Tennessee's High-Elevation Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Tennessee's High-Elevation Ecosystems Tennessee's High-elevation Ecosystems What are High-elevation Ecosystems? Between the heights of 4,400feet in the Great Smoky Mountains National Park in Tennessee and 6,684feet on top of Mount Mitchell in North Carolina's Black Mountain Range lie the unique and often mysterious high- elevation ecosystems of the Southern Appalachians. The Appalachians are considered one ofthe oldest mountain ranges in existence. Long ago these mountains soared higher than the Rocky Mountains and Swiss Alps, but over the eons they have gradually worn down to their present heights by natural erosion processes. The high slopes, domes, peaks, and ridges of eastern Tennessee, western North Carolina and southwestern Virginia possess a climate similar to Canada's and are home to islandlike patches of spruce-fir forests, rocky cliffs, and mountain balds. The Southern Appalachians were not covered with ice during the full glacial period of the last Ice Age nor were they ever flooded by oceans. While spruce-fir forests covered the were molded over time by the harsh evolution was slowed or halted in the surrounding valleys and mountain conditions of exposure to extreme frozen parts of the world for peaks of the Southern Appalachians. cold and winds of up to 130miles an thousands of years, plants and As the glaciers retreated and the hour. Although these rocky areas animals of this region continued to climate warmed, the spruce-fIr forests seem bare at fIrst glance, they thrive and evolve. Geological stability withdrew to the tops of our highest actually provide habitat for several combined with diverse climate and mountains and spread northward. relict tundralike species that have topography have made the Southern During this progression the high- adapted to the extreme climate. Appalachians one of the most elevation species of the Southern biologically diverse regions in the Appalachians are believed to have Grassy balds share the ridge tops and world. This diversity is reflected in contributed to the evolution of the "saddles" of the highest peaks in the our high-elevation ecosystems. widespread boreal forests of the Southern Appalachians. These Northern United States and Canada. unique ecosystems appear to be large Southern Appalachian spruce-fir Thus, the only true relict ecosystem of grassy meadows in the forest, with forests typically are found above 5,500 the spruce-fir forest lies in the azaleas, rhododendrons, and other feet, grading into stands of northern Southern Appalachians, where it has shrubs scattered across them. Their hardwoods at lower elevations. persisted continuously over the last location and unusual plant life prove Accompanying the red spruce and 18,000years. Today these southern that many ofthe balds are quite old. Fraser fir at their lower limits are mountaintop forests are characterized Generations of mountain residents scattered yellow birch, American by a number of plants and animals have pondered how and why these mountain ash, sugar maple, mountain found nowhere else on earth, along high-elevation meadows came to be. maple, and a variety of shrubs and with other species that are common Our Southern peaks are hospitable herbaceous plants. The shallow rocky today only in sub-Arctic regions. for tree growth, so how is it that these soils are acidic and generally covered areas are not forested. with a thick organic layer. High-elevation cliffsand rocky Biologically unique, these forests outcrops can be found on many ridges Some believe the balds have pre- provide us with a living museum from and valleys in the Southern Cherokee origins. Perhaps early another time. Thousands of years ago Appalachians. These ecosystems Native Americans cleared the balds to 57 improve hunting or to look for feeding and taking shelter in high- balsam wooly adelgid, native to approaching enemies. Some elevation ecosystems. The diversity Europe, was first identified in Maine scientists hypothesize that a of bird species here thrills visiting in 1908. It probably arrived prior to catastrophic fire long ago played a birders, who may be lucky enough to 1900on imported nursery stock. This part in the creation of mountain balds. glimpse the rare American peregrine tiny sucking insect feeds on the inner Early mountain grazers, such as elk falcon, red crossbill, red-breasted bark of true fir trees, causing their and bison, may have kept these bald nuthatch, snow bunting, raven, black- death within 2 to 7 years after areas clear of trees. throated green warbler, black- infestation. This wingless pest is throated blue warbler, Canada dispersed by the wind and probably Why are High-elevation warbler, and magnolia warbler. came to the Southern Appalachians as early as the 1940s. Mount Mitchell in Ecosystems Important? Many of our high-elevation species North Carolina was found to be The high-elevation ecosystems of the are rare, some so rare that they are infested in 1957,and surrounding Southern Appalachians are nearing extinction and are federally Southern Appalachian spruce-fir biologically unique and geographically listed as endangered or threatened. forests were found to be infested by restricted and support an abundance The Southern spruce-fir forests 1963. The balsam wooly adelgid has of rare plants and animals. Because provide the only remaining habitat since been found in every Fraser fir of their antiquity and ancestral for the endangered Carolina stand. Unfortunately, Fraser fir is affinity to the northern coniferous northern flying squirrel and spruce- the most sensitive fir species to forests, they are a wealth of diversity fir moss spider. These forests balsam wooly adelgid infestation. and a tremendous and largely support rare plants and unusual The spread of the adelgid throughout unrealized scientific resource. Also, amphibians, such as imitator and Southern spruce-fir forest because they sit at the headwaters of pigmy salamanders. The elusive communities has resulted in the mountain streams, they are extremely saw-whet owl depends on these massive mortality of mature Fraser valuable for watershed protection. forests, along with rare mammals, firs. Losing one of the dominant Their canopy and understory such as the masked, long-tailed, and canopy species has, in turn, caused vegetation slows down and filters pygmy shrews. Unfortunately, even major changes in temperature and rainwater. Thus, they greatly benefit the Fraser fir itself is in significant moisture levels in the understory, the water quality of these streams decline and is considered a species threatening numerous other species and enhance downstream fisheries. of federal concern. that rely on the cool,moist conditions maintained by the fir. Other High-elevation ecosystems are Grassy balds are home to the rare nonnative species, such as the aesthetically important to Gray's lily and purple gentian and European wild boar, also damage recreational users. Hundreds of the endangered Roan Mountain high-elevation ecosystems. Boars thousands ofvisitors flock to the bluet and spreading avens. root and destroy sensitive habitats Southern Appalachian Mountains Greenland sandwort, bent avens, and the roots of trees and plants. each year for backpacking, nature and Arctic bent grass can also be Exotic grasses, like Timothy grass, walks, camping, picnicking, found in these mountaintop often choke out native plants. photography, and driving for grasslands. High-elevation cliffs pleasure. Mount Mitchell State Park and rocky outcrops can provide Because of their severe climate, high in North Carolina, the Blue Ridge suitable habitat for the endangered mountain ecosystems may be Parkway and the Great Smoky peregrine falcon, spreading avens, especially prone to air pollution. Mountains National Park in North and rock gnome lichen, and the However, the effects of pollutants are Carolina and Tennessee, and Mount threatened Heller's blazing star and difficult to separate from the effects Rogers National Recreation Area in Blue Ridge goldenrod. of oth.er factors, like the balsam wooly Virginia provide opportunities for adelgId; so, the role that air pollution people from all over the country to has played in the reduction of spruce- escape to the peace and beauty of Threats to High-elevation fir forests is not fully understood. mountains that are still wild Ecosystems and unspoiled. Although high-elevation ecosystems Regardless of the causes of Fraser fir appear rugged, they are extremely decline, the disappearance of this Diversity of Life in fragile. A number of factors threaten dominant tree species has adversely these valuable ecosystems, including High-elevation Ecosystems affected other members of the atmospheric pollution, climate High-elevation ecosystems provide ecosystem. For instance, the loss of change, disease, insect damage, and habitats for an impressive diversity of Fraser firs, having created openings other factors not yet fully understood. wildlife. Many mammals visit these in the canopy, has exposed the red Spruce-fir forests have been reduced mountaintops, and some make their spruce trees to high winds, causing by as much as 50 percent, primarily homes there year-round. Big brown the trees to fall. As these forests as a result of logging followedby bats, red squirrels, eastern disappear the moisture available to severe fires in the earlier part of this chipmunks, woodland jumping mice, neighboring cliffs and mountain century. These forests are now being gray foxes, spotted skunks, bobcats, balds decreases. and black bears have all been spotted decimated by an exotic species- the
Recommended publications
  • Contemporary Status, Distribution, and Trends of Mixedwoods in the Northern United States1 Lance A
    881 ARTICLE Contemporary status, distribution, and trends of mixedwoods in the northern United States1 Lance A. Vickers, Benjamin O. Knapp, John M. Kabrick, Laura S. Kenefic, Anthony W. D’Amato, Christel C. Kern, David A. MacLean, Patricia Raymond, Kenneth L. Clark, Daniel C. Dey, and Nicole S. Rogers Abstract: As interest in managing and maintaining mixedwood forests in the northern United States (US) grows, so does the importance of understanding their abundance and distribution. We analyzed Forest Inventory and Analysis data for insights into mixedwood forests spanning 24 northern US states from Maine south to Maryland and westward to Kansas and North Dakota. Mixedwoods, i.e., forests with both hardwoods and softwoods present but neither exceeding 75%–80% of composition, comprise more than 19 million hectares and more than one-quarter of the northern US forest. They are most common in the Adirondack – New England, Laurentian, and Northeast ecological provinces but also occur elsewhere in hardwood-dominated ecological provinces. These mixtures are common even within forest types nominally categorized as either hardwood or softwood. The most common hardwoods within those mixtures were species of Quercus and Acer,and the most common softwoods were species of Pinus, Tsuga,andJuniperus. Although mixedwoods exhibited stability in total area during our analysis period, hardwood saplings were prominent, suggesting widespread potential for eventual shifts to hardwood dominance in the absence of disturbances that favor regeneration of the softwood component. Our analyses sug- gest that while most mixedwood plots remained mixedwoods, harvesting commonly shifts mixedwoods to either hard- wood- or softwood-dominated cover types, but more specific information is needed to understand the causes of these shifts.
    [Show full text]
  • Great Lakes Shipping Study
    UNCLASSIFIED Great Lakes Shipping Study This page intentionally left blank. National Protection and Programs Directorate Integrated Analysis Task Force Homeland Infrastructure Threat and Risk Analysis Center January 13, 2014 UNCLASSIFIED Executive Summary The Great Lakes St. Lawrence Seaway (GLSLS) system is a vast, interconnected series of navigable waterways, with intersecting modes of transportation and landscapes. The enormity and importance of the GLSLS system cannot be overstated as the region is critically dependent upon it; therefore, it is vital to understand the nature of the system, the industries that rely upon it, its economic impact, and major commodities that flow through the GLSLS. This study provides an overview of the GLSLS system, focusing on geography, system infrastructure, economic and employment data derived from the GLSLS, and detailed analysis of three key commodities: iron ore, steel, and refined petroleum products. The GLSLS, which borders eight states and spans 2,300 miles, comprises Lake Superior, Lakes Michigan and Huron, Lake Erie, Montreal-Lake Ontario, and the Saint Lawrence Seaway, as well as the channels that connect these navigable sections. U.S. and Canadian companies and industries rely on the GLSLS for low-cost, long-distance transportation of raw materials and finished goods. In 2010, U.S. and Canadian companies that depend on the GLSLS for moving cargo reported revenues of over $30 billion, more than half of which was generated in the United States. The GLSLS is also responsible for the creation of hundreds of thousands of jobs, providing direct employment for mariners, many types of port employees, and support positions within the companies, as well as creating indirect jobs that result from the spending power of the previously mentioned workers.
    [Show full text]
  • Arctic Grayling
    Arctic Grayling For most anglers in America, the Arctic grayling (Thymallus arcticus (Pallus)) is a rare freshwater game fish symbolic of the clear, cold streams of the northern wilderness. Grayling occur throughout the arctic as far west as the Kara River in Russia and east to the western shores of Hudson Bay in Canada. Once as common as far south as Michigan and Montana, the Arctic grayling has almost disappeared from the northern United States because of overfishing, competition from introduced species, and habitat loss. General description: The Arctic grayling is an elegantly formed cousin of the trout. With its sail-like dorsal fin dotted with large iridescent red or purple spots, the grayling is one of the most unusual and beautiful fish of Alaska. Grayling are generally dark on the back and have iridescent gray sides. They have varying numbers of black spots scattered along the anterior portion of both sides. The adipose, caudal (tail), pectoral, and anal fins are gray and the pelvic fins are often marked with pink to orange stripes. Life history: Grayling have evolved many strategies to meet the needs of life in what are often harsh and uncertain environments. Grayling can be highly migratory, using different streams for spawning, juvenile rearing, summer feeding, and overwintering. Or, in other areas, they can complete their entire life without leaving a short section of stream or lake. Winter generally finds grayling in lakes or the deeper pools of medium-sized rivers such as the Chena and Gulkana, or in large glacial rivers like the Tanana, Susitna, and Yukon.
    [Show full text]
  • Idaho Aquatic Nuisance Species Plan, 2007
    Eurasian Watermilfoil Idaho Aquatic Nuisance Asian Carp Species Plan A Supplement to Idaho’s Strategic Action Plan For Invasive Species Prepared for Governor C. L. “Butch” Otter And the Idaho Invasive Species Council By Zebra Mussel The Idaho Invasive Species Council Technical Committee 2007 Northern Snakehead Idaho Aquatic Nuisance Species Plan A Supplement to Idaho’s Strategic Action Plan For Invasive Species Prepared for Governor C. L. “Butch” Otter And the Idaho Invasive Species Council By The Idaho Invasive Species Council Technical Committee 2007 Idaho Aquatic Nuisance Species Plan Executive Summary............................................................................................................ 3 Acknowledgements......................................................................................................... 7 List of Acronyms ................................................................................................................ 8 Introduction - Managing Aquatic Nuisance Species in Idaho ............................................ 9 Invasive Species in Idaho................................................................................................ 9 The Aquatic Nuisance Species Plan for Idaho.............................................................. 10 What is At Stake?.............................................................................................................. 14 Facing the Enemy—What is out there and how might it arrive in Idaho? ....................... 17 Types of ANS ..............................................................................................................
    [Show full text]
  • CARSEY RESEARCH Carsey School of Public Policy National Issue Brief #138 Winter 2018
    University of New Hampshire CARSEY RESEARCH Carsey School of Public Policy National Issue Brief #138 Winter 2018 Population, Greenspace, and Development Conversion Patterns in the Great Lakes Region Mark J. Ducey, Kenneth M. Johnson, Ethan P. Belair, and Barbara D. Cook n ongoing concern in both urban and rural America is the tradeoff between residential and commercial development and the conservation Aof forestland, shrublands, and grasslands, commonly referred to as greenspace. As communities develop, adding schools, housing, infrastructure, and the com- mercial space needed for an expanding population and economy, greenspace remains critical because it contrib- utes to air and water purification, storm abatement, and enhanced human health and quality of life. The tension between development and maintaining greenspace is greatest where human populations are densely settled and expanding, and the concern is of particular relevance because the transformation tends to be permanent— developed land rarely reverts to greenspace. FIGURE 1. PERCENT GREENSPACE, 2001 This brief contributes to a better understanding of the linkages between demographic and land-cover change and provides facts that can inform policy aimed at bal- ancing development and greenspace conservation. Greenspace and Development in the Great Lakes Region The research summarized here1 combines demo- graphic, land-cover, and other spatial data to estimate the incidence and extent of conversion from greens- pace to development in the Great Lakes states (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin). Greenspace is abundant in the Great Lakes region (Figure 1), an area that contains 9 percent of the nation’s land area and 16 percent of its population. Most of this population (81 percent) resides in metropolitan areas, but most of the land area is rural (66 percent).
    [Show full text]
  • Idaho Department of Fish and Game Drafted the Plan, Which Was Completed in May 1993
    DoE/..A -- South Fork Snake RiverPalisades Wildlife Mitigation Project Final Environmental Assessment and Findi ig of No Significant Impact RECEIVED JAN 3 1 @ST1 DOEIEA-0956 September 1995 SOUTH FORK SNAKE RIVER / PALISADES WILDLIFE MITIGATION PROJECT ENVIRONMENTAL ASSESSMENT DOE EA # 0956 DECLAIMER This report was prepared as an amunt of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their ' employees, makes any warranty, express or implied, or assumes any legal liability or responsi- , bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- 1 ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recorn- 1 mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessady state or reflect those of the United States Government or any agency thereof. - - - I- - - - Prepared for: BONNEVJLLE POWER ADMl?WTRAnON 905 NE. 11th Avenue Portland, Oregon 97232 Prepared by BIO/WEST, Inc 1063 West 1400 North Logan,Utah 84321 September 1995 . -- I DEPARTMENT OF ENERGY Bonneville Power Administration , Finding of No Significant Impact and Floodplain Statement of Findings for South Fork Snake RiverPalisades Wildlife Mitigation Project SUMMARY BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam; The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993.
    [Show full text]
  • Description of the Niagara Quadrangle
    DESCRIPTION OF THE NIAGARA QUADRANGLE. By E. M. Kindle and F. B. Taylor.a INTRODUCTION. different altitudes, but as a whole it is distinctly higher than by broad valleys opening northwestward. Across northwestern GENERAL RELATIONS. the surrounding areas and is in general bounded by well-marked Pennsylvania and southwestern New York it is abrupt and escarpments. i nearly straight and its crest is about 1000 feet higher than, and The Niagara quadrangle lies between parallels 43° and 43° In the region of the lower Great Lakes the Glaciated Plains 4 or 5 miles back from the narrow plain bordering Lake Erie. 30' and meridians 78° 30' and 79° and includes the Wilson, province is divided into the Erie, Huron, and Ontario plains From Cattaraugus Creek eastward the scarp is rather less Olcott, Tonawanda, and Lockport 15-minute quadrangles. It and the Laurentian Plateau. (See fig. 2.) The Erie plain abrupt, though higher, and is broken by deep, narrow valleys thus covers one-fourth of a square degree of the earth's sur­ extending well back into the plateau, so that it appears as a line face, an area, in that latitude, of 870.9 square miles, of which of northward-facing steep-sided promontories jutting out into approximately the northern third, or about 293 square miles, the Erie plain. East of Auburn it merges into the Onondaga lies in Lake Ontario. The map of the Niagara quadrangle shows escarpment. also along its west side a strip from 3 to 6 miles wide comprising The Erie plain extends along the base of the Portage escarp­ Niagara River and a small area in Canada.
    [Show full text]
  • RIVERS, ENERGY, and the REMAKING of COLONIAL NEW ENGLAND by ZACHARY M
    FLOWING POWER: RIVERS, ENERGY, AND THE REMAKING OF COLONIAL NEW ENGLAND By ZACHARY M. BENNETT A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in History Written under the direction of James Delbourgo And approved by New Brunswick, New Jersey May, 2019 ABSTRACT OF THE DISSERTATION Flowing Power: Rivers, Energy, and the Remaking of Colonial New England by Zachary M. Bennett Dissertation Director: James Delbourgo This dissertation considers how river energy was a source of authority in colonial New England. The caloric, kinetic, and mechanical energy people derived from rivers was necessary for survival in New England’s forbidding environment. During the initial stages of colonization, both Europeans and Indians struggled to secure strategic positions on waterways because they were the only routes capable of accommodating trade from the coast to the interior. European and Native peoples came into conflict by the late seventeenth century as they overextended the resource base. Exerting dominion in the ensuing wars on New England’s frontiers was directly tied to securing strategic river spaces since the masters of these places determined the flow of communication and food for the surrounding territory. Following British military conquest, colonists aggressively dammed rivers to satisfy the energy demands of their growing population. These dams eviscerated fish runs, shunting access to waterpower away from Native Americans and yeoman farmers. The transformation of New England’s hydrology was a critical factor in the dispossession indigenous peoples before the Revolution and essential in laying the legal groundwork for the region’s industrial future.
    [Show full text]
  • Description of the Minneapolis and St. Paul District
    DESCRIPTION OF THE MINNEAPOLIS AND ST. PAUL DISTRICT. By Frederick W. Sardeson. INTRODUCTION. district described in this folio lies in the northwestern part and southern Wisconsin, in Illinois, and in Iowa, but not of the Upper Mississippi basin subprovince and embraces the in Minnesota. They are chiefly dolomitic limestones, which LOCATION AND RELATIONS OF THE DISTRICT. junction of the Mississippi and Minnesota valleys. (See fig. 2.) include many coral reefs. They were laid down in clear, shal­ The district here described is bounded by parallels 44° 45' low seas while this region was a low coastal plain between the and 45° 15' and by meridians 93° and 93° 30' and comprises OUTLINE OF THE GEOLOGY AND GEOGRAPHY OF THE UPPEE Laurentian highlands on the north and the sea on the south. the Anoka, White Bear, Minneapolis, and St. Paul quad­ MISSISSIPPI BASIN SUBPROVINCE. The Devonian system covers the Silurian and overlaps it on rangles, an area of 846 square miles. It is in southeastern Extent and general relations. The Upper Mississippi basin the north so that it rests on the Ordovician in southern Minnesota (see fig. 1) and includes nearly the whole of subprovince lies west of Lake Michigan, east of the Coteau Minnesota (see fig. 3), but elsewhere it has been more strongly Ramsey County, the greater part of Hennepin County, and des Prairies, north of the Carboniferous basin or coal fields of eroded away and is less extensive than the Silurian system. smaller parts of Anoka, Dakota, Scott, and Washington coun­ Illinois and Iowa, and south of The Ranges, a southward It consists of limestones and clay shales, which were laid down ties.
    [Show full text]
  • New England Northern Reed Grass Is a Member of the Grass Family (Poaceae) That Occurs in a Variety of Moist, Open Habitats
    New England Natural Heritage Northern Reed Grass & Endangered Species Calamagrostis stricta (Timm) Koeler Program ssp. inexpansa ((A. Gray) C.W. Greene www.mass.gov/nhesp State Status: Endangered Massachusetts Division of Fisheries & Wildlife Federal Status: None DESCRIPTION: New England Northern Reed Grass is a member of the Grass family (Poaceae) that occurs in a variety of moist, open habitats. This subspecies grows to a height of 0.3 to 1.5 m, with long, narrow leaves that are flat, often stiff, and rough to the touch. The spike- like, dense flower clusters are typically 6-20 cm long. This perennial species produces rhizomes, and may be found growing as solitary stems or forming close clusters. AIDS TO IDENTIFICATION: Identification of New England Northern Reed Grass requires use of a technical manual and a hand lens or microscope. In grasses, the New England Northern Reed Grass has flat, narrow leaves, and a basic flowering unit is a spikelet, which consists of one spike-like inflorescence that is 6-20 cm long. Photos by Don or more flowers (florets) that are typically subtended by Cameron, Maine Natural Areas Program. a pair of bracts (glumes). The stamens and pistil are found between a pair of bracts called the lemma and palea. In Calamagrostis stricta, the glumes are longer spp. inexpansa, the glumes are thick and opaque, than the lemma, and the lemma has a stiff bristle (awn) averaging 3 to 6 mm long. The callus, a hard at its tip that may be twisted and bent, or straight, and is protuberance at the base of the lemma, is coated in white attached at or below the middle of the lemma.
    [Show full text]
  • 2Nd Owl Symposium Population Densities of Northern Saw-Whet
    2nd Owl Symposium Population Densities of Northern Saw-whet Owls (Aegolius acadicus) in Degraded Boreal Forests of the Southern Appalachians Timothy C. Milling1, Matthew P. Rowe1,2 , Bennie L. Cockerel1, Timothy A. Dellinger1, Johnny B. Gailes1, and Christopher E. Hill3 Abstract.—A disjunct population of the Northern Saw-whet Owl (Aegolius acadicus) breeds in the montane spruce-fir forests of the southern Appalachian Mountains. These forests are listed as the second most endangered ecosystem in the United States, having suffered from logging and massive fir die-off from the exotic balsam woolly adelgid. We used audio playbacks to compare densities of saw-whets prior to fir die-off (1968-1969) with those now (1993- 1994); numbers were almost identical, suggesting little if any impact from the adelgid. Extrapolation from our density estimates, however, show fewer than 500 pair of saw-whets in the southeastern popula- tion. Global warming, air pollution, outbreaks of new pests, and burgeoning recreational demands may further degrade these forests, leading to the possible extirpation of saw-whets from the southern Appalachians. The Northern Saw-whet Owl (Aegolius acadicus acadicus Gmelin) is a widespread and common owl in the forests of southern Canada and the northern United States (Cannings 1993, Johnsgard 1988). An apparent generalist, it has been found breeding in habitats as diverse as conifer plantations, deciduous forests, and cedar bogs (Cannings 1993, Johnsgard, 1988). Two potentially isolated populations occur in the eastern United States: a mid-Atlantic disjunct on the Allegheny Plateau of eastern West Virginia and western Maryland; and a southeastern disjunct in the southern Appalachian Mountains of western North Carolina, eastern Tennessee, and southwestern Virginia (fig.
    [Show full text]
  • Precipitation Change in the United States David R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the .SU . U.S. Department of Commerce Department of Commerce 2017 Precipitation change in the United States David R. Easterling NOAA National Centers for Environmental Information Jeff Arnold U.S. Army Corps of Engineers Thomas Knutson NOAA Geophysical Fluid Dynamics Lab, [email protected] Kenneth Kunkel North Carolina State University, [email protected] Allegra LeGrande NASA Goddard Institute for Space Studies See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Easterling, David R.; Arnold, Jeff; Knutson, Thomas; Kunkel, Kenneth; LeGrande, Allegra; Leung, L. Ruby; Vose, Russell; Waliser, Duane; and Wehner, Michael, "Precipitation change in the United States" (2017). Publications, Agencies and Staff of ht e U.S. Department of Commerce. 586. https://digitalcommons.unl.edu/usdeptcommercepub/586 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the .SU . Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors David R. Easterling, Jeff Arnold, Thomas Knutson, Kenneth Kunkel, Allegra LeGrande, L. Ruby Leung, Russell Vose, Duane Waliser, and Michael Wehner This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdeptcommercepub/586 Precipitation change in the United States David Easterling, NOAA National Centers for Environmental Information Jeff Arnold, U.S. Army Corps of Engineers Thomas Knutson, NOAA Geophysical Fluid Dynamics Lab Kenneth Kunkel, North Carolina State University Allegra LeGrande, NASA Goddard Institute for Space Studies L.
    [Show full text]