FCGR2A/CD32A and FCGR3A/CD16A Variants and EULAR

Total Page:16

File Type:pdf, Size:1020Kb

FCGR2A/CD32A and FCGR3A/CD16A Variants and EULAR FCGR2A/CD32A and FCGR3A/CD16A Variants and EULAR Response to Tumor Necrosis Factor-α Blockers in Psoriatic Arthritis: A Longitudinal Study with 6 Months of Followup JULIO RAMÍREZ, JOSÉ LUIS FERNÁNDEZ-SUEIRO, RAQUEL LÓPEZ-MEJÍAS, CARLOS MONTILLA, MAITE ARIAS, CONCEPCIÓN MOLL, MERCÉ ALSINA, RAIMON SANMARTI, FRANCISCO LOZANO, and JUAN D. CAÑETE ABSTRACT. Objective. The efficacy of antibody-based biological therapies currently used in psoriatic arthritis (PsA) depends not only on their blocking effect on the targeted molecule but also on their binding affinity to genetically defined variants of cell-surface Fc-γ receptors. Our objective was to assess the potential influence of functionally relevant FCGR2A/CD32A (H131R) and FCGR3A/CD16A (V158F) genetic polymorphisms on the EULAR response to tumor necrosis factor-α (TNF-α) blocker therapy in PsA. Methods. In total 103 patients with PsA starting anti-TNF-α therapy were included. The efficacy of therapy was evaluated according to EULAR response criteria at 3 and 6 months. FCGR2A-R131H and FCGR3A-F158V polymorphisms were genotyped. Potential correlations between clinical response and the FCGR2A-R131H and FCGR3A-F158V polymorphisms were evaluated. Results. EULAR response (moderate plus good) was 85.4% at 3 months and 87.4% at 6 months, while good EULAR response was 61.2% and 62.1%, respectively. More patients with high-affinity FCGR2A genotypes (homozygous or heterozygous combinations) achieved a EULAR response at 6 months com- pared to patients with the low-affinity genotype (RR; p = 0.034, adjusted comparison error rate < 0.025). This association was due mainly to the group of patients treated with etanercept. No correlation was found for the FCGR3A polymorphism. Similarly, no effect of C-reactive protein levels was observed. Conclusion. Our data indicate that FCGR2A polymorphism may influence the response to TNF-α blockers (namely etanercept) in PsA in a direction opposite to that previously found in patients with rheumatoid arthritis. (J Rheumatol First Release April 1 2012; doi:10.3899/jrheum.110980) Key Indexing Terms: PSORIATIC ARTHRITIS GENE POLYMORPHISM TUMOR NECROSIS FACTOR-α BLOCKERS EULAR RESPONSE The use of therapies targeting the key proinflammatory arthritis (PsA) and other immune-mediated inflammatory dis- cytokine tumor necrosis factor-α (TNF-α) has greatly orders. Currently, 4 TNF-α blockers are licensed to treat PsA: improved the standard of care for the treatment of psoriatic infliximab (a mouse/human chimeric monoclonal antibody), From the Department of Rheumatology, Arthritis Unit, Department of Clínico, Salamanca; M. Arias, Technician, Department of Immunology, Immunology, Innate Immunity Unit, and Department of Dermatology, Innate Immunity Unit, Hospital Clínic, Barcelona; C. Moll, MD, Hospital Clínic, Barcelona; Department of Rheumatology, Hospital Juan Department of Rheumatology, Arthritis Unit, Hospital Clínic, Barcelona; Canalejo, La Coruña; Department of Rheumatology, Hospital Clínico, M. Alsina, MD, Department of Dermatology, Hospital Clínic, Barcelona; Salamanca; Department of Cellular Biology, Immunology and R. Sanmarti, MD, Department of Rheumatology, Arthritis Unit, Hospital Neurosciences, University of Barcelona, Barcelona; and Institut Clínic, Barcelona, Institut d’Investigacions Biomèdiques August Pi i d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Sunyer; F. Lozano, MD, Department of Immunology, Innate Immunity Spain. Unit, Hospital Clínic, Barcelona, Department of Cellular Biology, Supported by a grant from Abbott Laboratories, Spain. Dr. Cañete was Immunology and Neurosciences, University of Barcelona, and Institut partly supported by the RETICS Program, RD08/0075 (RIER), Instituto de d’Investigacions Biomèdiques August Pi i Sunyer; J.D. Cañete, MD, PhD, Salud Carlos III (ISCIII), within the VI PN de I+D+I 2008-2011 Department of Rheumatology, Arthritis Unit, Hospital Clínic, Barcelona, (FEDER). Dr. Lozano is supported by grant SAF2007-62197 from the and Institut d’Investigacions Biomèdiques August Pi i Sunyer. Spanish Ministerio de Ciencia e Innovación (MICINN). Dr. Lozano and Dr. Cañete are senior authors and contributed equally to J. Ramírez, MD, Department of Rheumatology, Arthritis Unit, Hospital this report. Clínic, Barcelona; J.L. Fernández-Sueiro, MD, Department of Address correspondence to Dr. J.D. Cañete, Arthritis Unit, Department of Rheumatology, Hospital Juan Canalejo; R. López-Mejías, MD, Rheumatology, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain. Department of Immunology, Innate Immunity Unit, Hospital Clínic, E-mail: [email protected] Barcelona; C. Montilla, MD, Department of Rheumatology, Hospital Accepted for publication January 13, 2012. Personal non-commercial use only. The Journal of Rheumatology Copyright © 2012. All rights reserved. Ramírez, et al: FCGR2A/3A polymorphism in PsA 1 Downloaded on October 1, 2021 from www.jrheum.org adalimumab and golimumab (human monoclonal antibodies), erogeneity of the FCGR. Polymorphisms resulting in a high- and etanercept (a fusion protein consisting of a dimer of the er/lower affinity to the Fc region of TNF blockers may modu- extracellular portion of the p75 TNF-α receptor linked to the late both their half-life and cellular effects, and may therefore Fc portion of human IgG1). The Fc portion of these biological produce different therapeutic effects, as shown in patients agents binds specifically to cell-surface Fc-γ receptors with rheumatoid arthritis (RA)9,10. (FCGR) and this may affect their half-life and certain innate Our objective was to assess the influence of the FCGR2A- and adaptive immune responses, such as phagocytosis and/or H131R and FCGR3A-V158F genetic polymorphisms on the antibody-dependent cellular cytotoxicity. There are differ- European League Against Rheumatism (EULAR) response to ences in the structural composition of monoclonal antibodies biological therapy in patients with PsA. (which are composed of a whole IgG1 molecule) and soluble receptor (lacking the hinge region and CH1 of the IgG1 mol- MATERIALS AND METHODS ecule). That means that etanercept is likely to begin comple- Study population. This was an observational multicenter study. Patients diag- 11 ment activation but perhaps is not able to sustain it over time. nosed with PsA according to the CASPAR criteria , excluding the pure axial form, and treated with anti-TNF-α agents (infliximab, etanercept, or adali- On the other hand, these 4 molecules exhibit CH2 and CH3 mumab; golimumab was still not approved for PsA) at 3 Spanish public hos- regions that allow all 4 drugs to develop antibody-dependent pitals (Hospital Clínic, Barcelona, Hospital Juan Canalejo, La Coruña, and cellular cytotoxicity responses, although once again experi- Hospital Clínico, Salamanca) were included. The Ethics Committee of the ments show that etanercept seems to need a higher concentra- Hospital Clínic approved the study and written informed consent was obtained from all participants. tion to reach the same responses as monoclonal antibodies. All patients had PsA that was nonresponsive to conventional disease- Together, these data point to a more profound effect of mono- modifying antirheumatic drug therapy (methotrexate 15–25 mg/week) and clonal antibodies on levels of TNF (transmembrane and solu- started anti-TNF-α therapy according to Spanish recommendations for the ble form)1. management of PsA12. All information provided referred to the first anti- Three major classes of human FCGR have been reported, TNF-α treatment. At inclusion, the Psoriasis Global Assessment (PGA) score was taken. At Months 3 and 6 of treatment, the number of tender and swollen encompassing 8 genes (FCGR1A, B and C; FCGR2A, B, and joints, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP; C; FCGR3A and B), all mapping to chromosome 12. Some of mg/dl, by nephelometry) were recorded. Disease activity was evaluated by these genes display functional allelic polymorphisms generat- the 28-joint Disease Activity Score (DAS28) using 3 variables, including ing further molecular heterogeneity and interindividual differ- CRP (DAS28 3v-CRP). At baseline, HLA-B27 typing by polymerase chain reaction (PCR) was ences in the effector properties of the receptors. FCGR2A performed, as well as quantification of rheumatoid factor (RF, by nephelom- encodes for the most widely expressed FCGR (found in most etry; positive > 25 IU/ml) and anticitrullinated peptide antibodies (ACPA) by myeloid cells and platelets), and presents a single-nucleotide Immunoscan-RA Mark-2 ELISA (Eurodiagnostica, Malmö, Sweden) accord- polymorphism (SNP) in the membrane-proximal Ig-like ing to the manufacturer’s instructions (positive > 50 IU/ml). domain, resulting in either arginine (R) or histidine (H) at DAS28 response was analyzed by change from baseline, and the efficacy of therapy at 3 and 6 months was classified using the EULAR criteria position 131, which affects receptor affinity for IgG immune response categories13, which classify patients as good, moderate, or nonre- 3 complexes . Consequently, the most striking difference sponders using the individual amount of change in the DAS28 and the DAS28 between the FCGR2A-131H and R alleles is in their affinity final value. DAS28 improvement > 1.2 with final DAS28 ≤ 3.2 is considered for human IgG2 and, to a lesser degree, for IgG1 and IgG3, indicative of a good response, an improvement of 0.6 with DAS28 final > 3.2 which is higher for H alleles4. A similar situation applies to the a moderate
Recommended publications
  • Human CD64 / FCGR1A Protein (His Tag), Biotinylated
    Human CD64 / FCGR1A Protein (His Tag), Biotinylated Catalog Number: 10256-H08S-B General Information SDS-PAGE: Gene Name Synonym: CD64; Fc gamma RI Protein Construction: A DNA sequence encoding the human FCGR1A (NP_000557.1) (Met1- Pro288) was expressed with a polyhistidine tag at the C-terminus. The purified protein was biotinylated in vitro. Source: Human Expression Host: CHO Stable Cells QC Testing Purity: > 95 % as determined by SDS-PAGE. Bio Activity: Protein Description Measured by its binding ability in a functional ELISA.Immobilized High affinity immunoglobulin gamma Fc receptor I, also known as FCGR1 biotinylated Human CD64 Protein (Cat:10256-H08S-B)at 10 μg/mL can and CD64, is an integral membraneglycoprotein and a member of the bind human IgG1,The EC50 of human IgG1 is 6-14 ng/mL. immunoglobulin superfamily. CD64 is a high affinity receptor for the Fc region of IgG gamma and functions in both innate and adaptive immune Endotoxin: responses. Receptors that recognize the Fc portion of IgG function in the regulation of immune response and are divided into three classes < 1.0 EU per μg protein as determined by the LAL method. designated CD64, CD32, and CD16. CD64 is structurally composed of asignal peptidethat allows its transport to the surface of a cell, Stability: threeextracellularimmunoglobulin domainsof the C2-type that it uses to Samples are stable for up to twelve months from date of receipt at -70 ℃ bind antibody, a hydrophobictransmembrane domain, and a short cytoplasmic tail. CD64 isconstitutivelyfound on only macrophages and Predicted N terminal: Gln 16 monocytes, but treatment of polymorphonuclear leukocyteswith cytokines likeIFNγandG-CSFcan induce CD64 expression on these cells.
    [Show full text]
  • CD226 T Cells Expressing the Receptors TIGIT and Divergent Phenotypes of Human Regulatory
    The Journal of Immunology Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226 Christopher A. Fuhrman,*,1 Wen-I Yeh,*,1 Howard R. Seay,* Priya Saikumar Lakshmi,* Gaurav Chopra,† Lin Zhang,* Daniel J. Perry,* Stephanie A. McClymont,† Mahesh Yadav,† Maria-Cecilia Lopez,‡ Henry V. Baker,‡ Ying Zhang,x Yizheng Li,{ Maryann Whitley,{ David von Schack,x Mark A. Atkinson,* Jeffrey A. Bluestone,‡ and Todd M. Brusko* Regulatory T cells (Tregs) play a central role in counteracting inflammation and autoimmunity. A more complete understanding of cellular heterogeneity and the potential for lineage plasticity in human Treg subsets may identify markers of disease pathogenesis and facilitate the development of optimized cellular therapeutics. To better elucidate human Treg subsets, we conducted direct transcriptional profiling of CD4+FOXP3+Helios+ thymic-derived Tregs and CD4+FOXP3+Helios2 T cells, followed by comparison with CD4+FOXP32Helios2 T conventional cells. These analyses revealed that the coinhibitory receptor T cell Ig and ITIM domain (TIGIT) was highly expressed on thymic-derived Tregs. TIGIT and the costimulatory factor CD226 bind the common ligand CD155. Thus, we analyzed the cellular distribution and suppressive activity of isolated subsets of CD4+CD25+CD127lo/2 T cells expressing CD226 and/or TIGIT. We observed TIGIT is highly expressed and upregulated on Tregs after activation and in vitro expansion, and is associated with lineage stability and suppressive capacity. Conversely, the CD226+TIGIT2 population was associated with reduced Treg purity and suppressive capacity after expansion, along with a marked increase in IL-10 and effector cytokine production. These studies provide additional markers to delineate functionally distinct Treg subsets that may help direct cellular therapies and provide important phenotypic markers for assessing the role of Tregs in health and disease.
    [Show full text]
  • FCGR1A Recombinant Protein
    FCGR1A Recombinant Protein CATALOG NUMBER: 96-305 The purity of rh CD64 / FCGR1A was determined by DTT-reduced (+) SDS- PAGE and staining overnight with Coomassie Blue. Specifications SPECIES: Human SOURCE SPECIES: HEK293 cells SEQUENCE: Gln 16 - Pro 288 FUSION TAG: His Tag TESTED APPLICATIONS: WB APPLICATIONS: This recombinant protein can be used for WB. For research use only. BIOLOGICAL ACTIVITY: Measured by its ability to bind human IgG1 in the SPR assay (Biacore 2000) with the KD < 5 nM. Measured by its binding ability in a functional ELISA. Immobilized Human IgG4 at 10ug/mL (100 µl/well),can bind Human Fc gamma RI, His Tag (Cat# FCA-H52H2) with a linear of 0.1-2 ng/mL. Properties PURITY: >90% as determined by SDS-PAGE. PREDICTED MOLECULAR 32.5 kDa WEIGHT: PHYSICAL STATE: Lyopholized BUFFER: PBS, pH7.4 STORAGE CONDITIONS: Lyophilized Protein should be stored at -20˚C or lower for long term storage. Upon reconstitution, working aliquots should be stored at -20˚C or -70˚C. Avoid repeated freeze-thaw cycles. Additional Info ALTERNATE NAMES: FCGR1A, FCG1, FCGR1, IGFR1, CD64, CD64A, FCRI ACCESSION NO.: AAH32634 Background Receptors that recognize the Fc portion of IgG are divided into three groups designated Fc gamma RI, RII, and RIII, also known respectively as CD64, CD32, and CD16. Fc gamma RI binds IgG with high affinity and functions during early immune responses. Fc gamma RII and RIII are low affinity receptors that recognize IgG as aggregates surrounding multivalent antigens during late immune responses. High affinity immunoglobulin gamma Fc receptor I is also known as FCGR1A, FCG1, FCGR1, CD64 and IGFR1, is a type of integral membrane glycoprotein that binds monomeric IgG-type antibodies with high affinity, which belongs to the immunoglobulin superfamily or FCGR1 family.
    [Show full text]
  • Associations Between FCGR3A Polymorphisms and Susceptibility to Rheumatoid Arthritis: a Metaanalysis YOUNG HO LEE, JONG DAE JI, and GWAN GYU SONG
    Associations Between FCGR3A Polymorphisms and Susceptibility to Rheumatoid Arthritis: A Metaanalysis YOUNG HO LEE, JONG DAE JI, and GWAN GYU SONG ABSTRACT. Objective. To investigate whether the Fcγ receptor (FCGR) polymorphism confers susceptibility to rheumatoid arthritis (RA). Methods. We conducted metaanalyses on the associations between FCGR polymorphisms and RA susceptibility as determined using (1) allele contrast, (2) recessive models, (3) dominant models, and (4) contrast of homozygotes, using fixed or random effects models. Results. A total of 10 separate comparisons were considered, which comprised 6 European and 4 Asian population samples. Metaanalysis of FCGR3A polymorphism revealed a significant associa- tion between the VV genotype and the risk of developing RA relative to the VF+FF genotype (OR 1.256, 95% CI 1.045–1.510, p = 0.015), with no evidence of between-study heterogeneity (p = 0.167). In subjects of European descent, a stronger association was observed between the VV geno- type and RA than for the FF genotype (OR 1.374, 95% CI 1.101–1.714, p = 0.005). In Asians, no such association was found. Metaanalysis of the VV vs FF genotype revealed a significantly increased OR in Europeans (OR 1.399, 95% CI 1.107–1.769, p = 0.005), but not in Asians. No asso- ciation was found between RA and the FCGR2A and FCGR3B polymorphisms in all subjects and in European and Asian populations, except for the NA22 vs NA11 of FCGR3B in Europeans. Conclusion. No relation was found between the FCGR2A polymorphism and susceptibility to RA in Europeans or Asians. The FCGR3A polymorphism was found to be associated with RA in Europeans but not in Asians.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Associations Between FCGR3A Polymorphisms and Susceptibility to Rheumatoid Arthritis: a Metaanalysis YOUNG HO LEE, JONG DAE JI, and GWAN GYU SONG
    Associations Between FCGR3A Polymorphisms and Susceptibility to Rheumatoid Arthritis: A Metaanalysis YOUNG HO LEE, JONG DAE JI, and GWAN GYU SONG ABSTRACT. Objective. To investigate whether the Fcγ receptor (FCGR) polymorphism confers susceptibility to rheumatoid arthritis (RA). Methods. We conducted metaanalyses on the associations between FCGR polymorphisms and RA susceptibility as determined using (1) allele contrast, (2) recessive models, (3) dominant models, and (4) contrast of homozygotes, using fixed or random effects models. Results. A total of 10 separate comparisons were considered, which comprised 6 European and 4 Asian population samples. Metaanalysis of FCGR3A polymorphism revealed a significant associa- tion between the VV genotype and the risk of developing RA relative to the VF+FF genotype (OR 1.256, 95% CI 1.045–1.510, p = 0.015), with no evidence of between-study heterogeneity (p = 0.167). In subjects of European descent, a stronger association was observed between the VV geno- type and RA than for the FF genotype (OR 1.374, 95% CI 1.101–1.714, p = 0.005). In Asians, no such association was found. Metaanalysis of the VV vs FF genotype revealed a significantly increased OR in Europeans (OR 1.399, 95% CI 1.107–1.769, p = 0.005), but not in Asians. No asso- ciation was found between RA and the FCGR2A and FCGR3B polymorphisms in all subjects and in European and Asian populations, except for the NA22 vs NA11 of FCGR3B in Europeans. Conclusion. No relation was found between the FCGR2A polymorphism and susceptibility to RA in Europeans or Asians. The FCGR3A polymorphism was found to be associated with RA in Europeans but not in Asians.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Single-Cell RNA Sequencing of Tocilizumab-Treated Peripheral Blood Mononuclear Cells As an in Vitro Model of Inflammation
    UCSF UC San Francisco Previously Published Works Title Single-Cell RNA Sequencing of Tocilizumab-Treated Peripheral Blood Mononuclear Cells as an in vitro Model of Inflammation. Permalink https://escholarship.org/uc/item/8q84n3jb Authors Zarinsefat, Arya Hartoularos, George Rychkov, Dmitry et al. Publication Date 2020 DOI 10.3389/fgene.2020.610682 Peer reviewed eScholarship.org Powered by the California Digital Library University of California fgene-11-610682 December 19, 2020 Time: 19:44 # 1 BRIEF RESEARCH REPORT published: 05 January 2021 doi: 10.3389/fgene.2020.610682 Single-Cell RNA Sequencing of Tocilizumab-Treated Peripheral Blood Mononuclear Cells as an in vitro Model of Inflammation Arya Zarinsefat1*, George Hartoularos2, Dmitry Rychkov1, Priyanka Rashmi1, Sindhu Chandran3, Flavio Vincenti1, Chun J. Yee2 and Minnie M. Sarwal1 1 Department of Surgery, University of California, San Francisco, San Francisco, CA, United States, 2 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States, 3 Department of Medicine, University of California, San Francisco, San Francisco, CA, United States COVID-19 has posed a significant threat to global health. Early data has revealed that IL-6, a key regulatory cytokine, plays an important role in the cytokine storm of COVID-19. Multiple trials are therefore looking at the effects of Tocilizumab, an IL-6 receptor antibody that inhibits IL-6 activity, on treatment of COVID-19, with promising findings. As part of a clinical trial looking at the effects of Tocilizumab treatment on Edited by: kidney transplant recipients with subclinical rejection, we performed single-cell RNA Gabriele Bucci, sequencing of comparing stimulated PBMCs before and after Tocilizumab treatment.
    [Show full text]
  • CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells With
    + CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells.
    [Show full text]
  • Folate Receptor Β Regulates Integrin Cd11b/CD18 Adhesion of a Macrophage Subset to Collagen
    Folate Receptor β Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen This information is current as Christian Machacek, Verena Supper, Vladimir Leksa, Goran of September 24, 2021. Mitulovic, Andreas Spittler, Karel Drbal, Miloslav Suchanek, Anna Ohradanova-Repic and Hannes Stockinger J Immunol 2016; 197:2229-2238; Prepublished online 17 August 2016; doi: 10.4049/jimmunol.1501878 Downloaded from http://www.jimmunol.org/content/197/6/2229 Supplementary http://www.jimmunol.org/content/suppl/2016/08/17/jimmunol.150187 Material 8.DCSupplemental http://www.jimmunol.org/ References This article cites 49 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/197/6/2229.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Folate Receptor b Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen Christian Machacek,* Verena Supper,* Vladimir Leksa,*,† Goran Mitulovic,‡ Andreas Spittler,x Karel Drbal,{,1 Miloslav Suchanek,{ Anna Ohradanova-Repic,* and Hannes Stockinger* Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation.
    [Show full text]
  • Product Datasheet: OAAB02345
    Aviva Systems Biology FCGR1A Antibody - middle region (OAAB02345) Product Number OAAB02345 Product Page http://www.avivasysbio.com/fcgr1a-antibody-center-region-oaab02345.html Product Name FCGR1A Antibody - middle region (OAAB02345) Size 400ul Gene Symbol FCGR1A Alias Symbols CD_antigen=CD64, Flags: Precursor, Fc-gamma RI, FcRI, Fc-gamma RIA, FcgammaRIa, High affinity immunoglobulin gamma Fc receptor I, IgG Fc receptor I,IGFR1, FCGR1, FCG1, FCGR1A Molecular Weight 42632 Da Product Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Isotype Rabbit Ig NCBI Gene Id 2209 Host Rabbit Clonality Polyclonal Concentration Approximately 0.5mg/ml. Actual concentration varies with each lot. Reconstitution and Maintain refrigerated at 2-8 deg C for up to 6 months. For long term storage store at -20 Storage deg C in small aliquots to prevent freeze-thaw cycles. Application Info WB: 1:1000 IHC-P: 1:50-100 FC: 1:10-50 Lead Time Domestic: within 1 week delivery International: 1 week *** Required Wet/Dry Ice Surcharge will automatically be applied upon checkout for the shipment. See Surcharges Immunogen This FCGR1A antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between amino acid 217-245 from the Central region of human FCGR1A. Tissue Tool Find tissues and cell lines supported by DNA array analysis to express FCGR1A. Swissprot Id P12314 Protein Name High affinity immunoglobulin gamma Fc receptor I Sample Type FCGR1A is strongly supported by BioGPS gene expression data to be expressed in Confirmation NCI-H460 Protein Accession NP_000557.1 # RNA Seq Find tissues and cell lines supported by RNA-seq analysis to express FCGR1A.
    [Show full text]
  • Gene List HTG Edgeseq Immuno-Oncology Assay
    Gene List HTG EdgeSeq Immuno-Oncology Assay Adhesion ADGRE5 CLEC4A CLEC7A IBSP ICAM4 ITGA5 ITGB1 L1CAM MBL2 SELE ALCAM CLEC4C DST ICAM1 ITGA1 ITGA6 ITGB2 LGALS1 MUC1 SVIL CDH1 CLEC5A EPCAM ICAM2 ITGA2 ITGAL ITGB3 LGALS3 NCAM1 THBS1 CDH5 CLEC6A FN1 ICAM3 ITGA4 ITGAM ITGB4 LGALS9 PVR THY1 Apoptosis APAF1 BCL2 BID CARD11 CASP10 CASP8 FADD NOD1 SSX1 TP53 TRAF3 BCL10 BCL2L1 BIRC5 CASP1 CASP3 DDX58 NLRP3 NOD2 TIMP1 TRAF2 TRAF6 B-Cell Function BLNK BTLA CD22 CD79A FAS FCER2 IKBKG PAX5 SLAMF1 SLAMF7 SPN BTK CD19 CD24 EBF4 FASLG IKBKB MS4A1 RAG1 SLAMF6 SPI1 Cell Cycle ABL1 ATF1 ATM BATF CCND1 CDK1 CDKN1B NCL RELA SSX1 TBX21 TP53 ABL2 ATF2 AXL BAX CCND3 CDKN1A EGR1 REL RELB TBK1 TIMP1 TTK Cell Signaling ADORA2A DUSP4 HES1 IGF2R LYN MAPK1 MUC1 NOTCH1 RIPK2 SMAD3 STAT5B AKT3 DUSP6 HES5 IKZF1 MAF MAPK11 MYC PIK3CD RNF4 SOCS1 STAT6 BCL6 ELK1 HEY1 IKZF2 MAP2K1 MAPK14 NFATC1 PIK3CG RORC SOCS3 SYK CEBPB EP300 HEY2 IKZF3 MAP2K2 MAPK3 NFATC3 POU2F2 RUNX1 SPINK5 TAL1 CIITA ETS1 HEYL JAK1 MAP2K4 MAPK8 NFATC4 PRKCD RUNX3 STAT1 TCF7 CREB1 FLT3 HMGB1 JAK2 MAP2K7 MAPKAPK2 NFKB1 PRKCE S100B STAT2 TYK2 CREB5 FOS HRAS JAK3 MAP3K1 MEF2C NFKB2 PTEN SEMA4D STAT3 CREBBP GATA3 IGF1R KIT MAP3K5 MTDH NFKBIA PYCARD SMAD2 STAT4 Chemokine CCL1 CCL16 CCL20 CCL25 CCL4 CCR2 CCR7 CX3CL1 CXCL12 CXCL3 CXCR1 CXCR6 CCL11 CCL17 CCL21 CCL26 CCL5 CCR3 CCR9 CX3CR1 CXCL13 CXCL5 CXCR2 MST1R CCL13 CCL18 CCL22 CCL27 CCL7 CCR4 CCRL2 CXCL1 CXCL14 CXCL6 CXCR3 PPBP CCL14 CCL19 CCL23 CCL28 CCL8 CCR5 CKLF CXCL10 CXCL16 CXCL8 CXCR4 XCL2 CCL15 CCL2 CCL24 CCL3 CCR1 CCR6 CMKLR1 CXCL11 CXCL2 CXCL9 CXCR5
    [Show full text]