Electronic Supplementary Material

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Supplementary Material 1 2 Electronic Supplementary Material 3 This Electronic Supplimentary Material has been provided by the authors to give readers 4 additional information about the technical details of their work. 5 Supplement to: 6 Elliott JT, Wirth DJ, Davis SC, et al. Seeing the light: Improving the usability of fluorescence- 7 guided surgery by adding an optimized secondary light source. 8 9 10 11 Optimizing the Secondary Illuminant Filters and Intensity 12 Hyperspectral Imaging Instrumentation and Light Source Adapter 13 An in-house hyperspectral imaging system (HIS) enabled acquisition of spectrally resolved 14 images during reflectance and fluorescence illumination of the surgical field. The detection module 15 consisted of an achromatic lens that focused light transmitted from the accessory port, through a liquid 16 crystal tunable filter (LCTF; VariSpec VIS 450-750, Perkin-Elmer, Waltham, MA) with 7-nm bandwidth 17 onto a CMOS camera (Edge 4.2, PCO, Kelheim, Germany). Hyperspectral imaging data were acquired 18 every 100 ms while the LCTF was swept across wavelengths at 5 nm intervals to characterize the 19 spectrum within the 450-720 nm range, generating data (every 5 minutes) with dimensions 540 px x 640 20 px x 55 wavelengths. Simultaneously, the Zeiss camera acquired images and video during the reflectance 21 and fluorescence mode acquisitions.. 22 Figure ESM1 shows the adapter that was used to mount a secondary illuminant onto the Pentero. 23 24 Figure ESM1. Bottom and side views of the secondary illuminant adapter, which attaches to the Zeiss OPMI via its 25 dove-tail plate adapter (not shown). An arc-shaped light baffle prevented glare from the primary light source. The 26 LED PCB and optics were placed in the adapter and interface via a M8 female receptacle connected to a 5-m long 27 M8 cable. 28 Simulating a Secondary Illuminant with Hyperspectral Imaging Data 29 Our hyperspectral imaging system (HIS) was calibrated using a NIST-traceable calibrated white light 30 source of known spectrum (SL1-CAL VIS-NIR Tungsten Halogen, StellarNet, Inc., Tampa, FL) so that 31 the response of each HIS band was known. The HIS was then used to capture the reflected spectrum of a 32 ColorChecker card illuminated by a standard Zeiss Pentero operating microscope (OPMI) tungsten- 33 halogen (xenon) arc lamp. 34 The HIS dataset comprising of images of the ColorChecker at each wavelength, after being 35 divided by the white-light source spectrum, was multiplied by modified source spectra simulating various 36 LPF and SPF combinations. These results were converted to RGB space by convolving the data with 37 standard RGB observer functions.1 The difference between the RGB values of each simulated 38 illumination and the RGB values obtained from the actual Pentero white-light illumination defined a 39 transformation, T, between these two colorspaces as: 40 CCmeas * T = CCstd (1) 41 where CCsi is the RGB values of ColorChecker squares in secondary illuminant color space (24 x 3 42 matrix) and CCstd is the RGB values of the ColorChecker squares under the standard Zeiss white light. To 43 simulate the addition of a secondary illuminant during blue-light illumination, the white-light image, IWL, 44 was converted to secondary illuminant colorspace, multiplied by a weighting scalar, w, and added to the 45 blue-light image. Specifically, 46 ISIM = w (IWL * T) + IBL \ max(w (IWL * T) + IBL ) (2) 47 where ISIM is the simulated, blended image, T is transformation between white-light and secondary- 48 illuminant colorspace, and the denominator readjusts the white point if necessary when R, G, and B 49 channels are saturated. The weighting scalar, w, corresponds to the intensity of the secondary illuminant 50 (from 10 to 100%). An example of simulated fluorescence of the ColorChecker with secondary illuminant 51 is presented in Figure 3. A C D E F B G H I J 52 53 Figure ESM2. Simulated fluorescence with secondary illuminant. Left-most images show the illumination of the 54 colorcard with white-light (A) and blue-light (B) only. Intensity of secondary illuminant relative to the area under 55 the curve of the blue light illuminant is varied from 2 to 9 (left to right C through J). LPF with cut-off of 480 nm and 56 SPF with cut-on at 595 were used. 57 Determination of Color Rendering Index 58 The ColorChecker card is a tool used by photographers to correct the color gamut of a photograph to 59 match the true reflectance spectra of objects in the scene. By taking one picture with the ColorChecker in 60 view, a linear transformation between the ColorChecker squares in the photograph, CCmeas, and a set of 61 standardized RGB values provided by the manufacturer, CCstd,, typically obtained with CIE Standard 62 Illuminant D65 (average midday light), can be defined using Eq. 1. This procedure enables the 63 photographer to preserve color constancy across subsequent images, assuming the camera settings and 64 illuminant are constant. Values can be defined for different standards, depending on the desired 65 illuminant. For the purpose of this study, CCstd was determined with the Pentero white-light source 66 following 30 minutes of warm-up time, set to an intensity of 30%. 67 When the ColorChecker is photographed under a non-standard illuminant, the difference in color 68 fidelity can be represented by the average distance, E, between the standard and observed values for 69 each of the 24 ColorChecker squares. Multiple approaches can be used to evaluate this fidelity. The most 70 straightforward calculates the overall accuracy in observed colors by defining the root square mean of 71 distances between measured and expected RGB values for each ColorChecker square. Another approach 72 involves the Color Rendering Index (CRI), which converts mean Euclidean distance between measured 73 and expected u,v chromaticity values (in CIE 1960 color space) to an index with a perfect score of 100.2,3 74 This formulation is helpful for evaluating surgical lighting because the IEC 60601-2-41 guidelines 75 suggest a CRI of at least 85. Therefore, we chose CRI as an intuitive representation of error in color 76 fidelity obtained by the different lighting conditions evaluated in this paper. 77 Determination of Tumor-to-Background Color Contrast 78 In addition to optimizing the secondary illuminant on the basis of ColorChecker accuracy (evaluated via 79 CRI) and maximizing color rendering, preservation of tumor-to-background color contrast (TBCC) is 80 essential. To evaluate the influence of different combinations of filters and light intensity on these two 81 characteristics (CRI and TBCC), addition of the secondary illuminant was simulated on surgical images 82 acquired previously with the Zeiss Pentero camera in white-light and blue-light modes. ColorChecker HIS 83 datasets were used to simulate secondary illuminants with varying filter cut-on and cut-off wavelengths 84 and intensities, as described in the previous section. For each of these simulations, transformation, T, 85 from Equation 1 was calculated for each simulated HIS dataset, which allowed any RGB image acquired 86 under the standard surgical illuminant to be converted to the RGB space representing the color gamut of 87 the simulated ColorChecker dataset. Pairs of white-light and blue-light images acquired at the same 88 positions during 5-ALA guided tumor resection were obtained from ten patients. Secondary illuminants 89 corresponding to the LPF, SPF and intensity values identified through the ColorChecker fidelity analysis 90 were simulated by multiplying the white-light surgical image with the corresponding transformation and 91 then adding to the blue-light surgical image proportionally, according to intensity. From these simulated 92 images, TBCC and BFS were calculated and compared with values obtained from the blue-light and 93 white-light images, respectively. 94 Tumor-to-background color contrast was defined as the mean Euclidean distance in LAB 95 colorspace4 between pixels in the tumor region-of-interest and pixels in the surrounding cranial window. 96 Regions were defined manually based on the blue-light images. LAB colorspace was used because it is 97 designed to approximate human vision, and therefore, relative perceptual distance between any two colors 98 corresponds to the Euclidean distance between their points in Lab 3-dimensional space.5 99 Figure ESM3 is a condensed summary of the effect of short-pass filter and long-pass filter 100 selection on the color rendering index and the Tumor to Background Color Contrast for a fixed Intensity. 101 The crosses indicate the filter selection for the secondary illuminant that was ultimately built and used in 102 the intraoperative video and image panels in Figure 3.. 103 Effect of short-pass filter on CRI: 104 Effect of long-pass filter on CRI: Little impact is observed by reducing the LPF cut-off to less than 450 nm since this region is 105 well-covered by blue illumination, and not well-represented in the D65 standard to which CRI is compared. 106 Effect of short-pass filter on TBCC 107 Effect of long-pass filter on TBCC: 108 109 110 Figure ESM3. Relationship (left) between Color Rendering Index (CRI) and filter selection. Warm colors represent CRI > 30. 111 The white cross represents the filter set used in the clinical study. Relationship (right) between change in tumor to background 112 color contrast (TBCC) [compared with the unaltered blue light images] and filter selection. 113 References 114 1. Süsstrunk, S., Buckley, R. & Swen, S. Standard RGB color spaces. in Color and Imaging Conference 115 vol. 1999 127–134 (Society for Imaging Science and Technology, 1999). 116 2. Schanda, J. Colorimetry: understanding the CIE system. (John Wiley & Sons, 2007). 117 3. Wyszecki, G.
Recommended publications
  • Growing Importance of Color in a World of Displays and Data Color In
    Importance of Color in Displays Growing Importance of Color in a World of Displays and Data Color in displays Standards for color space and their importance The television and monitor display industry, through numerous standards bodies, including the International Telecommunication Union (ITU) and International Commission on Illumination (CIE), collaborate to create standards for interoperability, delivery, and image quality, providing a basis for delivering value to the consumers and businesses that purchase and rely on these displays. In addition to industry-wide standards, proprietary standards developed by commercial entities, such as Adobe RGB and Dolby Vision, drive innovation and customer value. The benefits of standards for color are tangible. They provide the means for: Color information to be device- and application-independent Maintaining color fidelity through the creation, editing, mastering, and broadcasting process Reproducing color accurately and consistently across diverse display devices By defining a uniform color space, encoding system, and broadcast specification relative to an ideal “reference display,” content can be created almost anywhere and transmitted to virtually any device. In order for that content to be shown correctly and in full detail, the display rendering it should be able to reproduce the same color space. While down-conversion to lesser color spaces is possible, the resulting image quality will be reduced. It benefits a consumer, whenever possible and within reasonable spending, to purchase a display with the closest conformance to standards so that they are assured of the best experience in terms of interoperability and image quality. The Color IQ optic that is referenced as Annex 3 of Exemption 39(b) allows displays to meet these standards, and does so at a lower system cost and higher energy efficiency than alternative solutions.
    [Show full text]
  • Rachel Schwen and Roy Berns Fall, 2011 Design of LED Clusters For
    Rachel Schwen and Roy Berns Fall, 2011 Design of LED Clusters for Optimal Museum Lighting Introduction Museum lighting has historically been a field of trade offs. Museum environments have set guidelines for the lighting of fine art that aim to minimize degradation. This is accomplished by eliminating high-energy wavelengths, particularly those in the UV range below 400nm (as defined by CIE 157:2004) or is limited to 75 µW/lumen of ultra-violet radiation. There are also specifications for illuminance. For medium and high responsivity materials, total illuminance is suggested to be at or less than 50 lx (CIE 157:2004). For less responsive pigments, illuminance is suggested to be between 150 and 200 lx (CIE 157:2004, CIBS), and for those materials classified as irresponsive no limit on illumination is specified (NOTE: There are other suggested specifications for lighting in museum environments such as CIBSE, and IES which will not be discussed here). Curators are most interested in preserving artwork for future generations while displaying it in such as way as to allow current viewers to be able to enjoy the full impact of the art. The simple act of meeting these specifications creates the first level of obvious trade offs for curators. I. How much damage is too much for art? Color change due to fading is a major issue when assessing light damage done by a light source. Richardson and Saunders 2007 conducted a study, which indicates that damage as small as 2 ΔEab units is noticeable and up to 4 ΔEab indicates a reasonable amount of damage over a 50 to 100 year period.
    [Show full text]
  • Visor: Hao-Chung Kuo 李柏璁 Po-Tsung Lee
    國立交通大學 顯示科技研究所 碩士論文 應用於 紅,藍,綠 發光二極體色彩穩定之 控制回饋系統設計 Light Output Feedback Control System Design for RGB LED Color Stabilization 研究生:李仕龍 指導教授:郭浩中 教授 李柏璁 教授 中華民國九十七年六月 應用於 紅,藍,綠 發光二極體色彩穩定之 控制回饋系統設計 Light Output Feedback Control System Design for RGB LED Color Stabilization 研 究 生: 李仕龍 Student: Shih-Lung Lee 指導教授: 郭浩中 Advisor: Hao-chung Kuo 李柏璁 Po-Tsung Lee 國立交通大學 顯示科技研究所 碩士論文 A Thesis Submitted to Display Institute College of Electrical and Computer Engineering National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Master In Display Institute June 2008 HsinChu, Taiwan, Republic of China. 中華民國九十七年六月 應用於 紅,藍,綠 發光二極體色彩穩定之 控制回饋系統設計 碩士班研究生:李仕龍 指導教授: 郭浩中,李柏璁 國立交通大學 顯示科技研究所 摘要 顯示科技蓬勃發展,液晶顯示器(Liquid Crystal Display)已成為取 代陰極射線管顯示器(Cathode Ray Tube Monitor)最強大的主流產品,由 於液晶顯示器並非主動發光元件,必須仰賴一個外加的光源系統,此即所 謂的背光模組,而背光模組使用冷陰極射線管(Cold Cathode Fluorescent Lamp)充當光源已行之有年;發光二極體(Light Emitting Diode)因較冷 陰極射線管具有壽命長,廣色域、省電、環保、反應快速等多項優點,已 成為液晶顯示器背光源的新選擇。然而,長時間使用下而產生的熱,往往 造成發光二極體的發光顏色偏移,此在顯示器要求高色彩品質的標準下, 是最不樂見的。 本論文提出了使用光二極體感測發光二極體的光輸出訊號,經類比數 位轉換的裝置,套用反覆逼近的程式,設計建立一組μA等級的電流逼近 的發光二極體色彩穩定回饋系統。回饋系統在 13 位元解析下,可將對應 於使用 3250, 3969, 及4462小時的紅色,藍色及綠色發光二極體的色偏 值(Δu'v')維持在內 0.005 (人眼恰可接受的範圍) 內。使用 14 位元 解析下,可將紅,藍及綠色發光二極體的色偏值維持在內 0.004 之內。 I Light Output Feedback Control System Design for RGB LED Color Stabilization Student : Shih-Lung Lee Advisor: Hao-chung Kuo Po-Tsung Lee Display Institute National Chiao-Tung University Abstract LCD (Liquid Crystal Display) is the mainstream product to replace CRT (Cathode Ray Tube). Conventionally, CCFL (Cold Cathode Fluorescent Lamp) is used as a light source of LCD backlight. However, LED (Light Emitting Diode) is regarded as the candidate to replace CCFL (Cold Cathode Fluorescent Lamp) as light source of LCD backlight due to its wide color gamut, low operation voltage, mercuryfree characteristic, and fast switch response.
    [Show full text]
  • Characterization, Modeling, and Optimization of Light-Emitting Diode Systems
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 Characterization, Modeling, and Optimization of Light-Emitting Diode Systems Thorseth, Anders Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Thorseth, A. (2011). Characterization, Modeling, and Optimization of Light-Emitting Diode Systems. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN Ph.D. thesis Anders Thorseth Characterization, Modeling, and Optimiza- tion of Light-Emitting Diode Systems Principal supervisor: Jan W. Thomsen Co-supervisor: Carsten Dam-Hansen Submitted: 31/03/2011 i \Here forms, here colours, here the character of every part of the universe are concentrated to a point." Leonardo da Vinci, on the eye [156, p. 20] ii Abstract This thesis explores, characterization, modeling, and optimization of light-emitting diodes (LED) for general illumination.
    [Show full text]
  • Gretagmacbeth Visual Color Communication
    OLORCHECKERTM CHART SOIL COLOR CHARTS MUNSELL CONVERSION FREEWARE MUNSELL BOOK OF COLOR PLANT CUSTOM COLOR STANDARDS COLOR CONTROL PANELS TEXTURE PAINT-ON-PAPER COLOR STANDARDS COLOR TOL APPEARANCE LEARNING KIT FARNSWORTH-MUNSELL 100 HUE TEST FARNSWORTH-MUNSELL DICHOTOMOUS D-15 GretagMacbeth Visual Color Communication LOR AND APPEARANCE BOOK HUE, VALUE, CHROMA (H V/C) POSTERS COLOR LABORATORY SERVICES COLOR AND Product and Resource Guide AND THE JUDGE II-S EXAMOLITE LUMINARIES PROOFLITE TRANSPARENCY VIEWERS PROOFLITE VIEWING SYSTEMS ECTRO-RADIOMETER COLORCHECKER TM CHART SOIL COLOR CHARTS MUNSELL CONVERSION FREEWARE MUNSELL B QUICKCOLOR STANDARDS CUSTOM COLOR STANDARDS COLOR CONTROL PANELS TEXTURE PAINT-ON-PAPER COLOR S INTERACTIVE COLOR & APPEARANCE LEARNING KIT FARNSWORTH-MUNSELL 100 HUE TEST FARNSWORTH-MUNSELL ENTALS OF COLOR AND APPEARANCE BOOK HUE, VALUE, CHROMA (H V/C) POSTERS COLOR LABORATORY SERVICES THE JUDGE II AND THE JUDGE II-S EXAMOLITE LUMINARIES PROOFLITE TRANSPARENCY VIEWERS PROOFLITE VIEWING HTSPEX SPECTRO-RADIOMETER COLORCHECKERTM CHART SOIL COLOR CHARTS MUNSELL CONVERSION FREEWARE ODING CHARTS QUICKCOLOR STANDARDS CUSTOM COLOR STANDARDS COLOR CONTROL PANELS TEXTURE PAINT COLOR & APPEARANCE LEARNING KIT FARNSWORTH-MUNSELL 100 HUE TEST FARNSWORTH-MUNSELL DICHOTOMOUS COLOR AND APPEARANCE BOOK HUE, VALUE, CHROMA (H V/C) POSTERS COLOR LABORATORY SERVICES COLOR THE JUDGE II-S EXAMOLITE LUMINARIES PROOFLITE TRANSPARENCY VIEWERS PROOFLITE VIEWING SYSTEMS SOL-SOU CHECKERTM CHART SOIL COLOR CHARTS MUNSELL CONVERSION FREEWARE MUNSELL
    [Show full text]
  • Comparing Different ACES Input Device Transforms (Idts) for the RED Scarlet-X Camera
    https://doi.org/10.2352/ISSN.2470-1173.2018.06.MOBMU-139 © 2018, Society for Imaging Science and Technology Comparing different ACES Input Device Transforms (IDTs) for the RED Scarlet-X Camera Eberhard Hasche, Oliver Karaschewski, Reiner Creutzburg, Brandenburg University of Applied Sciences; Brandenburg a.d. Havel . Brandenburg/Germany Email: [email protected] , [email protected], [email protected] Abstract One important part of the ACES system is the Input Device The RED film cameras are important for professional film Transform (IDT). productions. Therefore, the Academy of Motion Picture Arts and Science (AMPAS) inserted to their new Input Device Transforms In the first step of the ACES system the IDT converts an (IDTs) in ACES 1.0.3 among others a couple of conversions from image from a certain source, mainly a film camera but also RED color spaces. These transforms are intended to establish a Computer Graphic (CG) renderings to a unified color space. To linear relationship of the recorded pixel color to the original light ensure that all converted images are looking the same, all transfer of the scene. To achieve this goal the IDTs are applied to the functions (gamma, log) and all picture renderings applied by the different RED color spaces, which are provided by the camera manufacture company have to be removed. After applying the IDT manufacturer. This results in a linearization of the recorded image to all input images, they can be combined theoretically without colors. additional color correction – a main goal in modern compositing Following this concept the conversion should render For this reason the built-in functionality of an IDT has to comparable results for each color space with an acceptable ensure that the resulted image maintains a linear relationship to the deviation from the original light of the scene.
    [Show full text]
  • Refining ACES Best Practice
    Refining ACES Best Practice Eberhard Hasche, Oliver Karaschewski, Reiner Creutzburg, Brandenburg University of Applied Sciences; Brandenburg a.d. Havel . Brandenburg/Germany Email: [email protected] , [email protected], [email protected] Abstract ACES is the Academy Color Encoding System established by the Academy of Motion Picture Arts and Science (A.M.P.A.S). Since its introduction (version 1.0 in December 2014), it has been widely used in the film industry. The interaction of four modules makes the system flexible and leaves room for own developments and modifications. Nevertheless, improvements are possible for various practical applications. This paper analyzes some of the problems frequently encountered in practice in order to identify possible solutions. These include improvements in importing still images, white point conversions problems and test lighting. The results should be applicable in practice and take into account above all the workflow with commercially available software programs. The goal of this paper is to record the spectral distribution of Figure 1. GretagMacbeth ColorChecker (pocket version) and a GretagMacbeth ColorChecker using a spectrometer and also Identifiers used in the test photography it with different cameras like RED Scarlet M-X, Blackmagic URSA Mini Pro and Canon EOS 5D Mark III under the For the illumination we applied three different lights – same lighting conditions. The recorded imagery is then converted commonly used in film/tv/video production. They were set to match to the ACES2065-1 color space. The positions of the patches of the an illuminant of roughly 6000 K (CIE D60). The spectral data was ColorChecker in CIE Yxy color space are then compared to the recorded by a spectrometer Qmini by rgbphotonics (see figure 2).
    [Show full text]
  • Analysis of Color Rendition Specification Criteria
    Analysis of Color Rendition Specification Criteria Michael P. Royer Pacific Northwest National Laboratory, 620 SW 5th Ave Suite 810, Portland, OR, USA 97202 This is an archival copy of an article published in Light-Emitting Devices, Materials, and Applications. Please cite as: Royer, M. “Analysis of color rendition specification criteria.” Light-Emitting Devices, Materials, and Applications. Vol. 10940. International Society for Optics and Photonics, 2019. Analysis of Color Rendition Specification Criteria Michael P. Royer*a aPacific Northwest National Laboratory, 620 SW 5th Ave Suite 810, Portland, OR, USA 97202 ABSTRACT Methods for evaluating light source color rendition have recently undergone substantial changes. This article explores the ability of color rendition specification criteria to capture preferences for lighting color quality. For a compilation of five recent psychophysical studies on perceptions of colors, recently proposed specification criteria using ANSI/IES TM-30-18 substantially outperformed all currently used specification criteria in identifying preferred lighting conditions. To understand the consequences of changing color rendition specification criteria, the performance of a set of 484 commercially-available SPDs was evaluated. Keywords: Color rendition, specification criteria, color preference, spectral efficiency, TM-30, color fidelity, CRI 1. INTRODUCTION Measures (objective quantities) and metrics (subjective quantities) of color rendition are calculation methods that return a quantitative value describing how a light source will influence the appearance of colored objects. Dozens of measures and metrics of color rendition have been proposed over the past 70 years as the variety of light sources— specifically their spectral power distributions (SPDs)—has grown. These calculation tools vary in what they intend to quantify, as well as in the underlying framework that is used to make assumptions about object colors, viewing conditions, and psychological processes.
    [Show full text]
  • CCS Series Spectrometer 1 General Information the CCS Series Spectrometer Is Designed for General Laboratory Use
    Spectrometer CCS Series Operation Manual 2014 Version: 2.02 Date: 21-Mar-2014 Copyright © 2014 Thorlabs Contents Foreword 3 1 General Information 4 1.1 Safety 4 1.2 Ordering Codes and Accessories 5 1.3 Requirements 5 2 Installation 6 2.1 Parts List 6 2.2 Installing Software 7 3 Getting Started 12 4 Operating Instruction 14 4.1 Main Menu 15 4.1.1 File 15 4.1.2 Sweep 18 4.1.3 Display 22 4.1.4 Level 25 4.1.5 Marker 26 4.1.5.1 Movable Markers 26 4.1.5.2 Fixed Markers 28 4.1.6 Analysis 31 4.1.6.1 Peak Track Analysis 31 4.1.6.2 Color Analysis 33 4.1.6.3 Statistics 34 4.1.6.4 Long Term Analysis 35 4.1.7 Math 39 4.1.8 Setup 45 4.1.8.1 Tab Active Device 45 4.1.8.2 Tab Display 50 4.1.8.3 Tab Peak Track 51 4.1.8.4 Tab Reset 52 4.1.9 Help 52 4.2 Settings Bar 53 4.3 Trace Controls 54 5 Write Your Own Application 57 5.1 NI VISA Instrument driver 32bit on 32bit systems 58 5.2 NI VISA Instrument driver 32bit on 64bit systems 60 5.3 NI VISA Instrument driver 64bit on 64bit systems 62 6 Maintenance and Service 64 6.1 Version Information 64 6.2 Troubleshooting 65 7 Appendix 66 7.1 Technical Data 66 7.2 Dimensions 67 7.3 Tutorial 68 7.4 Shortcuts Used in OSA Software 72 7.5 Certifications and Compliances 73 7.6 Warranty 74 7.7 Copyright and Exclusion of Reliability 75 7.8 Thorlabs 'End of Life' Policy (WEEE) 76 7.9 List of Acronyms 77 7.10 Thorlabs Worldwide Contacts 78 We aim to develop and produce the best solution for your application in the field of optical measurement techniques.
    [Show full text]
  • Xrite Colorchecker Comparison Brochure
    x-rite photo photo photo Product Line Comparison Passport Classic Grayscale White Balance Gray Balance Digital SG ColorChecker Passport RAW Color Power for Control and Creativity – from Capture to Edit. ColorChecker Passport combines 3 photographic targets into one pocket size protective case that self-stands to adjust to any scene. Combining the powerful color capabilities of the ColorChecker Passport and Adobe Imaging solutions into your RAW workflow will undeniably reduce your image processing time and improve quality control. Quickly and easily capture accurate color, instantly enhance portraits and landscapes and maintain color control and consistency from capture to edit. ColorChecker Classic The ColorChecker Classic target is designed to deliver true-to-life image reproduction so photographers can predict and control how color will look under any illumination. Each of the 24 colors represents the actual color of natural objects and reflects light just like its real-world counterpart. ColorChecker Classic targets support custom DNG profile creation. Available in both full and mini sizes. ColorChecker White Balance The ColorChecker Custom White Balance target delivers accurate white reproduction. As lighting conditions change, your camera shifts the way it reproduces white; resulting in color shifts in your photos. Most white balance targets aren’t neutral and could cause colors to shift under different lighting conditions. But the ColorChecker Custom White Balance target is a scientifically engineered, neutral white reference that prevents color shifts and provides precise, uniform surface that is spectrally neutral – in any lighting condition. That means you can be confident your camera’s image is as close to real life as possible.
    [Show full text]
  • Wide Color Gamut SET EXPO 2016
    Wide Color Gamut SET EXPO 2016 31 AUGUST 2016 Eliésio Silva Júnior Reseller Account Manager E/ [email protected] T/ +55 11 3530-8940 M/ +55 21 9 7242-4211 tek.com Anatomy Human Vision CIE Chart Color Gamuts Wide Color Gamut Gamma and High Dynamic Range 2 Basic Anatomy - Human vision system PHYSICAL PART/ELEMENTS • Eye, Lens and Retina ▪ Rods ▫ Sensitive to Blue-green light ▫ Used for vision under dark-dim conditions. ▪ Cones ▫ 3 Types of Cones Sensitive to either long wavelengths of light (red light) medium wavelengths of light (green light) short wavelengths of light (blue light) ◦ Optic nerve http://webvision.med.utah.edu/index.html 3 Color Model – CIE color spaces NTSC (1953) BT709/sRGB BT2020 ~SMPTE C D65 white BT2020 NTSC (1953) Black BT709/sRGB (70% NTSC) White ~SMPTE C D65 white CIE-1931 chart CIE-1976 chart (More perceptually uniform than CIE-1931) • CIE 1931 XYZ color space ◦ Still foundation of most color models • Trichromatic stimulus (color value) • Lightness decreases towards not shown third dimmension • Saturation increases towards edges 4 ITU 601-7 & 709-5 Chromaticity ITU-R BT 601-7 601-7 525 CIE x CIE y Red 0.630 0.340 Green 0.310 0.595 Blue 0.155 0.070 White 0.3127 0.3290 ITU-R BT 709-5 709-5/601 625 CIE x CIE y Red 0.640 0.330 Green 0.300 0.600 Blue 0.150 0.060 White 0.3127 0.3290 31 AUGUST 2016 5 Wider Color - Chromaticity ITU-R BT 2020 CIE x CIE y Red 0.708 0.292 Green 0.170 0.797 Blue 0.131 0.046 White 0.31272 0.32903 ITU-R BT 709-5 709-5 CIE x CIE y Red 0.640 0.330 Green 0.300 0.600 Blue 0.150 0.060 White 0.3127 0.3290
    [Show full text]
  • Color Accuracyaccuracy
    WelcomeWelcome toto thethe FifthFifth Almost-AnnualAlmost-Annual BetterBetter LightLight OwnersOwners’’ ConferenceConference ……iitt’’ss ggoonnnnaa bbee HHOOTT!!!! COLORCOLOR ACCURACYACCURACY mmoorree tthhaann yyoouu eevveerr wwaanntteedd ttoo kknnooww - including - hhooww ttoo imimpprroovvee yyoouurr ccaammeerraa pprrooffileile ““CCoololorr AAccccuurraaccyy””…… ¬ HHooww aaccccuurraatteelyly ddooeess aa ddeevvicicee rreennddeerr ccoololorr?? ¬ ……ccoommppaarreedd ttoo wwhhaatt?? ¬ ……uunnddeerr wwhhaatt ccoonnddititioionnss?? ¬ ……uussiningg wwhhaatt tteerrmmininoolologgyy?? SSppeeccttrraall rreessppoonnssee mmeetthhoodd compares the actual response of a device with its theoretical response, based on spectral data for the reference chart being used, and for the device 1 1.00 0.9 dark brown 0.90 dark orange blue 0.8 white 0.80 light brown violet blue 0.7 green 0.70 gray 1 pale blue 0.6 0.60 medium red red ccd red gray 2 0.5 0.50 ccd green olive green dark purple ccd blue yellow 0.40 0.4 medium gray light purple yellow green 0.30 0.3 magenta dark gray 0.20 0.2 light cyan light orange cyan 0.10 0.1 black 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 9 1 2 3 8 0 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 4 4 4 4 4 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 reference chart spectral data device spectral response data CCaallcucullaatetedd ddeevviicece reressppoonnssee toto
    [Show full text]