Fitzgerald, East Malling Research and Clare Sampson, Keele University. Western flower thrips control in strawberry Western flower thrips (WFT) cause significant financial losses for strawberry growers in the United Kingdom. This factsheet provides information on the pest, the damage it causes to strawberries and the results of AHDB funded research in Projects SF 80, SF 90, SF 120 and a study of control in commercial strawberry production sites, which have led to a series of control guidelines. 1. WFT feeding in strawberry flower 2. Damage to strawberry caused by WFT feeding Action points Most successful control of WFT in commercial • Phytoseiulus persimilis is used as the main control method strawberry production has been found where: for two spotted spider mite. • Strawberry crops are only grown for one season. • Crop protection programmes that are harmful to predators are avoided. • Well-managed regular predator release strategies are used in all crops from either before flowering or from the • Advice on biological control programmes is sought from an first flowers, using Neoseiulus cucumeris, combined with adviser who is experienced in using predators. one or more of: Stratiolaelaps scimitus, Orius species • Product compatibility tables are consulted to check if (later in the season when temperatures are high enough proposed crop protection products are likely to be harmful for establishment)