Piranha:Piranha

Total Page:16

File Type:pdf, Size:1020Kb

Piranha:Piranha Piranha:Piranha: DesigningDesigning aa ScalableScalable CMP-basedCMP-based SystemSystem forfor CommercialCommercial WorkloadsWorkloads LuizLuiz AndréAndré BarrosoBarroso WesternWestern ResearchResearch LaboratoryLaboratory April 27, 2001 Asilomar Microcomputer Workshop WhatWhat isis Piranha?Piranha? l A scalable shared memory architecture based on chip multiprocessing (CMP) and targeted at commercial workloads l A research prototype under development by Compaq Research and Compaq NonStop Hardware Development Group l A departure from ever increasing processor complexity and system design/verification cycles ImportanceImportance ofof CommercialCommercial ApplicationsApplications Worldwide Server Customer Spending (IDC 1999) Scientific & Other engineering 3% 6% Infrastructure Collaborative 29% 12% Software development 14% Decision Business support processing 14% 22% l Total server market size in 1999: ~$55-60B – technical applications: less than $6B – commercial applications: ~$40B PricePrice StructureStructure ofof ServersServers Normalized breakdown of HW cost l IBM eServer 680 100% (220KtpmC; $43/tpmC) 90% § 24 CPUs 80% 70% I/O § 96GB DRAM, 18 TB Disk 60% DRAM 50% § $9M price tag CPU 40% Base 30% l Compaq ProLiant ML370 20% 10% (32KtpmC; $12/tpmC) 0% § 4 CPUs IBM eServer 680 Compaq ProLiant ML570 § 8GB DRAM, 2TB Disk Price per component System § $240K price tag $/CPU $/MB DRAM $/GB Disk IBM eServer 680 $65,417 $9 $359 Compaq ProLiant ML570 $6,048 $4 $64 - Storage prices dominate (50%-70% in customer installations) - Software maintenance/management costs even higher (up to $100M) - Price of expensive CPUs/memory system amortized OutlineOutline l Importance of Commercial Workloads l Commercial Workload Requirements l Trends in Processor Design l Piranha l Design Methodology l Summary StudiesStudies ofof CommercialCommercial WorkloadsWorkloads l Collaboration with Kourosh Gharachorloo (Compaq WRL) – ISCA’98: Memory System Characterization of Commercial Workloads (with E. Bugnion) – ISCA’98: An Analysis of Database Workload Performance on Simultaneous Multithreaded Processors (with J. Lo, S. Eggers, H. Levy, and S. Parekh) – ASPLOS’98: Performance of Database Workloads on Shared-Memory Systems with Out-of-Order Processors (with P. Ranganathan and S. Adve) – HPCA’00: Impact of Chip-Level Integration on Performance of OLTP Workloads (with A. Nowatzyk and B. Verghese) – ISCA’01: Code Layout Optimizations for Transaction Processing Workloads (with A. Ramirez, R. Cohn, J. Larriba-Pey, G. Lowney, and M. Valero) StudiesStudies ofof CommercialCommercial Workloads:Workloads: summarysummary l Memory system is the main bottleneck – astronomically high CPI – dominated by memory stall times – instruction stalls as important as data stalls – fast/large L2 caches are critical l Very poor Instruction Level Parallelism (ILP) – frequent hard-to-predict branches – large L1 miss ratios – Ld-Ld dependencies – disappointing gains from wide-issue out-of-order techniques! OutlineOutline l Importance of Commercial Workloads l Commercial Workload Requirements l Trends in Processor Design l Piranha l Design Methodology l Summary IncreasingIncreasing ComplexityComplexity ofof ProcessorProcessor DesignsDesigns l Pushing limits of instruction-level parallelism – multiple instruction issue – speculative out-of-order (OOO) execution l Driven by applications such as SPEC l Increasing design time and team size Processor Year Transistor Design Design Verification (SGI MIPS) Shipped Count Team Time Team Size (millions) Size (months) (% of total) R2000 1985 0.10 20 15 15% R4000 1991 1.40 55 24 20% R10000 1996 6.80 >100 36 >35% courtesy: John Hennessy, IEEE Computer, 32(8) l Yielding diminishing returns in performance ExploitingExploiting HigherHigher LevelsLevels ofof IntegrationIntegration Alpha 21364 Single M M 1GHz chip 364 364 21264 CPU IO IO M M 64KB 64KB MEM-CTL I$ D$ 364 364 0 31 IO IO 1.5MB M M L2$ 364 364 MEM-CTL IO IO Network Interface 0 I/O Coherence Engine 31 l lower latency, higher bandwidth l incrementally scalable glueless multiprocessing l reuse of existing CPU core addresses complexity issues ExploitingExploiting ParallelismParallelism inin CommercialCommercial AppsApps Simultaneous Multithreading (SMT) Chip Multiprocessing (CMP) CPU CPU thread 1 thread 2 I$ D$ I$ D$ thread 3 MEM-CTL thread 4 time L2$ MEM-CTL Network Example: Alpha 21464 Coherence I/O Example: IBM Power4 l SMT superior in single-thread performance l CMP addresses complexity by using simpler cores OutlineOutline l Importance of Commercial Workloads l Commercial Workload Requirements l Trends in Processor Design l Piranha – Architecture – Performance l Design Methodology l Summary PiranhaPiranha ProjectProject l Explore chip multiprocessing for scalable servers l Focus on parallel commercial workloads l Small team, modest investment, short design time l Address complexity by using: – simple processor cores – standard ASIC methodology Give up on ILP, embrace TLP PiranhaPiranha TeamTeam MembersMembers Research NonStop Hardware Development – Luiz André Barroso (WRL) ASIC Design Center – Kourosh Gharachorloo (WRL) – Tom Heynemann – David Lowell (WRL) – Dan Joyce – Harland Maxwell – Joel McCormack (WRL) – Harold Miller – Mosur Ravishankar (WRL) – Sanjay Singh – Rob Stets (WRL) – Scott Smith – Yuan Yu (SRC) – Jeff Sprouse – … several contractors Former Contributors Robert McNamara Brian Robinson Basem Nayfeh Barton Sano Andreas Nowatzyk Daniel Scales Joan Pendleton Ben Verghese Shaz Qadeer PiranhaPiranha ProcessingProcessing NodeNode Alpha core: MEM-CTL MEM-CTL MEM-CTL MEM-CTL 1-issue, in-order, 500MHz CPU CPU CPU CPU L1 caches: I&D, 64KB, 2-way HE L2$ L2$ L2$ L2$ Intra-chip switch (ICS) I$ D$ I$ D$ I$ D$ I$ D$ 32GB/sec, 1-cycle delay L2 cache: shared, 1MB, 8-way ICS Memory Controller (MC) Router RDRAM, 12.8GB/sec Protocol Engines (HE & RE): I$ D$ I$ D$ I$ D$ I$ D$ mprog., 1K minstr., RE L2$ L2$ L2$ L2$ even/odd interleaving System Interconnect: 4-port Xbar router CPU CPU CPU CPU topology independent MEM-CTL MEM-CTL MEM-CTL MEM-CTL 32GB/sec total bandwidth Single Chip PiranhaPiranha I/OI/OI/O NodeNode CPU 2 Links @ Router HE 8GB/s I$ D$D$PCI-X FBICSFB RE L2$ MEM-CTL l I/O node is a full-fledged member of system interconnect – CPU indistinguishable from Processing Node CPUs – participates in global coherence protocol ExampleExample ConfigurationConfiguration P P P P- I/O P- I/O P P P l Arbitrary topologies l Match ratio of Processing to I/O nodes to application requirements L2L2 CacheCache andand Intra-NodeIntra-Node CoherenceCoherence l No inclusion between L1s and L2 cache – total L1 capacity equals L2 capacity – L2 misses go directly to L1 – L2 filled by L1 replacements l L2 keeps track of all lines in the chip – sends Invalidates, Forwards – orchestrates L1-to-L2 write-backs to maximize chip-memory utilization – cooperates with Protocol Engines to enforce system-wide coherence Inter-NodeInter-Node CoherenceCoherence ProtocolProtocol l ‘Stealing’ ECC bits for memory directory 8x(64+8) 4X(128+9+7) 2X(256+10+22) 1X(512+11+53) Data-bits ECC Directory-bits 0 28 44 53 l Directory (2b state + 40b sharing info) state info on sharers state info on sharers 2b 20b 2b 20b l Dual representation: limited pointer + coarse vector l “Cruise Missile” Invalidations (CMI) CMI – limit fan-out/fan-in serialization with CV 010000001000 l Several new protocol optimizations SimulatedSimulated ArchitecturesArchitectures Single-ChipSingle-Chip PiranhaPiranha PerformancePerformance 350 350 300 L2Miss L2Hit 233 250 CPU 200 191 150 145 100 100 100 50 34 44 Normalized Execution Time 0 P1 INO OOO P8 P1 INO OOO P8 500 MHz 1GHz 1GHz 500MHz 500 MHz 1GHz 1GHz 500MHz 1-issue 1-issue 4-issue 1-issue 1-issue 1-issue 4-issue 1-issue OLTP DSS l Piranha’s performance margin 3x for OLTP and 2.2x for DSS l Piranha has more outstanding misses è better utilizes memory system Single-ChipSingle-Chip PerformancePerformance (Cont.)(Cont.) 8 100 7 90 80 6 70 5 60 L2 Miss 4 50 L2 Fwd sses (%) 40 L2 Hit Speedup 3 Mi 2 30 20 1 10 Normalized Breakdown of L1 0 0 0 1 2 3 4 5 6 7 8 P1 P2 P4 P8 Number of Cores 500 MHz, 1-issue l Near-linear scalability – low memory latencies – effectiveness of highly associative L2 and non-inclusive caching PotentialPotential ofof aa Full-CustomFull-Custom PiranhaPiranha 120 100 100 L2 Miss 100 L2 Hit 80 CPU 60 43 40 34 20 19 20 Normalized Execution Time 0 OOO P8 P8F OOO P8 P8F 1GHz 500MHz 1.25GHz 1GHz 500MHz 1.25GHz 4-issue 1-issue 1-issue 4-issue 1-issue 1-issue OLTP DSS l 5x margin over OOO for OLTP and DSS l Full-custom design benefits substantially from boost in core speed OutlineOutline l Importance of Commercial Workloads l Commercial Workload Requirements l Trends in Processor Design l Piranha l Design Methodology l Summary ManagingManaging ComplexityComplexity inin thethe ArchitectureArchitecture l Use of many simpler logic modules – shorter design – easier verification – only short wires* – faster synthesis – simpler chip-level layout l Simplify intra-chip communication – all traffic goes through ICS (no backdoors) l Use of microprogrammed protocol engines l Adoption of large VM pages l Implement sub-set of Alpha ISA – no VAX floating point, no multimedia instructions, etc. MethodologyMethodology ChallengesChallenges l Isolated sub-module testing – need to create robust bus functional models (BFM) – sub-modules’ behavior highly inter-dependent – not feasible with a small team l System-level (integrated) testing – much easier to create tests – only one BFM at the processor interface – simpler to
Recommended publications
  • Implicitly-Multithreaded Processors
    Appears in the Proceedings of the 30th Annual International Symposium on Computer Architecture (ISCA) Implicitly-Multithreaded Processors Il Park, Babak Falsafi∗ and T. N. Vijaykumar School of Electrical & Computer Engineering ∗Computer Architecture Laboratory (CALCM) Purdue University Carnegie Mellon University {parki,vijay}@ecn.purdue.edu [email protected] http://www.ece.cmu.edu/~impetus Abstract In this paper, we propose the Implicitly-Multi- Threaded (IMT) processor. IMT executes compiler-speci- This paper proposes the Implicitly-MultiThreaded fied speculative threads from a sequential program on a (IMT) architecture to execute compiler-specified specula- wide-issue SMT pipeline. IMT is based on the fundamental tive threads on to a modified Simultaneous Multithreading observation that Multiscalar’s execution model — i.e., pipeline. IMT reduces hardware complexity by relying on compiler-specified speculative threads [10] — can be the compiler to select suitable thread spawning points and decoupled from the processor organization — i.e., distrib- orchestrate inter-thread register communication. To uted processing cores. Multiscalar [10] employs sophisti- enhance IMT’s effectiveness, this paper proposes three cated specialized hardware, the register ring and address novel microarchitectural mechanisms: (1) resource- and resolution buffer, which are strongly coupled to the distrib- dependence-based fetch policy to fetch and execute suit- uted core organization. In contrast, IMT proposes to map able instructions, (2) context multiplexing to improve utili- speculative threads on to generic SMT. zation and map as many threads to a single context as IMT differs fundamentally from prior proposals, TME allowed by availability of resources, and (3) early thread- and DMT, for speculative threading on SMT. While TME invocation to hide thread start-up overhead by overlapping executes multiple threads only in the uncommon case of one thread’s invocation with other threads’ execution.
    [Show full text]
  • Kaisen Lin and Michael Conley
    Kaisen Lin and Michael Conley Simultaneous Multithreading ◦ Instructions from multiple threads run simultaneously on superscalar processor ◦ More instruction fetching and register state ◦ Commercialized! DEC Alpha 21464 [Dean Tullsen et al] Intel Hyperthreading (Xeon, P4, Atom, Core i7) Web applications ◦ Web, DB, file server ◦ Throughput over latency ◦ Service many users ◦ Slight delay acceptable 404 not Idea? ◦ More functional units and caches ◦ Not just storage state Instruction fetch ◦ Branch prediction and alignment Similar problems to the trace cache ◦ Large programs: inefficient I$ use Issue and retirement ◦ Complicated OOE logic not scalable Need more wires, hardware, ports Execution ◦ Register file and forwarding logic Power-hungry Replace complicated OOE with more processors ◦ Each with own L1 cache Use communication crossbar for a shared L2 cache ◦ Communication still fast, same chip Size details in paper ◦ 6-SS about the same as 4x2-MP ◦ Simpler CPU overall! SimOS: Simulate hardware env ◦ Can run commercial operating systems on multiple CPUs ◦ IRIX 5.3 tuned for multi-CPU Applications ◦ 4 integer, 4 floating-point, 1 multiprog PARALLELLIZED! Which one is better? ◦ Misses per completed instruction ◦ In general hard to tell what happens Which one is better? ◦ 6-SS isn’t taking advantage! Actual speedup metrics ◦ MP beats the pants off SS some times ◦ Doesn’t perform so much worse other times 6-SS better than 4x2-MP ◦ Non-parallelizable applications ◦ Fine-grained parallel applications 6-SS worse than 4x2-MP
    [Show full text]
  • A Speculative Control Scheme for an Energy-Efficient Banked Register File
    IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005 741 A Speculative Control Scheme for an Energy-Efficient Banked Register File Jessica H. Tseng, Student Member, IEEE, and Krste Asanovicc, Member, IEEE Abstract—Multiported register files are critical components of modern superscalar and simultaneously multithreaded (SMT) processors, but conventional designs consume considerable die area and power as register counts and issue widths grow. Banked multiported register files consisting of multiple interleaved banks of lesser ported cells can be used to reduce area, power, and access time and previous work has shown that such designs can provide sufficient bandwidth for a superscalar machine. These previous banked designs, however, have complex control structures to avoid bank conflicts or to buffer conflicting requests, which add to design complexity and would likely limit cycle time. This paper presents a much simpler and faster control scheme that speculatively issues potentially conflicting instructions, then quickly repairs the pipeline if conflicts occur. We show that, once optimizations to avoid regfile reads are employed, the remaining read accesses observed in detailed simulations are close to randomly distributed and this contributes to the effectiveness of our speculative control scheme. For a four-issue superscalar processor with 64 physical registers, we show that we can reduce area by a factor of three, access time by 25 percent, and energy by 40 percent, while decreasing IPC by less than 5 percent. For an eight-issue SMT processor with 512 physical registers, area is reduced by a factor of seven, access time by 30 percent, and energy by 60 percent, while decreasing IPC by less than 2 percent.
    [Show full text]
  • The Microarchitecture of a Low Power Register File
    The Microarchitecture of a Low Power Register File Nam Sung Kim and Trevor Mudge Advanced Computer Architecture Lab The University of Michigan 1301 Beal Ave., Ann Arbor, MI 48109-2122 {kimns, tnm}@eecs.umich.edu ABSTRACT Alpha 21464, the 512-entry 16-read and 8-write (16-r/8-w) ports register file consumed more power and was larger than The access time, energy and area of the register file are often the 64 KB primary caches. To reduce the cycle time impact, it critical to overall performance in wide-issue microprocessors, was implemented as two 8-r/8-w split register files [9], see because these terms grow superlinearly with the number of read Figure 1. Figure 1-(a) shows the 16-r/8-w file implemented and write ports that are required to support wide-issue. This paper directly as a monolithic structure. Figure 1-(b) shows it presents two techniques to reduce the number of ports of a register implemented as the two 8-r/8-w register files. The monolithic file intended for a wide-issue microprocessor without hardly any register file design is slow because each memory cell in the impact on IPC. Our results show that it is possible to replace a register file has to drive a large number of bit-lines. In register file with 16 read and 8 write ports, intended for an eight- contrast, the split register file is fast, but duplicates the issue processor, with a register file with just 8 read and 8 write contents of the register file in two memory arrays, resulting in ports so that the impact on IPC is a few percent.
    [Show full text]
  • Alphaserver GS1280 Overview
    QuickSpecs HP AlphaServer GS1280 Systems Overview HP AlphaServer GS1280 Models 8 and 16 1. Cable/DSL HUB 2. PCI/PCI-X I/O Expansion Drawer (optional) 3. PCI/PCI-X I/O Master Drawer (mandatory option) 4. System Building Block Drawer (Model 8 Includes 1 drawer, Model 16 includes 2 drawers) 5. 48-volt DC Power shelves, 3 power supplies per shelf (Model 8 includes 1 shelf, Model 16 includes 2 shelves) 6. AC input controller(s) (mandatory option) DA - 11921 Worldwide — Version 24 — July 23, 2007 Page 1 QuickSpecs HP AlphaServer GS1280 Systems Overview HP AlphaServer GS1280 Model 32 1. Cable/DSL HUB 2. I/O Expansion Drawer (optional) 3. I/O Master Drawer (mandatory option) 4. System Building Block Drawer (Model 32 includes four drawers) 5. Power supply, dual AC input is standard 6. AC input controllers (two mandatory options for Model 32) DA - 11921 Worldwide — Version 24 — July 23, 2007 Page 2 QuickSpecs HP AlphaServer GS1280 Systems Overview HP AlphaServer GS1280 Model 64 1. Cable/DSL HUB 2. I/O Expansion Drawer (optional) 3. I/O Master Drawer (one drawer is optional) 4. System Building Block Drawer (Model 64 includes eight drawers) 5. Power supply, dual AC input is standard (two included for Model 64) 6. AC input controllers (two mandatory options for Model 64) DA - 11921 Worldwide — Version 24 — July 23, 2007 Page 3 QuickSpecs HP AlphaServer GS1280 Systems Overview At A Glance AlphaServer GS1280 Systems Up to 64 Alpha 21364 EV7 processors at 1300 MHz and 1150 MHz with advanced on-chip memory controllers and switch logic capable of providing
    [Show full text]
  • REPORT Compaq Chooses SMT for Alpha Simultaneous Multithreading
    VOLUME 13, NUMBER 16 DECEMBER 6, 1999 MICROPROCESSOR REPORT THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE Compaq Chooses SMT for Alpha Simultaneous Multithreading Exploits Instruction- and Thread-Level Parallelism by Keith Diefendorff Given a full complement of on-chip memory, increas- ing the clock frequency will increase the performance of the As it climbs rapidly past the 100-million- core. One way to increase frequency is to deepen the pipeline. transistor-per-chip mark, the micro- But with pipelines already reaching upwards of 12–14 stages, processor industry is struggling with the mounting inefficiencies may close this avenue, limiting future question of how to get proportionally more performance out frequency improvements to those that can be attained from of these new transistors. Speaking at the recent Microproces- semiconductor-circuit speedup. Unfortunately this speedup, sor Forum, Joel Emer, a Principal Member of the Technical roughly 20% per year, is well below that required to attain the Staff in Compaq’s Alpha Development Group, described his historical 60% per year performance increase. To prevent company’s approach: simultaneous multithreading, or SMT. bursting this bubble, the only real alternative left is to exploit Emer’s interest in SMT was inspired by the work of more and more parallelism. Dean Tullsen, who described the technique in 1995 while at Indeed, the pursuit of parallelism occupies the energy the University of Washington. Since that time, Emer has of many processor architects today. There are basically two been studying SMT along with other researchers at Washing- theories: one is that instruction-level parallelism (ILP) is ton. Once convinced of its value, he began evangelizing SMT abundant and remains a viable resource waiting to be tapped; within Compaq.
    [Show full text]
  • PERL – a Register-Less Processor
    PERL { A Register-Less Processor A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by P. Suresh to the Department of Computer Science & Engineering Indian Institute of Technology, Kanpur February, 2004 Certificate Certified that the work contained in the thesis entitled \PERL { A Register-Less Processor", by Mr.P. Suresh, has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. (Dr. Rajat Moona) Professor, Department of Computer Science & Engineering, Indian Institute of Technology, Kanpur. February, 2004 ii Synopsis Computer architecture designs are influenced historically by three factors: market (users), software and hardware methods, and technology. Advances in fabrication technology are the most dominant factor among them. The performance of a proces- sor is defined by a judicious blend of processor architecture, efficient compiler tech- nology, and effective VLSI implementation. The choices for each of these strongly depend on the technology available for the others. Significant gains in the perfor- mance of processors are made due to the ever-improving fabrication technology that made it possible to incorporate architectural novelties such as pipelining, multiple instruction issue, on-chip caches, registers, branch prediction, etc. To supplement these architectural novelties, suitable compiler techniques extract performance by instruction scheduling, code and data placement and other optimizations. The performance of a computer system is directly related to the time it takes to execute programs, usually known as execution time. The expression for execution time (T), is expressed as a product of the number of instructions executed (N), the average number of machine cycles needed to execute one instruction (Cycles Per Instruction or CPI), and the clock cycle time (), as given in equation 1.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Holistic Design for Multi-Core Architectures a Dissertation Submitted in Partial Satisfactio
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Holistic Design for Multi-core Architectures A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science (Computer Engineering) by Rakesh Kumar Committee in charge: Professor Dean Tullsen, Chair Professor Brad Calder Professor Fred Chong Professor Rajesh Gupta Dr. Norman P. Jouppi Professor Andrew Kahng 2006 Copyright Rakesh Kumar, 2006 All rights reserved. The dissertation of Rakesh Kumar is approved, and it is acceptable in quality and form for publication on micro- film: Chair University of California, San Diego 2006 iii DEDICATIONS This dissertation is dedicated to friends, family, labmates, and mentors { the ones who taught me, indulged me, loved me, challenged me, and laughed with me, while I was also busy working on my thesis. To Professor Dean Tullsen for teaching me the values of humility, kind- ness,and caring while trying to teach me football and computer architecture. For always encouraging me to do the right thing. For always letting me be myself. For always believing in me. For always challenging me to dream big. For all his wisdom. And for being an adviser in the truest sense, and more. To Professor Brad Calder. For always caring about me. For being an inspiration. For his trust. For making me believe in myself. For his lies about me getting better at system administration and foosball even though I never did. To Dr Partha Ranganathan. For always being there for me when I would get down on myself. And that happened often. For the long discussions on life, work, and happiness.
    [Show full text]
  • Superscalar Execution Scalar Pipeline and the Flynn Bottleneck Multiple
    Remainder of CSE 560: Parallelism • Last unit: pipeline-level parallelism • Execute one instruction in parallel with decode of next • Next: instruction-level parallelism (ILP) CSE 560 • Execute multiple independent instructions fully in parallel Computer Systems Architecture • Today: multiple issue • In a few weeks: dynamic scheduling • Extract much more ILP via out-of-order processing Superscalar • Data-level parallelism (DLP) • Single-instruction, multiple data • Ex: one instruction, four 16-bit adds (using 64-bit registers) • Thread-level parallelism (TLP) • Multiple software threads running on multiple cores 1 6 This Unit: Superscalar Execution Scalar Pipeline and the Flynn Bottleneck App App App • Superscalar scaling issues regfile System software • Multiple fetch and branch prediction I$ D$ • Dependence-checks & stall logic Mem CPU I/O B • Wide bypassing P • Register file & cache bandwidth • So far we have looked at scalar pipelines: • Multiple-issue designs 1 instruction per stage (+ control speculation, bypassing, etc.) – Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1 • Superscalar – Limit is never even achieved (hazards) • VLIW and EPIC (Itanium) – Diminishing returns from “super-pipelining” (hazards + overhead) 7 8 Multiple-Issue Pipeline Superscalar Pipeline Diagrams - Ideal regfile scalar 1 2 3 4 5 6 7 8 9101112 lw 0(r1)r2 F D XMW I$ D$ lw 4(r1)r3 F D XMW lw 8(r1)r4 F DXMW B add r14,r15r6 F D XMW P add r12,r13r7 F DXMW add r17,r16r8 F D XMW lw 0(r18)r9 F DXMW • Overcome this limit using multiple issue • Also called
    [Show full text]
  • Mini-Threads: Increasing TLP on Small-Scale SMT Processors
    Appears in Proceedings of the Ninth International Symposium on High Performance Computer Architecture (HPCA-9), 2003. Mini-threads: Increasing TLP on Small-Scale SMT Processors Joshua Redstone Susan Eggers Henry Levy University of Washington {redstone,eggers,levy}@cs.washington.edu Abstract 21464, the register file would have been 3 to 4 times the Several manufacturers have recently announced the size of the 64KB instruction cache [23]. In addition to the first simultaneous-multithreaded processors, both as sin- area requirements, the large register file either inflates gle CPUs and as components of multi-CPU chips. All are cycle time or demands additional stages on today’s aggres- small scale, comprising only two to four thread contexts. A sive pipelines; for example, the Alpha 21464 architecture significant impediment to the construction of larger-scale would have required three cycles to access the register file SMTs is the register file size required by a large number of [23]. The additional pipeline stages increase the branch contexts. This paper introduces and evaluates mini- misprediction penalty, increase the complexity of the for- threads, a simple extension to SMT that increases thread- warding logic, and compound pressure on the renaming level parallelism without the commensurate increase in registers (because instructions are in flight longer). Alter- register file size. A mini-threaded SMT CPU adds addi- natively, lengthening the cycle time to avoid the extra tional per-thread state to each hardware context; an appli- pipeline stages directly degrades performance by reducing cation executing in a context can create mini-threads that the rate at which instructions are processed.
    [Show full text]
  • Energy-Effective Issue Logic
    Energy-Effective Issue Logic Daniele Folegnani and Antonio GonzaJez Departament d'Arquitectura de Computadors Universitat Politecnica de Catalunya Jordi Girona, 1-3 Mbdul D6 08034 Barcelona, Spain [email protected] Abstract require an increasing computing power, which sometimes is achieved through higher clock frequencies and more sophisticated Tile issue logic of a dynamically-scheduled superscalar processor architectural techniques, with an obvious impact on power is a complex mechanism devoted to start the execution of multiple consumption. instructions eveo' cycle. Due to its complexity, it is responsible for a significant percentage of the energy consumed by a With the fast increase in design complexity and reduction in microprocessor. The energy consumption of the issue logic design time, new generation CAD tools for VLSI design like depends on several architectural parameters, the instruction issue PowerMill [13] and QuickPower [12] are crucial to evaluate the queue size being one of the most important. In this paper we energy consumption at different points of the design, helping to present a technique to reduce the energy consumption of the issue make important decisions early in the design process. The logic of a high-performance superscalar processor. The proposed importance of a continuous feedback between the functional technique is based on the observation that the conventional issue system description and the power impact requires better and faster logic wastes a significant amount of energy for useless activio,. In evaluation tools and models to introduce changes rapidly through particular, the wake-up of empty entries and operands that are various design scenarios. Recent research has shown how read)' represents an important source of energy waste.
    [Show full text]