DNA Microarray Analysis of Gene Expression in Response to Physiological and Genetic Changes That Affect Tryptophan Metabolism in Escherichia Coli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
16.1 | Regulation of Gene Expression
436 Chapter 16 | Gene Expression 16.1 | Regulation of Gene Expression By the end of this section, you will be able to do the following: • Discuss why every cell does not express all of its genes all of the time • Describe how prokaryotic gene regulation occurs at the transcriptional level • Discuss how eukaryotic gene regulation occurs at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels For a cell to function properly, necessary proteins must be synthesized at the proper time and place. All cells control or regulate the synthesis of proteins from information encoded in their DNA. The process of turning on a gene to produce RNA and protein is called gene expression. Whether in a simple unicellular organism or a complex multi-cellular organism, each cell controls when and how its genes are expressed. For this to occur, there must be internal chemical mechanisms that control when a gene is expressed to make RNA and protein, how much of the protein is made, and when it is time to stop making that protein because it is no longer needed. The regulation of gene expression conserves energy and space. It would require a significant amount of energy for an organism to express every gene at all times, so it is more energy efficient to turn on the genes only when they are required. In addition, only expressing a subset of genes in each cell saves space because DNA must be unwound from its tightly coiled structure to transcribe and translate the DNA. Cells would have to be enormous if every protein were expressed in every cell all the time. -
Formation of Heterodimers Between Wild Type and Mutant Trp Aporepressor Polypeptides of Eschem'chia Coli Thomas J
PROTEINS: Structure, Function, and Genetics 4:173-181 (1988) Formation of Heterodimers Between Wild Type and Mutant trp Aporepressor Polypeptides of Eschem'chia coli Thomas J. Graddis,' Lisa S. Klig,' Charles Yanofsky,' and Dale L. Oxender' 'Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and 'Department of Biological Sciences, Stanford University, Stanford, California 94305 ABSTRACT Availability of the three-dimen- tophan.1-6 The trp aporepressor is activated by the sional structure of the trp repressor of Escherichia binding of two molecules of its corepressor. Once ac- coli and a large group of repressor mutants has per- tivated, trp repressor binds to the operators of the trp, mitted the identification and analysis of mutants aroH, and trpR operons, regulating transcription ini- with substitutions of the amino acid residues that tiati~n.~,'The aroH and trp operons encode biosyn- form the tryptophan binding pocket. Mutant apore- thetic enzymes, whereas the trpR operon encodes the pressors selected for study were overproduced using trp aporepressor. The trpR gene has been cloned and a multicopy expression plasmid. Equilibrium di- its nucleotide sequence determined.3 The aporepres- alysis with ''C-tryptophan and purified mutant and sor and repressor have been purified and the crystal wild type aporepressors was employed to determine structures of both have been solved at high resolu- tryptophan binding constants. The results obtained ti~n.~-"The trp aporepressor is a dimer of identical indicate that replacement of threonine 44 by methi- 107 residue polypeptides." The existence of the three- onine (TM44) or arginine 84 by histidine (RH84) low- dimensional structures, and the availability of many ers the affinity for tryptophan approximately two- repressor mutants,2i12has facilitated this analysis of and four-fold, respectively. -
A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution. -
Using Viper, a Package for Virtual Inference of Protein-Activity by Enriched Regulon Analysis
Using viper, a package for Virtual Inference of Protein-activity by Enriched Regulon analysis Mariano J. Alvarez1,2, Federico M. Giorgi1, and Andrea Califano1 1Department of Systems Biology, Columbia University, 1130 St. Nicholas Ave., New York 2DarwinHealth Inc, 3960 Broadway, New York May 19, 2021 1 Overview of VIPER Phenotypic changes effected by pathophysiological events are now routinely captured by gene expression pro- file (GEP) measurements, determining mRNA abundance on a genome-wide scale in a cellular population[8, 9]. In contrast, methods to measure protein abundance on a proteome-wide scale using arrays[11] or mass spectrometry[10] technologies are far less developed, covering only a fraction of proteins, requiring large amounts of tissue, and failing to directly capture protein activity. Furthermore, mRNA expression does not constitute a reliable predictor of protein activity, as it fails to capture a variety of post-transcriptional and post-translational events that are involved in its modulation. Even reliable measurements of protein abundance, for instance by low-throughput antibody based methods or by higher-throughput methods such as mass spectrometry, do not necessarily provide quantitative assessment of functional activity. For instance, enzymatic activity of signal transduction proteins, such as kinases, ubiquitin ligases, and acetyltransferases, is frequently modulated by post-translational modification events that do not affect total protein abundance. Similarly, transcription factors may require post-translationally mediated activation, nuclear translocation, and co-factor availability before they may regulate specific repertoires of their transcriptional targets. Fi- nally, most target-specific drugs affect the activity of their protein substrates rather than their protein or mRNA transcript abundance. -
Toolbox Model of Evolution of Prokaryotic Metabolic Networks and Their Regulation
Toolbox model of evolution of prokaryotic metabolic networks and their regulation Sergei Maslova,1, Sandeep Krishnab, Tin Yau Panga,c, and Kim Sneppenb aDepartment of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973; bNiels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark; and cDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 Edited by David J. Lipman, National Institutes of Health, Bethesda, MD, and approved April 16, 2009 (received for review March 23, 2009) It has been reported that the number of transcription factors A simple evolutionary model explains both these empirical encoded in prokaryotic genomes scales approximately quadrati- observations in a unified framework based on modular functional cally with their total number of genes. We propose a conceptual design of prokaryotic metabolic networks and their regulation. explanation of this finding and illustrate it using a simple model in which metabolic and regulatory networks of prokaryotes are Toolbox View of Metabolic Networks shaped by horizontal gene transfer of coregulated metabolic Metabolic networks are composed of many semiautonomous func- pathways. Adapting to a new environmental condition monitored tional modules corresponding to traditional metabolic pathways (8) by a new transcription factor (e.g., learning to use another nutri- or their subunits (9). Constituent genes of such evolutionary ent) involves both acquiring new enzymes and reusing some of the modules tend to cooccur (be either all present or all absent) in enzymes already encoded in the genome. As the repertoire of genomes (9, 10). These pathways overlap with each other to form branched, interconnected metabolic networks. -
An Improved Bind-N-Seq Strategy to Determine Protein-DNA Interactions Validated Using the Bacterial Transcriptional Regulator Yipr Shi-Qi An1,2* , Miguel A
An et al. BMC Microbiology (2020) 20:1 https://doi.org/10.1186/s12866-019-1672-7 METHODOLOGY ARTICLE Open Access An improved bind-n-seq strategy to determine protein-DNA interactions validated using the bacterial transcriptional regulator YipR Shi-qi An1,2* , Miguel A. Valvano2, Yan-hua Yu3, Jeremy S. Webb1 and Guillermo Lopez Campos2 Abstract Background: Interactions between transcription factors and DNA lie at the centre of many biological processes including DNA recombination, replication, repair and transcription. Most bacteria encode diverse proteins that act as transcription factors to regulate various traits. Several technologies for identifying protein–DNA interactions at the genomic level have been developed. Bind-n-seq is a high-throughput in vitro method first deployed to analyse DNA interactions associated with eukaryotic zinc-finger proteins. The method has three steps (i) binding protein to a randomised oligonucleotide DNA target library, (ii) deep sequencing of bound oligonucleotides, and (iii) a computational algorithm to define motifs among the sequences. The classical Bind-n-seq strategy suffers from several limitations including a lengthy wet laboratory protocol and a computational algorithm that is difficult to use. We introduce here an improved, rapid,andsimplifiedBind-n-seqprotocolcoupledwithauser-friendly downstream data analysis and handling algorithm, which has been optimized for bacterial target proteins. We validate this new protocol by showing the successful characterisation of the DNA-binding specificities of YipR (YajQ interacting protein regulator), a well- known transcriptional regulator of virulence genes in the bacterial phytopathogen Xanthomonas campestris pv. campestris (Xcc). Results: The improved Bind-n-seq approach identified several DNA binding motif sequences for YipR, in particular the CCCTCTC motif, which were located in the promoter regions of 1320 Xcc genes. -
Making Informed Decisions: Regulatory Interactions Between Two-Component Systems
Review TRENDS in Microbiology Vol.11 No.8 August 2003 359 Making informed decisions: regulatory interactions between two-component systems Jetta J.E. Bijlsma and Eduardo A. Groisman Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St Louis, MO 63110, USA Bacteria experience a multitude of stresses in the com- phosphorylate from small molecular weight phosphoryl plex niches they inhabit. These stresses are denoted by donors, such as acetyl phosphate and carbamoyl phos- specific signals that typically alter the activity of individ- phate [3,4]. In addition, the vast majority of sensor kinases ual two-component regulatory systems. Processing of exhibit phosphatase activity towards their cognate multiple signals by different two-component systems response regulators. Although most two-component sys- occurs when multiple sensors interact with a single tems entail a single His-to-Asp phosphotransfer event response regulator, by phosphatases interrupting phos- between a histidine kinase and a response regulator, there phoryl transfer in phosphorelays and through transcrip- is a subset that consists of a three-step His-Asp-His-Asp tional and post-transcriptional mechanisms. Gaining phosphorelay (Fig. 1b) [1,2]. The extra phosphorylatable insight into these mechanisms provides an understand- domains in a phosphorelay can be present in separate ing at the molecular level of bacterial adaptation to ever proteins or be part of multi-domain (i.e. -
Testing the DNA Repair Hypothesis in Bacillus Subtilis and Haemophilus Intuenzae
Copyright 0 1993 by the Genetics Society of America Evolution of Natural Transformation: Testing the DNA Repair Hypothesis in Bacillus subtilis and Haemophilus intuenzae Rosemary J. Redfield' Department of Biochemistry, University of British Columbia, Vancouver, BritishColumbia V6T lZ3, Canada Manuscript received July 23, 1992 Accepted for publication December 15, 1992 ABSTRACT The hypothesis that the primary function of bacterial transformation is DNA repair was tested in the naturallytransformable bacteria Bacillus subtilis and Haemophilusinjluenzae by determining whether competence for transformation is regulated by DNA damage. Accordingly, DNA damage was induced by mitomycin C and by ultraviolet radiation at doses that efficiently induced a known damage-inducible gene fusion, and the ability of the damaged cultures to transform was monitored. Experiments were carried out both under conditions wherecells do not normally become competent and under competence-inducing conditions.No induction or enhancement of competence by damage was seen in either organism. These experiments strongly suggest thatthe regulation of competence does not involve a response to DNA damage, andthus that explanations other than DNA repair must be sought for the evolutionaryfunctions of natural transformation systems. ANY groups of bacteria have evolved mecha- noncompetent cells) are provided with homologous M nisms of natural transformation which enable DNA after the cell's own DNA has been damaged by them to take upfree DNA fragmentsfrom their UV irradiation, the proportion of transformants is environments. If this DNA is homologous and genet- increased amongthe survivors (MICHOD, WOJCIE- ically marked, recombinant pregnancy are often pro- CHOWSKI and HOELZER1988). The favored interpre- duced (STEWARTand CARLSON1986). Most research- tation was that the cells that took up DNA survived ers have assumed thattransformation evolved for damage better than the cells that did not. -
Application of Models for Biomolecular Structure and Interactions to Understand and Influence Biological Function
Application of Models for Biomolecular Structure and Interactions to Understand and Influence Biological Function Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Irene Meliciani aus Rom (Italien) Dekan: Prof. Dr. Martin Bastmeyer Referent: Prof. Dr. Stefan Bräse Korreferent: Apl. Prof. Dr. Wolfgang Wenzel Tag der mündlichen Prüfung: 19.10.2011 a mamma e papà Application of Models for Biomolecular Structure and Interactions to Understand and Influence Biological Function Irene Meliciani Karlsruher Institut für Technologie Institut für Nanotechnologie Intitut für Organische Chemie Zusammenfassung Die Forschung in den Lebenswissenschaften hat in den letzten Jahrzehnten zu einem enormen Wissensgewinns bezüglich der Abläufe zellulärer Prozesse und ihrer Steuerung geführt. Die Steuerung biologischer Prozesse wird vielfach über Kontaktwechselwirkungen der daran beteiligten Biomoleküle bewältigt. Mit dieser Arbeit möchte ich zu einem besseren Verständnis biomolekularer Interaktionen beitragen. Ein Teil dieser Arbeit beschäftigt sich mit der Untersuchung von Proteininteraktionen, wobei als Methoden für die Modellierung von Protein-Protein-Wechselwirkungen (POEM) und für die Protein-Liganden-Wechselwirkung (FLEXSCREEN) eingesetzt wurden. Es wurden die Interaktionen der Chemokinrezeptoren CCR3 und CXCR1 mit für den Entzündungsverlauf wichtigen Steuerungsmolekülen (Chemokinen) -
Teaching Gene Regulation in the High School Classroom, AP Biology, Stefanie H
Wofford College Digital Commons @ Wofford Arthur Vining Davis High Impact Fellows Projects High Impact Curriculum Fellows 4-30-2014 Teaching Gene Regulation in the High School Classroom, AP Biology, Stefanie H. Baker Wofford College, [email protected] Marie Fox Broome High School Leigh Smith Wofford College Follow this and additional works at: http://digitalcommons.wofford.edu/avdproject Part of the Biology Commons, and the Genetics Commons Recommended Citation Baker, Stefanie H.; Fox, Marie; and Smith, Leigh, "Teaching Gene Regulation in the High School Classroom, AP Biology," (2014). Arthur Vining Davis High Impact Fellows Projects. Paper 22. http://digitalcommons.wofford.edu/avdproject/22 This Article is brought to you for free and open access by the High Impact Curriculum Fellows at Digital Commons @ Wofford. It has been accepted for inclusion in Arthur Vining Davis High Impact Fellows Projects by an authorized administrator of Digital Commons @ Wofford. For more information, please contact [email protected]. High Impact Fellows Project Overview Project Title, Course Name, Grade Level Teaching Gene Regulation in the High School Classroom, AP Biology, Grades 9-12 Team Members Student: Leigh Smith High School Teacher: Marie Fox School: Broome High School Wofford Faculty: Dr. Stefanie Baker Department: Biology Brief Description of Project This project sought to enhance high school students’ understanding of gene regulation as taught in an Advanced Placement Biology course. We accomplished this by designing and implementing a lab module that included a pre-lab assessment, a hands-on classroom experiment, and a post-lab assessment in the form of a lab poster. Students developed lab skills while simultaneously learning about course content. -
Mutant Tryptophan Aporepressors with Altered Specificities Of
Copyright 0 1991 by the Genetics Society of America Mutant Tryptophan Aporepressors With Altered Specificitiesof Corepressor Recognition Dennis N. Arvidson,' Michael Shapiro' and Philip Youderian' Department of Biological Sciences, University of Southern Calqornia, Los Angeles, Calqornia 90089 Manuscript received November 20, 1990 Accepted for publication January 19, 199 1 ABSTRACT The Escherichia coli trpR gene encodes tryptophan aporepressor, which binds the corepressor ligand, L-tryptophan, to form an active repressor complex. The side chain of residue valine 58 of Trp aporepressor sits at the bottom of the corepressor @-tryptophan) binding pocket. Mutant trpR genes encoding changes of Vals8 to the other 19 naturally occurring amino acids were made. Each of the mutant proteins requires a higher intracellular concentration of tryptophan for activation of DNA binding than wild-type aporepressor. Whereas wild-type aporepressor is activated better by 5- methyltryptophan (5-MT) than by tryptophan, IlesHand other mutant aporepressors prefer tryptophan to 5-MT as corepressor, and Ala5' and GIY'~prefer 5-MT much more strongly than wild-type aporepressor in vivo. These mutant aporepressors are the first examples of DNA-binding proteins with altered specificities ofcofactor recognition. ANY regulatory proteins areallosteric, and bind intermonomer interactions stabilize its extraordinary M small metabolic intermediates that modify their hydrophobic core. The aporepressor dimer denatures activities, allowing the intracellular pattern of gene at a very high temperature (>go") (BAEet al. 1988). expression to respond to physiologicalchange. For Comparisons of the crystal structures of repressor example, the Escherichia coli tryptophan aporepressor (SCHEVITZet al. 1985; LAWSONet al. 1988;OTWI- (TrpR) protein binds DNA poorly. However, when NOWSKI et al. -
Development of Novel Transgenic Zebrafish
DEVELOPMENT OF NOVEL TRANSGENIC ZEBRAFISH MODELS AND THEIR APPLICATION TO STUDIES ON ENVIRONMENTAL OESTROGENS Submitted by Jon Marc Green to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences, September 2016 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………(Jon Marc Green) 1 Abstract Oestrogenic chemicals have become increasingly associated with health effects in wildlife populations and humans. Transgenic animal models have been developed to understand the mechanisms by which these oestrogenic chemicals alter hormonal signalling pathways and how these alterations can lead to chronic health effects. The use of highly informative transgenic animal models will also result in better use and potential reduction of intact animals used in animal testing in line with the principles of the 3Rs. In this thesis work, two novel oestrogen responsive transgenic zebrafish models have been generated to investigate the effects of oestrogenic chemicals, identify their tissue targets and better understand the temporal dynamics of these responses. Both models express the pigment-free ‘Casper’ (a mutant line lacking skin pigment) phenotype, which facilitate identification of responding target tissues in the whole fish in all fish life stages (embryos to adults). The oestrogen response element green fluorescent (ERE-GFP)-Casper model was generated by crossing an established ERE-GFP line with the skin pigment free Casper line.