Brønsted and Lewis Solid Acid Catalysts in the Valorization of Citronellal

Total Page:16

File Type:pdf, Size:1020Kb

Brønsted and Lewis Solid Acid Catalysts in the Valorization of Citronellal catalysts Article Brønsted and Lewis Solid Acid Catalysts in the Valorization of Citronellal Federica Zaccheria 1, Federica Santoro 1, Elvina Dhiaul Iftitah 2 and Nicoletta Ravasio 1,* 1 CNR Institute of Molecular Science and Technology, Via Golgi 19, 20133 Milano, Italy; [email protected] (F.Z.); [email protected] (F.S.) 2 Chemistry Department Faculty of Science, Brawijaya University Jl. Veteran, Malang 65145, Indonesia; [email protected] * Correspondence: [email protected]; Tel.: +39-02-5031-4382 Received: 30 July 2018; Accepted: 12 September 2018; Published: 22 September 2018 Abstract: Terpenes are valuable starting materials for the synthesis of molecules that are of interest to the flavor, fragrance, and pharmaceutical industries. However, most processes involve the use of mineral acids or homogeneous Lewis acid catalysts. Here, we report results obtained in the liquid-phase reaction of citronellal with anilines under heterogeneous catalysis conditions to give tricyclic compounds with interesting pharmacological activity. The terpenic aldehyde could be converted into octahydroacridines with a 92% yield through an intramolecular imino Diels–Alder reaction of the imine initially formed in the presence of an acidic clay such as Montmorillonite KSF. Selectivity to the desired product strongly depended on the acid sites distribution, with Brønsted acids favoring selectivity to octahydroacridine and formation of the cis isomer. Pure Lewis acids such as silica–alumina with a very low amount of alumina gave excellent results with electron-rich anilines like toluidine and p-anisidine. This protocol can be applied starting directly from essential oils such as kaffir lime oil, which has a high citronellal content. Keywords: solid acids; acidic clays; terpenes; citronellal; octahydroacridines; heterogeneous catalysis 1. Introduction Terpenes represent a class of natural compounds suited for the synthesis of several types of molecules useful for the industrial production of intermediates for fragrances, flavors, and pharmaceuticals [1]. α-pinene, e.g., one of the main components of turpentine, can be used as a starting material for the synthesis of β-santalol and sandalwood fragrances. These are valuable alternatives to toxic nitro-musks and low-biodegradability polycyclic musks that are among the commonly used fragrances in European laundry detergents, fabric softeners, cleaning agents, and cosmetic products, therefore ubiquitously present in the aquatic environment [2]. In previous years, the use of terpenes has been widely investigated in the polymer industry because of the strong need for renewable and biodegradable materials in this sector [3,4]. Among terpenic molecules, citronellal, citral, limonene, carene, and pinene are common because of their large occurrence in essential oils and in oils derived from agro-industrial residues. Citronellal and citral offer noteworthy opportunities in synthetic strategies because of their condensation and addition reactions by virtue of their unsaturated aldehydic structure. The abundance of these two molecules in essential oils such as kaffir lime, citronella, lemongrass, and krangean oil, promotes their use as raw materials for the sustainable synthesis of different chemicals, specifically N-containing ones. A Schiff base with antibacterial activity was recently synthesized through acid catalysis from citronellal, [5] while benzimidazole derivatives of both aldehydes were obtained by using microwave irradiation [6]. In this case, the aldehyde reacts with o-phenylenediamine to give the benzimidazol Catalysts 2018, 8, 410; doi:10.3390/catal8100410 www.mdpi.com/journal/catalysts Catalysts 2018,, 8,, xx FORFOR PEERPEER REVIEWREVIEW 2 of 10 Catalysts 2018, 8, 410 2 of 10 obtained by using microwave irradiation [6]. In this case,, the aldehyde reacts with o-phenylenediamine to give the benzimidazol moiety, but when an aromatic monoamine reacts with moiety,an unsaturated but when aldehyde an aromatic it gives monoamine an N-aryl imine reacts that with can an further unsaturated react with aldehyde the electron it gives-rich an N-arylalkene iminemoiety that through can further the Povarov react with reaction, the electron-rich which isis alkene anan intramolecularintramolecular moiety through iminoimino the Povarov Diels–Ald reaction,er reaction which [7 is] an(Scheme intramolecular 1). imino Diels–Alder reaction [7] (Scheme1). HN N HN N SchemeScheme 1.1. General intramolecular PovarovPovarov reaction.reaction. ThisThis classclass ofof organicorganic reactionsreactions hashas attractedattracted interestinterest asas aa usefuluseful routeroute ofof accessaccess toto N-containingN-containing polycyclicpolycyclic structures,structures, such asas substituted tetrahydroquinoline and octahydroacridineoctahydroacridine (OHAs) derivatives.derivatives. OctahydroacridineOctahydroacridine systemssystems are are an an interesting interesting class class of of biologically biologically active active molecules molecules in the in fieldthe field of drugs of drugs and pharmaceuticals, and pharmaceuticals, acting as acting gastric as acid gastric secretion acid inhibitors secretion [ 8inhibitors] in the prevention [8] inin thethe of senileprevention dementia of senile [9]. dementia [9]. DespiteDespite severalseveral varyingvarying methodsmethods available offering access to thethe octahydroacridineoctahydroacridine skeleton,skeleton,, suchsuch as as the the Beckmann Beckmann rearrangement rearrangement of oxime of oxime sulfonat sulfonate,e,, [10] the [10 catalytic] the catalytic hydrogenation hydrogenation of acridine of,, acridine,[11] and Friedel [11] and–Crafts Friedel–Crafts acylation,, acylation,[12] the simplest [12] the one simplest remains one the remains acid catalyzed the acid imino catalyzed Diels– iminoAlder Diels–Alderreaction of 2-azadienes. reaction of Because 2-azadienes. of their Becausepoor reactivity of their in poorthe Povarov reactivity reaction, in the 2- Povarovazadienes reaction, need to 2-azadienesbe activated need through to be coordination activated through with acidic coordination catalysts with that acidic enhance catalysts their that electron enhance-defici theirent electron-deficientcharacter. Both Lewis character. and Brønsted Both Lewis acids have and Brønstedbeen used acids,, but,, havedespite been their used, effectiveness but, despite,, many their of effectiveness,these catalysts many show of disadvantages these catalysts,, showsuch as disadvantages, multistep procedures, such as multistep long reaction procedures, times long,, useuse reaction ofof inertinert times,atmosphere, use of inertexpensiveness, atmosphere, and expensiveness, tedious work and- tediousup. There work-up.fore, developing Therefore, developinggreen and green efficient and efficientcatalysts catalysts for this reaction for this reactionis an important is an important challenge. challenge. AnAn efficient efficient synthesis synthesis of of OHAs OHAs starts starts from from citronellal citronellal and and N-arylamines N-arylamines [13,14 [13] (Scheme,14] (Scheme 2). This2). ThisLewis Lewis-acid-acid catalyzed catalyzed imino imino Diels– Diels–AlderAlder reaction reaction is the is most the mostatom- atom-economiceconomic way to way OHAs, to OHAs, with withhigh highyields yields and, and,in some in some cases, cases, high highstereoselectivity. stereoselectivity. R + O NH2 O NH2 N H Scheme 2. Reaction of citronellal and anilines into the corresponding octahydroacridine.octahydroacridine. During our recent studies on reductive amination of ketones, [15] the attempts to synthesize During our recent studies on reductive amination of ketones,, [15] the attempts to synthesize amine derivatives of C=O-containing terpenes led us to obtain OHAs structures. Herein, we report amine derivatives of C=O-containing terpenes led us to obtain OHAs structures. Herein, we report our results about the synthesis of OHAs from citronellal promoted by solid acid catalysts. our results about the synthesis of OHAs from citronellal promoted by solid acid catalysts. 2. Results and Discussion 2.. Results and Discussion Previously, we have reported on the use of pre-reduced Cu/SiO2 (Cu/Si) catalysts in the Direct Previously, we have reported on the use of pre-reduced Cu/SiO22 (Cu/Si) catalysts in the Direct Reductive Amination (DRA) of aromatic ketones [15]. This is a significant reaction allowing one to Reductive Amination (DRA) of aromatic ketones [15]. This is a significant reaction allowing one to obtain secondary amines in one step starting from a ketone, which is still carried out in the presence obtain secondary amines in one step starting from a ketone,, which isis stillstill carriedcarried outout inin thethe presence of unfavorable reagents such as NaBH3CN or NaBH(OAc)3. The use of a heterogeneous catalyst of unfavorable reagents such as NaBH33CN or NaBH(OAc)33.. TheThe useuse ofof aa heterogeneousheterogeneous catalystcatalyst Catalysts 2018, 8, 410 3 of 10 Catalysts 2018, 8, x FOR PEER REVIEW 3 of 10 basedbased on a non non-noble-noble metal can yield up to 98% of the amine at 100 100 °C◦C in in a a few few hours. hours. Unfortunately, Unfortunately, under the same conditions conditions,, aliphatic terpenic ketones,ketones, in particular menthone, a major component of dementholized mintmint oil,oil, reactreact slowly,slowly, requiring requiring a a longer longer time time span, span although, although selectivity selectivity to to the the amine amine is excellentis excellent (Scheme (Scheme3). 3). O NH2 Cu/SiO2
Recommended publications
  • Topic 5: Acids and Bases
    Topic 5: Acids And BAses Topic 5: Acids and Bases C12-5-01 Outline the historical development of acid-base theories. Include: the Arrhenius, Brønsted-Lowry, and Lewis theories C12-5-02 Write balanced acid-base chemical equations. Include: conjugate acid-base pairs and amphoteric behaviour C12-5-03 Describe the relationship between the hydronium and hydroxide ion concentrations in water. Include: the ion product of water, Kw C12-5-04 Perform a laboratory activity to formulate an operational definition of pH . C12-5-05 Describe how an acid-base indicator works in terms of colour shifts and Le Ch âtelier’s principle. C12-5-06 Solve problems involving pH. C12-5-07 Distinguish between strong and weak acids and bases. Include: electrolytes and non-electrolytes C12-5-08 Write the equilibrium expression ( Ka or Kb) from a balanced chemical equation. C12-5-09 Use Ka or Kb to solve problems for pH, percent dissociation, and concentration. C12-5-10 Perform a laboratory activity to determine the concentration of an unknown acid or base, using a standardized acid or base. C12-5-11 Predict whether an aqueous solution of a given ionic compound will be acidic, basic, or neutral, given the formula. suggested Time: 14 hours Grade 12 C hemistry • Topic 5: Acids and Bases SpeCifiC Learning OutCOmeS Topic 5: C12-5-01: Outline the historical development of acid-base theories. Acids and include: the arrhenius, Br ønsted-Lowry, and Lewis theories Bases C12-5-02: Write balanced acid-base chemical equations. include: conjugate acid-base pairs and amphoteric behaviour (2 hours) 1 2 uggesTions for nsTrucTion 0 0 s i - - 5 5 - - Entry-Level Knowledge 2 2 1 1 In Grade 10 Science (S2-2-08), students experimented to classify acids and bases C C : : according to their characteristics.
    [Show full text]
  • Tailoring the Surface Area and the Acid–Base Properties of Zro2 for Biodiesel Production from Nannochloropsis Sp
    www.nature.com/scientificreports OPEN Tailoring the surface area and the acid–base properties of ZrO2 for biodiesel production from Nannochloropsis sp. Nurul Jannah Abd Rahman1, Anita Ramli1*, Khairulazhar Jumbri1,3 & Yoshimitsu Uemura2,3 Bifunctional heterogeneous catalysts have a great potential to overcome the shortcomings of homogeneous and enzymatic catalysts and simplify the biodiesel production processes using low-grade, high-free-fatty-acid feedstock. In this study, we developed ZrO2-based bifunctional heterogeneous catalysts for simultaneous esterifcation and transesterifcation of microalgae to biodiesel. To avoid the disadvantage of the low surface area of ZrO2, the catalysts were prepared via a surfactant-assisted sol-gel method, followed by hydrothermal treatments. The response surface methodology central composite design was employed to investigate various factors, like the surfactant/ Zr molar ratio, pH, aging time, and temperature on the ZrO2 surface area. The data were statistically analyzed to predict the optimal combination of factors, and further experiments were conducted for verifcation. Bi2O3 was supported on ZrO2 via the incipient wetness impregnation method. The catalysts were characterized by a variety of techniques, which disclosed that the surfactant-assisted ZrO2 nanoparticles possess higher surface area, better acid–base properties, and well-formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters (73.21%) was achieved using Bi2O3/ ZrO2(CTAB), and the catalytic activity of the developed catalysts was linearly correlated with the total densities of the acidic and basic sites. The mechanism of the simultaneous reactions was also discussed. Biodiesel is an attractive alternative source of energy owing to its renewability, biodegradability, sustainability, and non-toxicity1.
    [Show full text]
  • Physical Organic Chemistry
    CHM 8304 Physical Organic Chemistry Catalysis Outline: General principles of catalysis • see section 9.1 of A&D – principles of catalysis – differential bonding 2 Catalysis 1 CHM 8304 General principles • a catalyst accelerates a reaction without being consumed • the rate of catalysis is given by the turnover number • a reaction may alternatively be “promoted” (accelerated, rather than catalysed) by an additive that is consumed • a heterogeneous catalyst is not dissolved in solution; catalysis typically takes place on its surface • a homogeneous catalyst is dissolved in solution, where catalysis takes place • all catalysis is due to a decrease in the activation barrier, ΔG‡ 3 Catalysts • efficient at low concentrations -5 -4 -5 – e.g. [Enz]cell << 10 M; [Substrates]cell < 10 - 10 M • not consumed during the reaction – e.g. each enzyme molecule can catalyse the transformation of 20 - 36 x 106 molecules of substrate per minute • do not affect the equilibrium of reversible chemical reactions – only accelerate the rate of approach to equilibrium end point • most chemical catalysts operate in extreme reaction conditions while enzymes generally operate under mild conditions (10° - 50 °C, neutral pH) • enzymes are specific to a reaction and to substrates; chemical catalysts are far less selective 4 Catalysis 2 CHM 8304 Catalysis and free energy • catalysis accelerates a reaction by stabilising a TS relative to the ground state ‡ – free energy of activation, ΔG , decreases – rate constant, k, increases • catalysis does not affect the end point
    [Show full text]
  • Aldehydes Can React with Alcohols to Form Hemiacetals
    340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess.
    [Show full text]
  • Isomerization of Alpha-Pinene Oxide Over Solid Acid
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS ISOMERIZATION OF ALPHA-PINENE OXIDE OVER SOLID ACID CATALYSTS D. B. R. A. DE SILVA (B.Sc. (Hons.), UNIVERSITY OF PERADENIYA, SRI LANKA) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2003 Acknowledgements First and foremost, I would like to thank my supervisor A/P G.K. Chuah, for her constant encouragement, invaluable guidance, patience and understanding throughout the length of my candidature in NUS. I am also grateful to A/P Stephan Jaenicke, for his invaluable guidance. I would also like to thank all the other members of our research group for their kind help and encouragement during my candidature. Thanks are due to my parents and wife for their understanding, encouragement and support. Finally, I wish to express my gratitude to the National University of Singapore for awarding me a valuable research scholarship. i TABLE OF CONTENTS PAGE Acknowledgement i Table of Contents ii Summary v List of Tables vii List of Figures ix Chapter I Introduction 1.1 Mesoporous Molecular Sieves 1 1.1.1 Catalytic Application of Mesoporous Materials 2 1.1.2 Modification of Mesoporous Materials 2 1.1.3 Micro- and Mesoporous Materials 4 1.2 Environment Impact of Solid Catalysts 6 1.3 Solid Acid and Catalysts 8 1.4 Supported Oxide Catalysts 9 1.4.1 Metal Oxide Supported Boron Oxide 13 1.4.2 SiO2-Supported ZrO2 Catalysts 15 1.4.3 InCl3-Supported Solid Acid Catalysts 16 1.5 Methodology
    [Show full text]
  • Notes Acids and Bases
    Notes Acids and Bases Arrhenius Acid Base Theory: In 1884 Svante Arrhenius proposed the first theoretical model for acids and bases. Prior to that time, these chemically opposite substances were described in properties such as their taste; their effects on metals, carbonates, and dyes (called indicators); their feel to the touch, and their ability to react with each other. According to the Arrhenius theory , pure water dissociates to some extent to produce hydrogen ions, H + and hydroxide ions, OH -. When this occurs, equal amounts of H + and OH - ions are produced: + - H2O(l) H (aq) + OH (aq) An acid, according to Arrhenius, is any substance that liberates H + ions when placed in water. When the H + concentration is elevated the OH - concentration decreases, this solution is said to be acidic. Similarly, a base is defined as any substance that liberates OH - ions when placed in water. The resulting solution has a higher concentration of OH - ions than H + ions and is said to be basic, or alkaline. + - ACID: HCl (aq) H (aq) + Cl (aq) + - BASE: NaOH (aq) Na (aq) + OH (aq) Brønsted - Lowry Acid Base Theory: A more general and realistic theory was proposed by two chemists working independent of the other, Johannes Nicolaus Brønsted of Denmark and Thomas Martin Lowry of England. Both chemists are given credit; the theory is named the Brønsted-Lowry theory . Acids are defined as substances that donate H + ions, protons and therefore are called proton donators, while bases are substances that accept protons and are defined as proton acceptors. On this basis, the autoionization of water is given as follows: + - H2O(l) + H 2O(l) H3O (aq) + OH (aq) In this reaction, one water molecule donates a proton, H +, and behaves as an acid, while the other water molecule accepts the proton and behaves as a base.
    [Show full text]
  • Kinetic and Theoretical Insights Into the Mechanism of Alkanol Dehydration on Solid Brønsted Acid Catalysts
    Article pubs.acs.org/JPCC Kinetic and Theoretical Insights into the Mechanism of Alkanol Dehydration on Solid Brønsted Acid Catalysts William Knaeble and Enrique Iglesia* Department of Chemical and Biomolecular Engineering University of California, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: Elementary steps that mediate ethanol dehydration to alkenes and ethers are determined here from rate and selectivity data on solid acids of diverse acid strength and known structure and free energies derived from density functional theory (DFT). Measured ethene and ether formation rates that differed from those expected from accepted monomolecular and bimolecular routes led to our systematic enumeration of plausible dehydration routes and to a rigorous assessment of their contributions to the products formed. H-bonded monomers, protonated alkanol dimers, and alkoxides are the prevalent bound intermediates at conditions relevant to the practice of dehydration catalysis. We conclude that direct and sequential (alkoxide-mediated) routes contribute to ether formation via SN2-type reactions; alkenes form preferentially from sequential routes via monomolecular and bimolecular syn-E2-type eliminations; and alkoxides form via bimolecular SN2-type substitutions. The prevalence of these elementary steps and their kinetic relevance are consistent with measured kinetic and thermodynamic parameters, which agree with values from DFT-derived free energies and with the effects of acid strength on rates, selectivities, and rate constants; such effects reflect the relative charges in transition states and their relevant precursors. Dehydration turnover rates, but not selectivities, depend on acid strength because transition states are more highly charged than their relevant precursors, but similar in charge for transition states that mediate the competing pathways responsible for selectivity.
    [Show full text]
  • Rational Design of Metal Oxide Solid Acids for Sugar Conversion
    catalysts Review Rational Design of Metal Oxide Solid Acids for Sugar Conversion Atsushi Takagaki Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; [email protected]; Tel.: +81-92-802-6711 Received: 15 October 2019; Accepted: 24 October 2019; Published: 29 October 2019 Abstract: Aqueous-phase acid-catalyzed reactions are essential for the conversion of cellulose-based biomass into chemicals. Brønsted acid and Lewis acid play important roles for these reactions, including hydrolysis of saccharides, isomerization and epimerization of aldoses, conversion of d-glucose into 5-hydroxymethylfurfural, cyclodehydration of sugar alcohols and conversion of trioses into lactic acid. A variety of metal oxide solid acids has been developed and applied for the conversion of sugars so far. The catalytic activity is mainly dependent on the structures and types of solid acids. Amorphous metal oxides possess coordinatively unsaturated metal sites that function as Lewis acid sites while some crystal metal oxides have strong Brønsted acid sites. This review introduces several types of metal oxide solid acids, such as layered metal oxides, metal oxide nanosheet aggregates, mesoporous metal oxides, amorphous metal oxides and supported metal oxides for sugar conversions. Keywords: Sugars; cellulose; glucose; 5-hydroxymethylfurfural; lactic acid; solid acid; Brønsted acid; Lewis acid; metal oxide; water-tolerant catalyst 1. Introduction The fundamental features of solid acid catalysts are the reusability of the catalysts, their easy separation from the products and solvents and unnecessary neutralization, which are beneficial to saving energy and cost. Besides these, special requirements of the catalysts for sugar conversion are high recognition ability of sugar molecules and high tolerance against water.
    [Show full text]
  • Acid-Base Catalysis Application of Solid Acid-Base Catalysts
    Modern Methods in Heterogeneous Catalysis Research Acid-Base Catalysis Application of Solid Acid-Base Catalysts Annette Trunschke 18 February 2005 Outline 1. Introduction - basic principles 2. Substrates and products 3. Kinds of acid / base catalysts - examples 4. Characterization of surface acidity / basicity - examples 5. Acid catalyzed reactions 6. Base catalyzed reactions 7. Acid-base bifunctional catalysis 8. Summary and outlook Modern Methods in Heterogeneous Catalysis Research : 18/02/2005 2 1. Introduction - Basic definitions concept acid base - + Brønsted H2O OH + H - - Lewis FeCl3 + Cl [FeCl4] Hydrogen transfer reactions intermediates acid-catalyzed + H+ carbenium ions base-catalyzed + H+ carbanions Modern Methods in Heterogeneous Catalysis Research : 18/02/2005 3 1. Introduction - Basic definitions specific acid / base general acid / base catalysis catalysis + - active H3O or OH undissociated acid or base species groups; a variety of species may be simultaneously active reaction •in solution •gas phase reactions medium / •on the surface of •high reaction temperatures conditions a hydrated solid Advantages of solid acid-base catalysts: • Easier separation from the product • Possible reuse and regeneration • Fewer disposal problems • Non-corrosive and environmentally friendly (but not always!) Modern Methods in Heterogeneous Catalysis Research : 18/02/2005 4 2. Substrates and products solid acid catalysis solid base catalysis substrates •Alkanes, aromatics •Alkenes (components of crude •Alkynes petrolium) •Alkyl aromatics •Alkenes (products of •Carbonyl compounds petrolium cracking (FCC, steam cracking)) products •Gasoline components •Chemical intermediates •Chemical intermediates •Fine chemicals •Fine chemicals Industrial processes in 1999: 103 solid acids worldwide production by catalytic cracking: 500x106 tonnes/y 10 solid bases 14 solid acid-base bifunctional catalysts K.Tanabe, W.F.Hölderich, Applied Catalysis A 181 (1999) 399.
    [Show full text]
  • 629 Acid/Base Catalysis 154–157
    629 Index a – – Horvath–Kawazoe (HK) method acid/base catalysis 154–157 525–526 – bimolecular, acid catalyzed reaction 155 – Nonlocal Density Functional Theory – bimolecular, base catalyzed reaction 156 (NL–DFT) 530–532 – Brønsted–Lowry theory 155 – physical adsorption 514–516 – RNA hydrolysis catalyzed by enzyme – theoretical description of adsorption RNase-A 157 519–523 acids 132–143, See also solid acids and bases ––BETtheoryofadsorption 521 Acinetobacter calcoaceticus 181 – – Langmuir isotherm 519–521 activated carbon supports 439 – – standard isotherms 522–523 activation, catalyst 58–64 – – t-method 522–523 – induction periods as catalyst activation – xenon porosimetry 533–534 ® 59–60 Aerosil process 435 active sites 269–273 alcohols activity of catalyst, in homogeneous catalysis – carbonylations of 245–247 54–58 – synthesis 176–177 acylases 185–186, 256 aldolases 190–193 adaptive chemistry methods 370 alkene metathesis 402–406 adiabatic reactor 569 altered surface reactivity 38–39 adsorption entropy 27–30 alumina (Al2O3) and other oxides adsorption methods for porous materials 436–438 characterization 514–534 amidases 185–186 – adsorption isotherms 517–518 amidases catalyzed reactions 256 – application of adsorption methods amino acid dehydrogenases (AADHs) 518–519 177, 253 – Barret–Joyner–Halada (BJH) method amino acids synthesis 177–178 529–530 6-aminopenicillanic acid (6-APA) 256 – classification of porous materials 517 7-aminocephalosporanic acid (7-ACA) 256 – mercury porosimetry 533 ammonia synthesis 114–119, 289–299 – mesoporous
    [Show full text]
  • Factors Affecting the Relative Efficiency of General Acid Catalysis
    Factors Affecting the Relative Efficiency of General Acid Catalysis Eugene E. Kwan Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada* * Now at Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA Electronic mail: [email protected] Abstract Specific acid catalysis (SAC) and general acid catalysis (GAC) play an important role in many organic reactions. Elucidation of SAC or GAC mechanisms requires an understanding of the factors that affect their relative efficiency. A simple model reaction in which SAC and GAC occur concurrently is analyzed to provide guidelines for such analyses. Simple rules which predict the effect of pH on the relative efficiency of GAC are discussed. An explicit expression for determining the optimal pH at which the effects of GAC are maximized is provided as well as an analogous expression for the general base case. The effects of the pKa of the general acid and the total catalyst concentration on GAC efficiency are described. The guidelines are graphically illustrated using a mixture of theoretical data and literature data on the hydrolysis of di-tert-butyloxymethylbenzene. The relationship between the model and the Brønsted equation is developed to explain the common observation that GAC is most easily observable when the Brønsted coefficient α is near 0.5. The ideas presented enable systematic evaluations of experimental kinetic data to provide quantitative support for SAC or GAC mechanisms. This material is suitable for the curriculum of a senior-level undergraduate course in physical-organic chemistry. Keywords: Organic chemistry; physical chemistry; curriculum; acid-base chemistry; catalysis; kinetics.
    [Show full text]
  • Microwave-Assisted Homogeneous Acid Catalysis and Chemoenzymatic Synthesis of Dialkyl Succinate in a Flow Reactor
    catalysts Article Microwave-Assisted Homogeneous Acid Catalysis and Chemoenzymatic Synthesis of Dialkyl Succinate in a Flow Reactor Laura Daviot 1, Thomas Len 1, Carol Sze Ki Lin 2 and Christophe Len 1,3,* 1 Centre de Recherche de Royallieu, Université de Technologie Compiègne, Sorbonne Universités, Cedex BP20529, F-60205 Compiègne, France; [email protected] (L.D.); [email protected] (T.L.) 2 School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China; [email protected] 3 Institut de Recherche de Chimie Paris, PSL Research University, Chimie ParisTech, CNRS, UMR 8247, Cedex 05, F-75231 Paris, France * Correspondence: [email protected]; Tel.: +33-144-276-752 Received: 12 February 2019; Accepted: 8 March 2019; Published: 16 March 2019 Abstract: Two new continuous flow systems for the production of dialkyl succinates were developed via the esterification of succinic acid, and via the trans-esterification of dimethyl succinate. The first microwave-assisted continuous esterification of succinic acid with H2SO4 as a chemical homogeneous catalyst was successfully achieved via a single pass (ca 320 s) at 65–115 ◦C using a MiniFlow 200ss Sairem Technology. The first continuous trans-esterification of dimethyl succinate with lipase Cal B as an enzymatic catalyst was developed using a Syrris Asia Technology, with an optimal reaction condition of 14 min at 40 ◦C. Dialkyl succinates were produced with the two technologies, but higher productivity was observed for the microwave-assisted continuous esterification using chemical catalysts. The continuous flow trans-esterification demonstrated a number of advantages, but it resulted in lower yield of the target esters.
    [Show full text]