Green Finches” Put Your Logo Here

Total Page:16

File Type:pdf, Size:1020Kb

Green Finches” Put Your Logo Here Javier Blasco-Zumeta & Gerd-Michael Heinze Sponsor is needed. Write your name here 432a Idenfification of “Green Finches” Put your logo here IDENTIFICATION OF “GREEN FIN- CHES” (GENUS Chloris , Serinus , Car- duelis and Spinus ) 1 - With yellow patches on flight and tail feat- hers..……………………………...... 2 1 - Without yellow patches on flight and tail feathers ………….…………..…..... 5 2 - With yellow patches on all flight feathers 2 ….……………………….……. 3 5 - With yellow patches only on primaries 3 ……..………………….…………..... 4 3 - Crown and breast greenish-white streaked Eurasian Siskin. Fe- dark; tail feathers with yellow patches only on male: with yellow the outer webs: Eurasian Siskin, female ( Spinus patches on all flight spinus ) feathers (1); crown (2) and breast (3) - With dark crown; unstreaked yellow breast; streaked; tail feathers tail feathers with extensive yellow patches: Eu- with yellow patches rasian Siskin, male ( Spinus spinus ) only on the outer webs (4); long and 4 - The yellow patches on primaries do not 4 pointed bill (5). reach the shafts; outer tail feathers with yellow patches only on inner webs; unstreaked greenish -grey breast: European Greenfinch, female (Chloris chloris ) - The yellow patches on primaries reach the shafts; outer tail feathers with extensive yellow patches; unstreaked greenish breast: European Greenfinch, male ( Chloris chloris ) 1 - With wings and tail similar to those des- cribed but with streaked breast: European Greenfinch, juvenile ( Chloris chloris ) 2 5 - With unstreaked breast and flanks: Citril Finch, adult ( Carduelis citrinella ) 5 3 - With streaks on breast and/or flanks …. 6 6 - With unstreaked breast and streaked flanks: European serin, male ( Serinus serinus ) Eurasian Siskin. Male: with yellow patches on - With streaks on breast and flanks ..…….7 all flight feathers (1); dark crown (2); 7 - Breast bolding streaked dark; with short and unstreaked yellow stubby bill: European serin, female/juvenile breast (3); tail feathers (Serinus serinus ) with extensive yellow patches (4); long and pointed bill (5). - Breast softly streaked dark; with long and 4 thin bill: Citril Finch, juvenile ( Carduelis citri- nella ) http://blascozumeta.com Write your website here Page 1 Javier Blasco-Zumeta & Gerd-Michael Heinze Sponsor is needed. Write your name here Put your logo here 432a Idenfification of “Green Finches” 1 1 European Green- finch. Juvenile: ye- llow patches only on primaries (1); 3 with streaked breast 4 2 (2); strong cone- 3 2 shaped bill (3) European Greenfinch. Female: yellow patches only on primaries, which do not reach the shafts (1); outer tail feathers with yellow pat- ches only on inner webs (2); unstreaked gree- nish-grey breast (3); strong cone-shaped bill (4) 1 1 3 4 Citril Finch. Adult: 2 without yellow pat- 3 2 ches on flight (1) and tail (2) feathers; unstreaked flanks (3). European Greenfinch. Male: yellow patches only on primaries, which reach the shafts (1); outer tail feathers with extensive yellow patches (2); unstreaked greenish breast (3); strong cone- shaped bill (4) http://blascozumeta.com Write your website here Page 2 Javier Blasco-Zumeta & Gerd-Michael Heinze Sponsor is needed. Write your name here Put your logo here 432a Idenfification of “Green Finches” 1 1 4 3 4 3 European Serin. 2 Citril Finch. Juvenile: Male: without ye- without yellow patches 2 llow patches on on flight (1) and tail (2) flight (1) and tail (2) feathers; breast softly feathers; unstreaked streaked dark (3); long breast (3) and and thin bill (3) streaked flanks (4). 1 4 3 European Serin. Ju- venile: without ye- 2 llow patches on flight (1) and tail (2) feathers; breast bol- ding streaked dark (3); short and stubby bill (4). http://blascozumeta.com Write your website here Page 3 .
Recommended publications
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Developing Methods for the Field Survey and Monitoring of Breeding Short-Eared Owls (Asio Flammeus) in the UK: Final Report from Pilot Fieldwork in 2006 and 2007
    BTO Research Report No. 496 Developing methods for the field survey and monitoring of breeding Short-eared owls (Asio flammeus) in the UK: Final report from pilot fieldwork in 2006 and 2007 A report to Scottish Natural Heritage Ref: 14652 Authors John Calladine, Graeme Garner and Chris Wernham February 2008 BTO Scotland School of Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA Registered Charity No. SC039193 ii CONTENTS LIST OF TABLES................................................................................................................... iii LIST OF FIGURES ...................................................................................................................v LIST OF FIGURES ...................................................................................................................v LIST OF APPENDICES...........................................................................................................vi SUMMARY.............................................................................................................................vii EXECUTIVE SUMMARY ................................................................................................... viii CRYNODEB............................................................................................................................xii ACKNOWLEDGEMENTS....................................................................................................xvi 1. BACKGROUND AND AIMS...........................................................................................2
    [Show full text]
  • First Records of the Common Chaffinch Fringilla Coelebs and European Greenfinch Carduelis Chloris from Lord Howe Island
    83 AUSTRALIAN FIELD ORNITHOLOGY 2004, 2I , 83- 85 First Records of the Common Chaffinch Fringilla coelebs and European Greenfinch Carduelis chloris from Lord Howe Island GLENN FRASER 34 George Street, Horsham, Victoria 3400 Summary Details are given of the first records of two species of finch from Lord Howe Island: the Common Chaffinch Fringilla coelebs and the European Greenfinch Carduelis chloris. These records, from the early 1980s, have been quoted in several papers without the details hav ing been published. My Common Chaffinch records are the first for the species in Australian territory. Details of my records and of other published records of other European finch es on Lord Howe Island are listed, and speculation is made on the origin of these finches. Introduction This paper gives details of the first records of the Common Chaffinch Fringilla coelebs and the European Greenfinch Carduelis chloris for Lord Howe Island. The Common Chaffinch records are the first for any Australian territory and although often quoted (e.g. Boles 1988, Hutton 1991, Christidis & Boles 1994), the details have not yet been published. Other finches, the European Goldfinch C. carduelis and Common Redpoll C. fiammea, both rarely reported from Lord Howe Island, were also recorded at about the same time. Lord Howe Island (31 °32'S, 159°06'E) lies c. 800 km north-east of Sydney, N.S.W. It is 600 km from the nearest landfall in New South Wales, and 1200 km from New Zealand. Lord Howe Island is small (only 11 km long x 2.8 km wide) and dominated by two mountains, Mount Lidgbird and Mount Gower, the latter rising to 866 m above sea level.
    [Show full text]
  • About Eating and Not Eaten. Vigilance and Foraging Strategies in Wintering Eurasian Siskins (Carduelis Spinus)
    About eating and not eaten. Vigilance and foraging strategies in wintering Eurasian siskins (Carduelis spinus) Sobre menjar i no ser menjar: estratègies de vigilància i alimentació en lluers hivernants (Carduelis spinus) Jordi Pascual Sala ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Prolonged Sperm Storage Duration in Domesticated Canaries
    770 ShortCommunications [Auk,Vol. 104 ProlongedSperm StorageDuration in DomesticatedCanaries T. R. BIRKHEAD ZoologyDepartment, The University, Sheffield S10 2TN, UnitedKingdom Relative to most mammals, female birds can retain weekspreviously. The other 8 birdsin the aviary were their fertility for a considerabletime after mating and subsequentlypaired and confirmed to be females.Es- separationfrom the male (Lake 1975).Maximum sperm timated sperm storageduration was 35 days. storagedurations range from about 6 days in Ringed (4) A female canarywas paired to a male European Turtle-Doves (Streptopeliarisoria), 16 days in ducks, Goldfinch (C. carduelis),and the male removed once and 35 days in chickens to 72 days in turkeys (see the clutch was complete.A single goldfinch mule was Birkhead 1987 for a review). No published informa- reared: this took 42 days (14 days of incubation and tion is available on the duration of sperm storagein 28 daysto rear the chick).The female canarywas then passerines.Here I report maximum sperm storageval- paired immediately with a male siskin, and within a ues for female domesticated Common Canaries (Ser- week a clutch had been laid. One chick was reared inus canaria). from this clutch, but this was alsoa goldfinch rather I collecteddata from a questionnaireto breedersof than a siskin mule. Estimatedsperm storageduration canariesand "mules" (i.e. hybrids between a British was 49 days. finch male x canary female). Six independent in- (5 and 6) The situation was identical to that in (2) stanceswere reported; in each case female canaries above, except that after the second brood had been laid fertile eggsseveral days or weeksafter separation reared and the chicks removed, the female laid a third from the males.
    [Show full text]
  • Removal of Citril Finch from the British & Irish List
    Removal of Citril Finch from the British & Irish List Alan Knox, on behalf of the British Ornithologists' Union Records Committee n 29th January 1904, J. Quinton, a local birdcatcher, caught a small Ofinch on the Denes at Caistor (now Caister), just north of Great Yarmouth, Norfolk, The bird, subsequently identified as a Citril Finch Serinus citrinelk, was kept alive for a few days. It was then prepared as a mounted specimen by T. E. Gunn of Norwich, one of the best-known taxidermists of the period. E. C. Saunders, who was in possession of the bird for a short time, told the ornithologist J. H. Gurney about it (Gurney 1905). Gurney saw the specimen himself and was 'responsible for its identification'. This could mean that it was he who identified it or, more likely, that he confirmed the identification to his own satisfaction. Gurney noted that the bird had been 'an adult female in good feather'. Shortly after stuffing, die specimen passed to the collection of Sir Vauncey Harpur Crewe and, on the dispersal of that collec­ tion, the bird was purchased and presented to the Booth Museum in Brighton, where it remains (plate 123; case no. 460, reg. no. 208113; Boodi & Griffith 1927). The species was admitted to the British List by Howard Saunders on the basis of Gurney's claim (Saunders 1907). No published description, photograph or biometrics of the bird have been located, nor is there any record of the specimen having been examined criti­ cally since Gurney's time. Citril Finch remained on the British & Irish List (in category B) on the basis of the Great Yarmouth specimen alone.
    [Show full text]
  • Climate Change and the Spring Migration of the European Serin Serinus Serinus
    Z. Dolenec: Climate change and the spring migration of the European Serin Serinus serinus 55 26-33 str. Zagreb 2020. LARUS (2020) 3 slike Hrvatska akademija znanosti i umjetnosti Primljeno 18.5.2020. Prihvaćeno od Razreda za prirodne znanosti HAZU 28.11.2020. Original scientific paper UDK 598.296.1+591.543.43 Izvorni znanstveni članak DOI: https://dx.doi.org/10.21857/94kl4czo1m CLIMATE CHANGE AND THE SPRING MIGRATION OF THE EUROPEAN SERIN Serinus serinus Klimatske promjene i proljetne migracije žutarice Serinus serinus Zdravko Dolenec Mokrice 132, 49243 Oroslavlje, Croatia ABSTRACT Numerous migratory bird species have advanced their spring ar- rival over the past few decades. These arriving changes may be associ- ated with climate change. The aim of this paper was to examine how the timing of the European Serin Serinus serinus spring migration is related to the year and the local spring air temperatures. The study was con- ducted in the rural area of the village Mokrice in north-western Croatia. This study shows that the European Serins have significantly advanced their first arrival date over the 37-year period by eight days. Over the same research period, the mean spring air temperature has significantly increased as well. The results indicate that the average spring air tem- perature affects the spring migration phenology of the European Serin in north-western Croatia. Keywords: climate change, European Serin, arrival date, NW Croatia INTRODUCTION Earth climate is changing (IPPC 2014), and evidence of the effect of the recent climate warming on plants and animals has rapidly accumulated. For instance, studies from across the world have illustrated that the flowering phenology has advanced in the spring and that this is closely linked with temperature changes (e.g.
    [Show full text]
  • Niche Analysis and Conservation of Bird Species Using Urban Core Areas
    sustainability Article Niche Analysis and Conservation of Bird Species Using Urban Core Areas Vasilios Liordos 1,* , Jukka Jokimäki 2 , Marja-Liisa Kaisanlahti-Jokimäki 2, Evangelos Valsamidis 1 and Vasileios J. Kontsiotis 1 1 Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; [email protected] (E.V.); [email protected] (V.J.K.) 2 Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland; jukka.jokimaki@ulapland.fi (J.J.); marja-liisa.kaisanlahti@ulapland.fi (M.-L.K.-J.) * Correspondence: [email protected] Abstract: Knowing the ecological requirements of bird species is essential for their successful con- servation. We studied the niche characteristics of birds in managed small-sized green spaces in the urban core areas of southern (Kavala, Greece) and northern Europe (Rovaniemi, Finland), during the breeding season, based on a set of 16 environmental variables and using Outlying Mean Index, a multivariate ordination technique. Overall, 26 bird species in Kavala and 15 in Rovaniemi were recorded in more than 5% of the green spaces and were used in detailed analyses. In both areas, bird species occupied different niches of varying marginality and breadth, indicating varying responses to urban environmental conditions. Birds showed high specialization in niche position, with 12 species in Kavala (46.2%) and six species in Rovaniemi (40.0%) having marginal niches. Niche breadth was narrower in Rovaniemi than in Kavala. Species in both communities were more strongly associated either with large green spaces located further away from the city center and having a high vegetation cover (urban adapters; e.g., Common Chaffinch (Fringilla coelebs), European Greenfinch (Chloris Citation: Liordos, V.; Jokimäki, J.; chloris Cyanistes caeruleus Kaisanlahti-Jokimäki, M.-L.; ), Eurasian Blue Tit ( )) or with green spaces located closer to the city center Valsamidis, E.; Kontsiotis, V.J.
    [Show full text]
  • Convergence in Foraging Guild Structure of Forest Breeding Bird Assemblages Across Three Continents Is Related to Habitat Structure and Foraging Opportunities
    COMMUNITY ECOLOGY 14(1): 89-100, 2013 1585-8553/$20.00 © Akadémiai Kiadó, Budapest DOI: 10.1556/ComEc.14.2013.1.10 Convergence in foraging guild structure of forest breeding bird assemblages across three continents is related to habitat structure and foraging opportunities M. Korňan1,2,7, R. T. Holmes3, H. F. Recher4,5, P. Adamík6 and R. Kropil2 1Centre for Ecological Studies, Ústredie 14, 013 62 Veľké Rovné, Slovakia 2Department of Forest Protection and Game Management, Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 20, 960 53 Zvolen, Slovakia; E-mail: [email protected], [email protected] 3Department of Biological Sciences, Dartmouth College, 78 College St., Hanover, New Hampshire 03755, U.S.A.; E-mail: [email protected] 4The Australian Museum, 6-8 College Street, Sydney, New South Wales, Australia 2000 5Current address: P.O. Box 154, Brooklyn, New South Wales, Australia 2083; E-mail: [email protected] 6Department of Zoology, Palacký University, Tř. Svobody 26, 771 46 Olomouc, The Czech Republic; E-mail: [email protected] 7Corresponding author. E-mail: [email protected] Keywords: Bird community structure, Bondi State Forest, Bootstrap testing, Cluster analysis, Foraging guilds, Hubbard Brook Experimental Forest, Intercontinental guild comparisons, Ordination, Resource partitioning, Šrámková National Nature Reserve. Abstract. Comparisons of community structure across sites allow for the detection of convergent patterns and the selective forces that have produced them. In this study, we examined
    [Show full text]
  • AERC Wplist July 2015
    AERC Western Palearctic list, July 2015 About the list: 1) The limits of the Western Palearctic region follow for convenience the limits defined in the “Birds of the Western Palearctic” (BWP) series (Oxford University Press). 2) The AERC WP list follows the systematics of Voous (1973; 1977a; 1977b) modified by the changes listed in the AERC TAC systematic recommendations published online on the AERC web site. For species not in Voous (a few introduced or accidental species) the default systematics is the IOC world bird list. 3) Only species either admitted into an "official" national list (for countries with a national avifaunistic commission or national rarities committee) or whose occurrence in the WP has been published in detail (description or photo and circumstances allowing review of the evidence, usually in a journal) have been admitted on the list. Category D species have not been admitted. 4) The information in the "remarks" column is by no mean exhaustive. It is aimed at providing some supporting information for the species whose status on the WP list is less well known than average. This is obviously a subjective criterion. Citation: Crochet P.-A., Joynt G. (2015). AERC list of Western Palearctic birds. July 2015 version. Available at http://www.aerc.eu/tac.html Families Voous sequence 2015 INTERNATIONAL ENGLISH NAME SCIENTIFIC NAME remarks changes since last edition ORDER STRUTHIONIFORMES OSTRICHES Family Struthionidae Ostrich Struthio camelus ORDER ANSERIFORMES DUCKS, GEESE, SWANS Family Anatidae Fulvous Whistling Duck Dendrocygna bicolor cat. A/D in Morocco (flock of 11-12 suggesting natural vagrancy, hence accepted here) Lesser Whistling Duck Dendrocygna javanica cat.
    [Show full text]
  • Eurasian Siskins in North America Distinguishing Females from Green
    Reprinted from: American Birds, Winter 1989, Volume 43, Number 5 Printed in U.S. A. Eurasian Siskins in North America­ distinguishing females from green-morph Pine Siskins Ian A. McLaren, Joseph Morlan, P. William Smith, Michel Gosselin, and Stephen F. Bailey Figure 1. Dorsal view of the green-morph Pine Siskin in Halifax, Nova Scotia. early April 1986. Photo/!. McLaren. N MARCH 26,1986, AN UNUSUAL were clearly Pine Siskins in other at- suggested that it was probably a Pine siskin turned up at McLaren's tributes, and they were not widely re- Siskin because of its bright yellow un- O feeder in Halifax, Nova Scotia. ported. The original Halifax bird dertail coverts, a feature lacking in It was dark grayish-green on the back, (Figs. 1, 2) required more research Eurasian Siskins (With~rby et at. with strong yellow wing and tail before finally being identified as an 1943). The photographs show that the patches, a greenish-yellow rump, and example of the little-known green bird was definitely a green-morph tinged with yellow on the head and morph of the Pine Siskin. Pine Siskin, based on this and other underparts. Furthermore, it appeared Meanwhile, in late February 1987 characters discussed below. smaller and its bill seemed deeper an unusual siskin flew into a window Our purpose~ in writing this ac- than average among scores of Pine ofe. J. Ralph's house in Arcata, Cal- count are to review available infor- Siskins (Carduelis pinus) coming to ifornia. The bird was stunned briefly, mation on claimed occurrences of the the feeder.
    [Show full text]
  • Advances in the Study of Irruptive Migration
    Advances in the study of irruptive migration Ian Newton1 Newton I. 2006. Advances in the study of irruptive migration. Ardea 94(3): 433–460. This paper discusses the movement patterns of two groups of birds which are generally regarded as irruptive migrants, namely (a) boreal finches and others that depend on fluctuating tree-fruit crops, and (b) owls and others that depend on cyclically fluctuating rodent popula- tions. Both groups specialise on food supplies which, in particular regions, fluctuate more than 100-fold from year to year. However, seed- crops in widely separated regions may fluctuate independently of one another, as may rodent populations, so that poor food supplies in one region may coincide with good supplies in another. If individuals are to have access to rich food supplies every year, they must often move hun- dreds or thousands of kilometres from one breeding area to another. In years of widespread food shortage (or high numbers relative to food supplies) extending over many thousands or millions of square kilome- tres, large numbers of individuals migrate to lower latitudes, as an ‘irruptive migration’. For these reasons, the distribution of the popula- tion, in both summer and winter, varies greatly from year to year. In irruptive migrants, in contrast to regular migrants, site fidelity is poor, and few individuals return to the same breeding areas in succes- sive years (apart from owls in the increase phase of the cycle). Moreover, ring recoveries and radio-tracking confirm that the same indi- viduals can breed in different years in areas separated by hundreds or thousands of kilometres.
    [Show full text]